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ABSTRACT

Agent-based simulations for networked anagram games, often taking advantage of experimental data,
are useful tools to investigate collaborative behaviors. To confidently incorporate statistical analysis of
experimental data into agent-based simulations, it is crucial to conduct sufficient validation for the underlying
statistical models. In this work, we propose a systematic approach to evaluate the validity of statistical
methods of players’ action sequence modeling for networked anagram experiments. The proposed method
can appropriately quantify the effect and validity of expert-defined covariates for modeling the players’
action sequence data. We further develop a Large Language Model (LLM)-guided method to augment the
covariate set, employing iterative text summarization to overcome token limits. The performance of the
proposed methods is evaluated under different metrics tailored for imbalanced data in networked anagram
experiments. The results highlight the potential of LLM-driven feature discovery to refine the underlying
statistical models used in agent-based simulations.

1 INTRODUCTION

1.1 Background

Anagram Game. Online anagram games/experiments were conducted with team members playing via
screens in their web browsers. Each team’s goal was to form as many words as possible in the five-minute
game. Team players split the earnings evenly, irrespective of their individual performance (earnings were
proportional to the number of words formed). One possible game configuration is shown in Figure 1a,
with four players and player degrees (i.e., numbers of neighbors) ranging from 1 to 3. In a more general
setting, the number of players in a game is denoted as n and the player degrees are denoted as d. Each
player was given three letters initially; for this setup, the letters are shown in the boxes beside the players.
Each player could choose any of three actions at any time t: requesting a letter from a neighboring player,
replying to a neighbor’s letter request, or forming a word. Actions could be repeated in any order and any
number of times. (Analysis of the data shows that player actions can be discretized into integer seconds
because there are very few occurrences, over all experimental data, of two consecutive actions within a
one-second interval, and that the majority of time a player is idle (i.e., thinking) and not taking one of the
three actions.) A possible (but fictitious) sequence of player actions is given in Figure 1b. Most of these
actions are between players u3 and u1, where u3 requests letters (a, t, and g) from u1, and then u1 replies
at later times with the requested letters. These letters enable u3 to form words trader and grader. In this
game, based on the edges, u3 can interact with u1 and u4, but not u2. When a player receives a requested
letter, the player providing the letter does not lose it. The provider maintains the letter (the multiplicity of
the letter increases by one). Also, when a player forms a word, she does not lose the letters of the word
and can reuse them. This is why u3 can form trader and then grader: the letters in {r,a,d,e} are not lost.
In fact, both words indicate that a letter possessed by a player, in this case r, can be used any number of
times in a word. These rules were used to simplify the game in enabling players to form more words and
thus increase their earnings.
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(a) A four-player game configuration

Time (s) Initiating 
Player

Receiving 
Player

Action

10 𝑢3 𝑢1 Request 𝑡

14 𝑢3 𝑢1 Request 𝑎

15 𝑢1 𝑢3 Reply 𝑡

21 𝑢1 𝑢3 Reply 𝑎

25 𝑢3 -- Form 
𝑡𝑟𝑎𝑑𝑒𝑟

31 𝑢3 𝑢1 Request 𝑔

42 𝑢1 𝑢3 Reply 𝑔

46 𝑢3 -- Form 
g𝑟𝑎𝑑𝑒𝑟

51 𝑢3 𝑢4 Request 𝑖

(b) Illustrative game actions

Figure 1: Online anagram, i.e., word formation, game. In (a), a four-player game configuration is shown,
with communication channels for sharing letters denoted by lines (edges). In this configuration, u1 and
u4 can communicate and share letters, but u2 and u4 cannot. In modeling this game, a player can take
any of four actions any number of times: idle [i.e., thinking] (a1), replying to a neighbor’s request (a2),
requesting a letter from a neighboring player (a3), or forming a word (a4). In (b), illustrative player actions
are focused on u3.

The game actions for each player are recorded as a time sequence depicted in Figure 1b. In this work,
we use the processed data that only contains the following information: players’ action sequence, players’
pending requests at each time point, and the number of letters available to players. The data analyzed in
this work contains the 300-second time sequence of 210 players, under the game setting of number n of
players n = 10, and number d of neighbors of players d = 2.
Multinomial Logistic Regression for Modeling Player’s Action. In previous work, player actions in an
anagram game are modeled as a discrete-time stochastic process (Ren et al. 2018). At each time-step,
players choose one of the four actions ak, k ∈ {1,2,3,4}: staying idle (a1), replying to a neighbor’s request
(a2), requesting a letter from a neighboring player (a3), or forming a word (a4). This decision is assumed
to be influenced by four key factors (variables): (i) the number of pending letter requests that the player
has not yet answered ZB(t), (ii) the number of letters currently available for forming words ZL(t), (iii) the
total words already formed by that player ZW (t), and (iv) the number of consecutive time-steps the player
has taken the same action ZC(t).

The rationale for using these expert-selected covariates is as follows. As the number ZB(t) increases,
the more likely a player will respond to these letter requests. As the number ZL(t) of letters a player has
increases, the more likely she is to form words than to request more letters. As the number ZW (t) of words
formed increases, the more skill a player has and is therefore more likely to form more words. Particularly
for the idle state, as the time count ZC(t) increases for consecutive idle states, the more thinking a player
has done and therefore the more likely a player is to act (i.e., request, reply, or form word).

Conditioned on the player’s most recent action (denoted as Now-State) ai(t), we apply a multinomial
logistic regression (MLR) to estimate the probability of next action (denoted as Next-State), i.e., taking
action a j at time (t +1). Formally,

πi j(t +1) =
exp

(
zT β

(i)
j

)
∑

4
m=1 exp

(
zT β

(i)
m
) , j ∈ {1,2,3,4}, (1)

where z =
(
1, ZB(t), ZL(t), ZW (t), ZC(t)

)T comprises an intercept plus the four covariates, and β
(i)
j is the

corresponding parameter vector for transitioning from action i to action j. (In many formulations, we use
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the indices i and j instead of the actions ai and a j for clarity.) The model is conditioned on each of the
four possible most recent actions (Now-State), so that this setup captures how a player’s behavior depends
not only on her internal state z but also on which action was most recently taken. In this work, we denote
this model as the original model.

1.2 Motivation

The anagram game can be used to investigate how individual decisions and interactions can lead to emergent
collective behaviors, particularly when studied via agent-based models (ABMs). An action sequence model
(ASM) via multinomial logistic regression (MLR) has been used extensively in previous work to simulate
each player’s decision-making process within such ABMs. In previous work (Cedeno-Mieles et al. 2020),
validation of the model has been done by comparing the simulation output and experimental data. However,
the covariates used in the statistical model have not yet undergone systematic validation, leaving open
questions about its validity and the possibility that it overlooks key behavioral dynamics that may lead
to improved model performance. Moreover, many existing statistical modeling workflows rely on domain
experts handpicking covariates, an approach that may be inadequate for large, complex datasets. As
collaborative experiments grow in scale and nuance, there is a pressing need to augment expert knowledge
with more robust, data-driven methods that can rigorously evaluate and refine behavioral models.

1.3 Contributions

The contributions of our work are threefold. First, we conduct a systematic validation of the ASM used in
prior studies. By systematically examining its predictive capability under various simplifications, we identify
which expert-selected covariates contribute marginally to modeling player decisions, and we pinpoint the
aspects that need improvement.

Second, we introduce a novel LLM-based Model Validation and Enhancement framework, as shown in
Figure 2, which includes a covariate augmentation approach that shifts the focus from parameter tuning to
expanding the covariates set in ABM validation. Unlike traditional model validation—often based solely on
domain-expert judgment and processed numerical data—pretrained language models, such as BERT (Devlin
et al. 2019) and GPT (Brown et al. 2020), have shown strong capabilities in extracting meaningful patterns
from massive text corpora, in large part due to their transformer architectures. We therefore employ the large
language model (LLM) in an iterative summarization workflow to explore additional covariates within textual
descriptions of experiment dynamics. This enables us to identify nuanced behavioral factors that might
otherwise go unnoticed, thus improving the predictive performance of the ASM, which is the underlying
model used in agent-based simulations (ABS). The validation and LLM-based models are explained in
Section 3 below.

Third, we propose a novel metric called mean relative improvement for rare observations (MRI-RO,
specified in Section 3.2) that is tailored to our collaborative anagram game, yet we believe is broadly
applicable to scenarios with high class imbalance. By emphasizing pairwise model comparisons and
focusing on the accurate prediction of rare but crucial player transitions, this metric complements standard
measures such as classification accuracy and area under curve (AUC). Altogether, these contributions form
a systematic framework for refining, validating, and improving ASM in complex collaborative settings.

2 RELATED WORK

2.1 Model Validation of ABM

Three anagram ABMs using data-driven ASMs were reported in (Cedeno-Mieles et al. 2020), where the
model validations were performed with respected to ABS outputs. In that work, distributions of numbers of
players for each of (i) numbers of letter requests sent, (ii) numbers of letter requests received, (iii) numbers
of letter replies sent (i.e., player sending letter to requestor), (iv) numbers of replies received (i.e., letter
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Domain Expert

Domain Expert

Figure 2: The traditional model validation pipeline vs. proposed LLM-based enhancement pipeline. The
traditional pipeline is displayed in the grey box at top while the proposed pipeline is in the green box at
the bottom, which is the focus of this work.

received), and (v) numbers of words formed, were generated from the experimental data. Then, these
distributions were generated from model predictions of the experimental games, for each of three logistic
regression models: M0 using all experimental data; M1 using only the game data where each player had
d = 2 neighbors; and M2 using all data where the model was parameterized to be polynomial in player
degree d. Experimental and model prediction distributions were compared using the Kullback-Leibler (KL)
divergence (Kullback and Leibler 1951). The models are listed in increasing levels of sophistication. Model
M2 exhibited the least values of KL divergence, typically in the range 0.05 to 0.3, where zero indicates
perfect agreement between two distributions. Note that KL divergence values can grow much greater than
one. In this work, by comparison, we are focusing on the details of the ABM structure.

2.2 Use of LLMs in Agent-based Modeling

Recent study has explored integrating LLMs into ABMs to create LLM-driven agents that simulate human-
like decision-making, behavior and communication. This approach, often named "generative agents" or
"generative ABMs" allows behaviors to emerge from natural-language prompts instead of hand-coded
rules (Xi et al. 2023). A representative example is the work by Park et al. (2023), which simulated a
virtual town that resembles a sandbox social world. A recent critical review, however, notes that most
such models still rely on informal face-validity checks rather than rigorous empirical tests (Larooij and
Törnberg 2025). To address this issue, previous validation-oriented efforts considered LLMs as evaluation
assistants. The work of Kleiman et al. (2025) uses an LLM to interpret simulation outputs, while Rios
et al. (2024) use ChatGPT to co-design surrogate models and benchmark their predictive accuracy against
high-fidelity simulations. Distinct from the previous perspectives, our work utilizes an LLM to validate
and augment the underlying ASM for ABM in the collaborative anagram game, which is a novel model
validation framework that leads to better model predictive accuracy.
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3 METHODOLOGY

This section contains the methods used in the model validation and LLM-based model enhancement
described in the bottom half of Figure 2. Section 3.1 introduces alternative models (either with reduced
complexity or increased complexity) for comparison with the original MLR model. Section 3.2 provides
a detailed explanation of the metrics used to evaluate the models. Section 3.3 proposes a novel pipeline
for using LLMs to enhance the existing model.

3.1 Model Validation
As described in Section 1.1, the ASM using multinominal logisitic regression—our agent model of predicting
player’s next action based on her current action—is originally built by conditioning on the possible now-
state and includes four expert-selected covariates. For a general setting with m states and p covariates, the
number of parameters to be estimated is m2×(p+1). Each transition from state i to state j is characterized
by a parameter vector β

(i)
j = (β

(i)
j1 ,β

(i)
j2 , . . . ,β

(i)
j(p+1))

T for i, j = 1, . . . ,m. In our specific case, m = 4 and
p = 4, resulting in 4×4×5 = 80 parameters to be estimated. We aim to validate this multinomial logistic
regression model by addressing three key questions.

(i) Do the original, expert-defined covariates indeed contribute to modeling player behavior?
(ii) Is the current model complexity necessary? In other words, how much of the game’s dynamics are

lost if we reduce the model’s complexity?
(iii) Can we further improve predictive performance by introducing additional covariates?

To address the first two questions, we consider several alternative and simpler models (SM) in two
general groups. The first group focuses on models with reduced numbers of covariates. We use likelihood-
based variable selection (Burnham and Anderson 2002) to reduce the covariates from p to some preduced < p.
Consequently, the number of parameters to estimate becomes m2 × (preduced +1). Still conditioning on the
now-state, we explore the impact of removing 1, 2, and 3 covariates, yielding:

• 3-covariate model (SM-3): 4×4×4 = 64 parameters,
• 2-covariate model (SM-2): 4×4×3 = 48 parameters,
• 1-covariate model (SM-1): 4×4×2 = 32 parameters.

The second group considers models with simplified structures. We eliminate the need to condition on the
now-state in two scenarios:

• General model (SM-G): A single MLR across all data, regardless of the now-state, which requires
m× (p+1) parameters.

• Two-stage model (SM-T): First apply a binary logistic regression to distinguish between “idle”
and “non-idle” states (yielding p+1 parameters). Next, for non-idle predictions, use another MLR
over the m−1 remaining states (an additional (m−1)× (p+1) parameters). Summing up gives
m× (p+1) parameters in total.

Note that m = 4 and p = 4 in our situation. Thus both the general model and the two-stage model yield
4×5 = 20 parameters.

To address the third question (i.e., (iii) above), we develop an LLM-Guided Covariate Augmentation
(LGCA) approach detailed in Section 3.3. After introducing additional covariates, we consider:

• Full model (AM-F): MLR using the full set of available covariates to estimate m2 × (p̃+ 1)
parameters, where p̃ > p represents the number of parameters after covariate augmentation.

• Selected model (AM-S): MLR using p covariates chosen from the full set of p̃ covariates via
variable-selection methods (Burnham and Anderson 2002). Then the model complexity remains
the same as the original model.

By systematically comparing these alternative models in terms of several performance metrics (see
Section 3.2), we examine whether the original model complexity with expert-selected covariates is necessary,
or whether it can benefit from different covariates using LGCA.
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3.2 Evaluation Metrics

In this subsection, we introduce two metrics to evaluate and compare the performance of different MLR
models. The first is a standard one-vs-all Receiver Operating Characteristic (ROC) analysis with a weighted
AUC (Sokolova and Lapalme 2009). The second is a novel mean relative improvement measure tailored to
highlight non-idle prediction in our highly imbalanced data (about 93% of our anagram data are transitions
from idle to idle).

Weighted AUC. In a binary classification setting, an ROC curve depicts the trade-off between the
true positive rate (TPR) and the false positive rate (FPR) as the decision threshold τ varies. We define

TPR(τ) =
TP(τ)

TP(τ) + FN(τ)
, FPR(τ) =

FP(τ)
FP(τ) + TN(τ)

, (2)

where TP(τ), FP(τ), TN(τ), and FN(τ) are the numbers of true positives, false positives, true negatives,
and false negatives under threshold τ . AUC follows by integrating TPR with respect to FPR from 0 to 1.
For a multi-class problem with classes indexed by c = 1, . . . ,C, we apply a one-vs-all scheme by treating
each class c as positive (and the rest as negative) to obtain an AUC value AUCc. Let nc be the number of
samples of class c out of the total n = ∑

C
c=1 nc. We define a weight wc = nc/n and compute the Weighted

AUC as:

AUCweighted =
C

∑
c=1

wc · AUCc. (3)

In our case, more weights are given to class 1 (idle) versus all other classes (i.e., states), which exactly fits
our intention to evaluate a model’s ability to capture non-idle events.

Mean Relative Improvement. We propose a customized metric called mean relative improvement
for rare observations (MRI-RO) to focus on the prediction of non-idle Next-States (which are considered
rare-observations). Denote a non-idle transition instance (i.e. observation) as ℓ, and suppose the transition
is from ai(t) to a j(t +1) (i.e., transition from any state i to a non-idle state j ∈ {2,3,4}) at time t. Let p̂(ℓ)j
be the predicted probability of the observed non-idle transition, and let e jℓ (the notation jl describes the
transition at instance ℓ) denote an empirical baseline probability for the same event (for example, the global
frequency of the specific non-idle transition to a j). Define the relative improvement for each observed
non-idle instance ℓ as

∆ℓ =
p̂(ℓ)j − e jℓ

e jℓ
. (4)

Suppose there are M such non-idle transition instances in total, then the mean relative improvement is

MRI =
1
M

M

∑
ℓ=1

∆ℓ. (5)

A positive value indicates that, on average, the model assigns a higher likelihood to the actual non-idle
transition than the empirical baseline does; a negative value suggests it underperforms the baseline. This
parameter measures the model’s improvement from a baseline model specified in Section 4 as null model,
so a larger positive value of MRI indicates a better model performance. To compare two models, say
Model 1 and Model 2, we compute

δMRI = (MRI1 −MRI2)/MRI2, (6)

which measures the performance advantage of Model 1 over Model 2 in terms of relative likelihood
improvement for non-idle transitions. In this work, we adopt 5-fold cross-validation specified in Section 4,
and the MRI for each model is calculated by calculating the mean of test data.
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The proposed metric highlights the ability of a model to capture rare (non-idle) events more effectively
than standard metrics. For example, suppose for a non-idle transition from idle (a1) to requesting a
letter (a3), the empirical probability is e3 = 0.04. Consider two models M1 and M2. Model M1 predicts
π1 j = (0.85,0.05,0.08,0.02), while Model M2 predicts π1 j = (0.85,0.07,0.05,0.03). In this case, standard
metrics are unable to capture the nuanced change in M1’s increased prediction for non-idle events. While
using MRI, we calculate MRIM1 =

0.08−0.04
0.04 = 1 and MRIM2 =

0.05−0.04
0.04 = 0.25. Then δMRI =

1−0.25
0.25 = 3

effectively captures Model 1’s improvement from Model 2. The proposed metric is tailored to our highly
imbalanced data and it yields a more intuitive pairwise comparison between models by sensitively evaluating
the improvement in likelihood.

3.3 LLM-Guided Covariate Augmentation (LGCA)

As shown in the proposed model validation framework (the green box in Figure 2), we aim to explore the
possibility of improving the original model’s performance by augmenting the covariate space. Our proposed
LGCA approach utilizes the semantic and pattern-recognition strengths of generative AI to capture more
nuanced dynamics of the experiment. The flowchart of our proposed LGCA approached is presented in
Figure 3. In this work, the version of the LLM used is OpenAI’s ChatGPT (o1 model). Since this is a
closed-source model, no hyperparameters (e.g., temperature, max tokens) were user-configurable beyond
the API interface. All the outputs were generated using the platform’s default settings.

Figure 3: The flowchart for the proposed LLM-Guided Covariate Augmentation (LGCA). The content in
each purple box is elaborated in Section 3.3 after the bold texts. This figure corresponds to the purple
boxes in Figure 2.

…Words FormedActionTimePlayer ID
0Idle11
0……1
1Form word201
1………
1Reply261
…………
0Idle12
…………

Figure 4: An example of data conversion from numerical data to descriptive data in text.

Textual Data Conversion. Figure 4 provides a simple illustration of the data conversion mentioned in
the upper left box of Figure 3. In more generalized settings, more detailed descriptions can be added during
this conversion. By performing this row-wise conversion and preserving relevant contextual information,
we enable the LLM to extract or infer potential latent factors that are not obvious in purely tabular form.

Data Partitioning. After data conversion, challenges arise as the amount of textual data is huge.
In our case, there are 210 samples of player action sequences in total. To manage token limits and ensure
representative coverage, we split the textual dataset into multiple partitions. Each partition contains a subset
of the text descriptions (in our case, each partition contains 1/4 of total observations), aiming to capture a
balanced variety of participant behaviors and outcomes.
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Prompt Engineering. Within each partition, we design a structured prompt for the LLM to elicit
new covariate ideas. Our methodology includes three key steps.

Step 1. Structured Prompt. We provide the LLM with clear instructions and a fixed template to ensure
consistent responses. Below is an illustrative example of such a prompt:

"Context: You are given descriptions of an anagram game, where players will
choose one of the following four actions: "idle", "request letter", "reply letter",
and "form a word" during a 300 second game. Each player has three initial letters
and has neighbors to request letters from.

Multinomial logistic regression is used to model players’ behaviors. The following
covariates are used in the model: size of the buffer of letter requests that the
player has yet to reply at time t; number of available letters to form a word at time
t; number of words already formed by the player at time t, number of consecutive time
steps that the player has taken the same action.

Task: Please summarize the potentially uncovered pattern from the data, and propose
additional variables that might predict a player’s decision.

Constraint: The additional variables need to be numerical, tractable, and derivable
from the existing data.

Data: There are 210 players’ action sequence in total. You will be given 55 at a time:
<Player1>, ..., <Player55>."

Step 2. Iterative Querying. Instead of a single prompt, we use a consistent prompt for each partition
of the data. By consistent, we mean that the structure of the prompts is kept the same, and the only
difference across partitions is the "Data" section near the end of the prompt.

Step 3. Hierarchical Summaries. We employ a multi-tier summarization process. First, we aggregate
a first-level summary for each partition by asking the LLM in the "Task" section to produce a
concise summary of relevant behavioral patterns along with possible features. Then we merge the
summaries from multiple partitions into a single aggregated text. Finally, we present the aggregated
summary to the LLM using a structured prompt, requesting an integrated set of potential new
covariate suggestions.

Post-processing of LLM Output. Following the prompt-engineering phase, we examine the output
from the LLM, which includes the suggested covariates along with their corresponding reasoning and
explanations. In the post-processing stage, expert intervention is applied to mitigate potential hallucinations
from LLM-generated outputs (Vosoughi 2023). After filtering infeasible ideas that rely on external data
not recorded in the experiment, we then map each feasible suggestion into a well-defined numeric variable
and proceed to subsequent model evaluation and validation as defined in Sections 3.1 and 3.2.

4 RESULTS

In this section, we compare different models for model validation. In addition, we also consider a null
model, which simply predicts the next step action using the empirical probability (the global frequency of
transitioning to a state), as the baseline model. Specifically, Section 4.1 reports the variable selection results
for the models listed in Section 3.1 and the variable augmentation results using the LGCA framework
illustrated in Section 3.3. The model evaluation results using the metrics defined in Section 3.2 are presented
in Section 4.2.
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4.1 Variable Reduction and Expansion

Variable Reduction. Table 1 displays the best-performing models when the number of covariates is
successively reduced by one, two, or three under each Now-State (action ai(t), i ∈ {1,2,3,4}), and our goal
is to predict the next action (Next-State) a j(t +1). The four actions are listed in the caption of Figure 1.

For example, in the best three-covariate model with Now-State 1, i.e., a1(t), meaning the most recent
action is idle, the variable ZW (number of word already formed) is the first to be removed. As we continue
reducing covariates, ZB (size of the request buffer) is the second variable dropped, and ZC (number of
consecutive steps) is the third to be dropped for the idle Now-State. On the other hand, for Now-States 2, 3
and 4, ZC is the first variable eliminated, indicating that ZC adds relatively little predictive value in these
cases. Then ZW and ZL are the next two variables dropped for Now-State 2, while ZL and ZB are the next
two dropped for Now-States 3 and 4. This sequential removal process identifies which variables contribute
least to model prediction before proceeding to evaluate the models’ performance.

Table 1: Best reduced-covariate models under each Now-State. “+” indicates the variable is retained in
that scenario. The sequence of backward selection process can be read from the table. For example, for
the model with player Now-State of 1, the order of variable dropped is: ZW , ZB, and ZC.

Now-State a1 (idle) a2 (reply) a3 (request) a4 (form a word)

Covariates
Model

SM-3 SM-2 SM-1 SM-3 SM-2 SM-1 SM-3 SM-2 SM-1 SM-3 SM-2 SM-1

ZB + + + + + + + +
ZL + + + + + + +
ZW + + + + + + +
ZC + +

Covariate Expansion. Next, we augmented the covariate space based on suggestions from our
LLM-guided approach. After post-processing model output, four new variables are selected as candidates
to be included in the full model:

• XF : Time fraction of idle behavior over the preceding Tfrac window; here, Tfrac is chosen to be 60
seconds.

• XT : Time elapsed since the last non-idle transition. If a player has not yet performed a non-idle
action, XT equals the time elapsed from the start of the game.

• XR: Reciprocity, defined as cumulative replies
cumulative requests+δ

, where δ is a small constant that avoids division by
zero.

• XP: Time pressure, measured as the fraction of remaining time over the total game time.
Table 2 summarizes the sequential order in which variables are removed as we reduce the covariate

set from eight (the four Z-variables and the four X-variables) back down to four. Notably, ZC (the original
“consecutive time steps” variable) is the first to be dropped under every Now-State, suggesting it contributes
relatively little compared with the newly added or remaining original variables. The newly introduced
variables XT and XR are also dropped relatively early in certain states, whereas XF constantly remains in the
model, indicating its potential importance. Overall, the removal sequence of the original variables aligns
closely with the patterns observed in Table 1, reinforcing that ZC is consistently the least informative.

The rationale behind the results in Table 2 is that although ZC, XF , and XT each characterize players’
idle behavior, XF emerges as superior because first, it is a continuous measure, which enables it to capture
subtle changes compared to a discrete measure that resets after each non-idle transition; second, it’s resilient
to fluctuations and noises as looking at a specific time window makes it less sensitive to brief deviations.
Additionally, we observe that XP survives the variable selection process in most scenarios (except when
the Now-State is a1 (i.e., idle) with Xp being removed in the third step). As the game approaches the end,
players tend to take more frequent non-idle actions.
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Table 2: Order of variable removal when transitioning from 8 down to 4 covariates after LLM-based
augmentation. There is almost an equal number of Z and X variables removed: 9 versus 7.

Now-State
Drop Order

1st 2nd 3rd 4th

a1 ZC XR XP ZW

a2 ZC XT XR ZW

a3 ZC XT ZL XR

a4 ZC XT ZL ZB

4.2 Performance Evaluation

We employ a 5-fold cross-validation procedure using our proposed evaluation metrics to estimate how
well each candidate model generalizes to new data. Each cross validated result is repeated 50 iterations
under different sampling to measure the variance. Partitioning the data by player preserves the imbalance
structure of the data, reflecting the situation in practice. This process reduces the risk of overfitting and
provides more reliable performance estimates.

(a) ROC curve of idle (a1) vs. others. (b) Weighted AUC.

Figure 5: Cross-validated performance for reduced-complexity models, which correspond to the first five
bullets in Section 3.1. Note that the error bars in Figure 5b have been scaled by multiplying the standard
deviation of weighted AUC values by 50 to ensure visibility. The actual variances are very small.

Figure 5 summarizes the cross-validated performance of the reduced-complexity models using one-
versus-all ROC curves and weighted AUC. Both metrics improve substantially from the null model (empirical
probability) to the 1-covariate model ( 0.561−0.5

0.5 = 12.2% increase in weighted AUC), and again from the
1-covariate to the 2-covariate model ( 0.611−0.5

0.5 = 25.2% increase). The general model (22.2% increase) and
two-stage model (25.2% increase) perform comparably to the 2-covariate model. Increasing the covariate
number to 3 (26.2% increase) or using all 4 (the original model, also 26.2% increase) yields only marginal
additional gains (two-sample t-test yields a p-value of 0.846, which means there is no significant difference
between the means of the weighted AUC value over 50 iterations).

Figure 6 illustrates the cross-validated performance of the augmented models derived from the LGCA
approach of Section 3.3. The full model with 8 covariates (right-most bar in Figure 6b) achieves a 31.4%
improvement over the null model, while the selected model (second-from-right bar in Figure 6b)—which
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(a) ROC curve of idle (a1) vs. others. (b) Weighted AUC.

Figure 6: Cross-validated performance for augmented models via LGCA, which correspond to the last
two bullets in Section 3.1. The error bars in Figure 6b have also been scaled by multiplying the standard
deviation of weighted AUC values by 50 as in Figure 5b. The actual variances are very small.

omits less informative variables—still attains a 30.6% improvement. Notably, at the same level of complexity
as the original model, this augmented approach yields an additional 0.306−0.262

0.262 = 16.8% performance gain
(two-sample t-test yields a p-value of approximately 0, which means there is significant difference between
the means of the weighted AUC value over 50 iterations), suggesting that our LGCA-based covariate
augmentation effectively enhances predictive accuracy for the anagram game.

Table 3 reports the mean relative improvement (MRI) for each model, along with the pairwise comparison
δMRI relative to the original model. Since MRI emphasizes correct classification of non-idle events, models
that condition on Now-States consistently outperform the general and two-stage models by a large margin.
For the reduced-covariate models, the results parallel those seen in the weighted AUC: the 3-covariates model
is within about 4% of the original model, while the selected model under Enhanced models outperforms
it by 12%. Overall, both the weighted AUC and MRI results indicate that the original MLR design is
somewhat redundant and that our LGCA approach effectively improves predictive performance without
increasing model complexity.

Table 3: Results of model performance evaluation using MRI and δMRI. MRI measures the target model’s
improvement from null model while δMRI measures the target model’s improvement from the original
model. δMRI is defined as MRItarget−MRIoriginal

MRIoriginal
.

Model Number of Parameters Conditioning on Now-States? MRI δMRI

Reduced models
SM-G 20 No 0.573 -0.563
SM-T 20 No 0.596 -0.546
original 80 Yes 1.313 0
SM-3 64 Yes 1.273 -0.039
SM-2 48 Yes 1.228 -0.064
SM-1 32 Yes 1.077 -0.179
Enhanced models
AM-F 144 Yes 1.524 0.161
AM-S 80 Yes 1.469 0.120
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5 SUMMARY

In this paper, we investigated the validation and refinement of a multinomial logistic regression model that
predicts player behavior in a collaborative anagram game. Our results indicate that the original, expert-
defined covariates are partially redundant, as simpler models can achieve similar predictive accuracy. By
contrast, augmenting the model with additional features derived via the proposed LLM-Guided Covariate
Augmentation (LGCA) approach leads to improved performance. It demonstrates that large language
models can assist in uncovering latent factors that enrich behavioral modeling at comparable levels of
complexity. We evaluated various model configurations using both Weighted AUC and the newly proposed
Mean Relative Improvement (MRI) metric. The MRI was particularly informative in highlighting each
model’s ability to capture rare yet significant non-idle transitions in the anagrame game. Overall, these
analyses confirm that incorporating novel covariates identified by an LLM can substantially enhance model
fit without increasing the model complexity with unnecessary parameters. For future research, one can
consider fine-tuning the LLM with more detailed anagrams game data, including information such as the
exact transactions of players’ letters and the exact words players form. Moreover, LLMs hold potential for
assisting the design, validation, and enhancement of agent-based models in broader contexts.

REFERENCES
Brown, T. B., B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, et al. 2020. “Language Models Are Few-Shot Learners”.

In Advances in Neural Information Processing Systems. December 6th–12th, Virtual Conference, 1877–1901.
Burnham, K. P., and D. R. Anderson. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic

Approach. 2nd ed. New York: Springer.
Cedeno-Mieles, V., Z. Hu, Y. Ren, X. Deng, A. Adiga, C. L. Barrett, et al. 2020. “Networked Experiments and Modeling for

Producing Collective Identity in a Group of Human Subjects Using an Iterative Abduction Framework”. Social Network
Analysis and Mining 10(1):1–43.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova. 2019. “BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding”. In Proceedings of NAACL-HLT 2019. June 2–7, Minneapolis, Minnesota, USA, 4171–4186.

Kleiman, J., K. Frank, and S. Campagna. 2025. “Simulation Agent: A Framework for Integrating Simulation and Large
Language Models for Enhanced Decision-Making”. arXiv preprint arXiv:2505.13761.

Kullback, S., and R. A. Leibler. 1951. “On information and sufficiency”. The Annals of Mathematical Statistics 22(1):79–86.
Larooij, M., and P. Törnberg. 2025. “Do Large Language Models Solve the Problems of Agent-Based Modeling? A Critical

Review of Generative Social Simulations”. arXiv preprint arXiv:2504.03274.
Park, J. S., J. C. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein. 2023. “Generative Agents: Interactive

Simulacra of Human Behavior”. In Proceedings of the 36th ACM Symposium on User Interface Software and Technology.
October 29–November 1, San Francisco, CA, USA.

Ren, Y., V. Cedeno-Mieles, Z. Hu, X. Deng, A. Adiga, C. L. Barrett et al. 2018. “Generative Modeling of Human Behavior
and Social Interactions Using Abductive Analysis”. In Proceedings of the 2018 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining. August 28–31, Barcelona, Spain, 413–420.

Rios, T., F. Lanfermann, and S. Menzel. 2024. ““Large Language Model-Assisted Surrogate Modelling for Engineering
Optimization””. In 2024 IEEE Conference on Artificial Intelligence. June 25–27, Singapore, 796–803.

Sokolova, M., and G. Lapalme. 2009. “A Systematic Analysis of Performance Measures for Classification Tasks”. Information
Processing & Management 45(4):427–437.

Vosoughi, S. 2023. “LLM Lies: Hallucinations are not Bugs, but Features as Adversarial Examples”. arXiv preprint
arXiv:2310.01469.

Xi, Z., W. Chen, X. Guo, W. He, Y. Ding, B. Hong et al. 2023. “The Rise and Potential of Large Language Model Based
Agents: A Survey”. arXiv preprint arXiv:2309.07864.

AUTHOR BIOGRAPHIES
HAO HE is a Ph.D. student in the Department of Statistics at Virginia Tech. His email address is haoh@vt.edu.

XUEYING LIU is a Ph.D. student in the Department of Statistics at Virginia Tech. Her email address is xliu96@vt.edu.

XINWEI DENG is a Professor in the Department of Statistics at Virginia Tech. His e-mail address is xdeng@vt.edu.

2014

mailto://haoh@vt.edu
mailto://xliu96@vt.edu
mailto://xdeng@vt.edu

	166-con165s3-file1

