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ABSTRACT

Graph dynamical systems (GDSs) are widely used to model and simulate realistic multi-agent social
dynamics, including societal unrest. This involves representing the multiagent system as a network and
assigning functions to vertices to describe how they update their states based on the neighborhood states.
However, in many contexts, social dynamics are triggered by external processes, which can affect the state
transitions of agents. The classical GDS formalism does not incorporate such processes. We introduce
the STP-GDS framework, that allows a GDS to be triggered by spatiotemporal background processes. We
present a rigorous definition of the framework followed by a formal analysis to estimate the size of the
active neighborhood under two types of process distribution. The real-life applicability of the framework
is further highlighted by an additional case study involving evacuation due to natural events, where we
analyze collective agent behaviors under heterogeneous environmental and spatial settings.

1 INTRODUCTION

Graph Dynamical Systems (GDSs) are used to simulate dynamics of networked multiagent systems across
many fields such as epidemiology, biology, and sociology (see e.g., (Adiga et al. 2019; Barrett et al. 2011;
Kuhlman et al. 2011; Hancock et al. 2022a; Abdelhamid et al. 2016)). An informal description of a GDS is
provided here. In a GDS, the population is represented as a network, where vertices denote agents and edges
denote interactions among agents. Each vertex can assume state values from a predefined domain, which
is usually finite (e.g., {0,1}). Each vertex v is assigned a vertex-local function that considers the current
state of v and those of its neighbors to calculate the next state of v. An update scheme (e.g., synchronous
update, sequential update using a permutation of the vertices) determines the order in which the vertices
compute and update their states. Various questions regarding network dynamics, such as configuration
reachability (Barrett et al. 2006; Kuhlman et al. 2013) and fixed point existence (Barrett et al. 2007;
Laschov et al. 2013), have been studied both analytically and empirically; see extended version of our
paper (Mehrab et al. 2025) for formal definitions of these questions. An extensive body of work has
extended the classical GDS formalism in various directions, as discussed in Section 2.

However, when one considers the study of networked multi-agent system dynamics using GDSs in the
context of social unrest, there is a gap in the classical formalism and its extensions. External background
processes often trigger social unrest. Forced migration due to conflict events is one such situation. We
previously attempted to study such dynamics by considering the effects of events and peer influence (Mehrab
et al. 2024; Mehrab et al. 2024). However, since these studies did not use a formal framework, there was
little scope for a systematic analysis.

To address this gap, we make the following contributions in this paper. First, we propose the novel
framework of a SpatioTemporal Process Triggered Graph Dynamical System (STP-GDS) to model the
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dynamics of a networked multi-agent system that incorporates the effect of both background processes
and peer influence. Motivated by our prior work on conflict-induced forced migration and the fact that
real-life social unrest occurs within a geographic boundary, we consider the agents and processes explicitly
in Euclidean space and develop the necessary formalism to make the framework capable of handling
the interaction between agents and events (Section 3.1). Second, by modeling the impact of the events
and agent states through a threshold model that considers both the impact of events and neighborhood
states, we analytically derive a lower bound on the expected peer influence during an agent’s transition
point under a known process distribution (Section 3.3). During social unrest situations, when getting a
complete picture of the entire population is non-trivial, such analyses can be useful to policymakers. We
also empirically evaluate our analytical results with a case study (Section 4.1). Finally, we deploy our
framework through a small case study involving evacuation due to coastal erosion, where the processes do
not follow any known distribution and showcase how our framework can be utilized to study evacuation
dynamics in different environmental and structural conditions (Section 4.2). This case study reveals that
while the overall evacuation dynamics is sensitive to the spatial structure of the events and the agents in
less event-intensive scenarios, it is less sensitive in highly event-intensive scenarios.

2 RELATED WORK

GDS Frameworks: As mentioned earlier, the GDS model has been extended by many researchers to
develop simulation systems for various applications. For example, a general GDS framework (called
InterSim) where dynamics across multiple contagions can be handled is presented in (Kuhlman et al.
2011). Another work (Barrett et al. 2011) introduced stochastic GDSs, where the transition functions
choose the next state probabilistically rather than deterministically. Such a model and its variants are
commonly used in epidemic simulations (see e.g., Adiga et al. (2019) and the references cited therein).
The threshold model (Granovetter 1978) is a popular choice among the transition functions studied across
various references on GDS (e.g., (Barrett et al. 2003; Kuhlman et al. 2015)). Other extensions of threshold
model have also been proposed to understand agent dynamics in social unrest situations (Hancock et al.
2022b; Kuhlman et al. 2022).

Process Triggered ABM: Agent-based models (ABMs) and simulation approaches for studying migration
due to wars have been considered by many researchers (see e.g., Biondo et al. (2012), Maidanik (2024),
Mehrab et al. (2024) and the references cited therein). Biondo et al. (2012) developed a utility function
based on the social network associated with a migrant to determine when the individual would return
to their home country. Maidanik (2024) uses a survey-based approach to model return migration from
Ukraine due to the conflict with Russia. Mehrab et al. (2024) use an ABM to study migration decisions
resulting from the combined effect of conflict events and peer influence. However, to our knowledge, a
formal framework to analyze the effect of events and peer influence is absent in the literature.

3 GENERAL FRAMEWORK

In this section, we formulate our general STP-GDS framework. We begin with the definitions of the basic
components of the framework. Then, the definitions are extended to formulate the threshold function based
STP-GDS to develop further analytical and empirical insights about the framework.

3.1 Definitions
An STP-GDS is given by the tuple (G, S, B, O, F, W), where:
1. The augmented agent network G is a set of configurations {GO, G'.,G? ..., GT}, where the network
configuration at time 7 is denoted by G'(V’, E). We assume that the set of vertices and edges remain

static over time. However, the states of the vertices may change temporally. Each vertex v € V' is
associated with an action state x!, from the domain S (whose role is explained in Item 2 below).
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: Symbols and their meanings used in the paper for the proposed framework and subsequent analysis.

Threshold based STP-GDS Framework ‘ Analysis & Case Studies

Symbol Description

Symbol Description

G

GV,

Augmented Agent Network py(t) Active neighborhood fraction of v at ¢
E)  Network configuration at time ¢ o Distance decay parameter

v:(x,y,) Agentv e V'action state at time ¢ and location | 6, Temporal discounting rate parameter

12b)

>HEQOoOxE®

BN

=
=
S

Eal

<

—
~
S

=

Action State Domain ry Visibility radius of v

Set of background processes/events A Event rate parameter (Homogeneous Poisson)
Time and location of process b € B Ao Base Event rate (Hawkes)

Observation profile A(t|H,) Conditional event intensity at r (Hawkes)
v’s observation of event b at time ¢ o) Trigger function (Hawkes)

Action update functions n Base parameter when ¢ (1) = ne #’
Action update function of v B Change rate parameter when ¢ (1) = ne #’
Open neighborhood of v Tr Event generation time (Case Study 1)
Update Scheme Ts Simulation time (Case Study 1)

Event impact on v at ¢ WS(N,K,P) Watts-Strogatz Graph Model (1998)

Event b’s impact on v at ¢ BA(N,M) Barabasi-Albert Graph Model (1999)
Spatial Kernel Function g Grid subdivision parameter (Case Study 2)
Temporal Kernel Function o) Activation function

Peer influence weight 0 Evacuation bias for 6(x) = (14 Qe™®*)~!
Event influence weight ® Risk growth for o(x) = (1 + Qe @¥)~!
State transition threshold of v N Number of events (Case Study 2)

This corresponds to the action of agent v at time f. We also assume that each vertex is associated
with a static state y, € R%, which denotes the location of v in the §—dimensional Euclidean space.
S is the domain for the agent action states. The choice of S depends upon the specific use-case. For
example, when S € {0,1}, ¥/, can denote whether the vertex is inactive or active (Kuhlman 2013).
B is the set of spatio-temporal background processes. Each background process b € B is associated
with #5, the time of the event (as defined before) and z;, C R, which denotes the location of the
process in the same Euclidean space as the agents. For example, if z; consists of a single point, it
denotes a point process. If z;, is an ordered set of points representing the convex hull of a set of
points, it can represent a process that takes place in a convex polygonal region. Instead of defining
Zp in terms of a set of points, it can also be defined through constraints. For example, if we define
2 ={(z1,22) | z1 € R,z20 € R, 22 475 < 1}, it denotes a process that consists of points inside and
on a circle of unit radius in 2D Euclidean space centered at the origin. In this paper, we assume
that events are unmarked point processes (Reinhart 2018). However, one can easily extend this to
marked processes by introducing an additional scalar w;, € R*. (In our case, w, = 1 for all b € B.)
O is the set of observation profiles {O;, O3, ...,Oy} where O, is a binary matrix of size T x |B| with
O,(t,b) = 1(0) indicating whether agent v can (cannot) observe the process b at time ¢. Different
possibilities exist for specifying observation profiles. For example, one can assume that at time ¢,
agent v can observe events happening at that time within a visibility radius r,. Let A(y,,z;) be the
minimum Euclidean distance between agent v and event b. Then, one definition of the observation
profile can be O,(t,b) = (A(yy,25) < ry) AND (t, ==1), where AND is the Boolean connective.

IF is the collection of action update functions, where f, € I is the action update function for vertex
v that takes the state of vertex v, the states of its neighbors and its observation profile O, as inputs
and produces the next state of v as output. Let .4, = {u: (v,u) € E} denote the open neighborhood
of v induced by G. Since the edge set E is assumed to be fixed along graph snapshots, .4 is also
static. Given this, the next action state of v is given by f, : S x R% x P(S) x P(R%) x @ — S; that
is, fo(, vy {8 bue o, Wu fuen;, Ov) = X1, Here, P(Y) denotes the power set of Y.
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6. W is an update scheme for the I, which denotes the local function execution order of the vertices.
For example, in a synchronous dynamical system, all vertices compute their local functions in
parallel. Other update schemes, such as sequential update and block synchronous update have also
been studied. In our framework, we employ the synchronous update scheme, since it is by far the
most explored one in literature (Adiga et al. 2019).

We assume hereafter that S = {0,1}. Thus, the agents in the system can either be in inactive (0) or
active (1) state. We also assume that all agents are initially inactive and the system is progressive; that is,
once an agent transitions to the active state, it stays in that state.

3.2 Threshold function based Framework

To develop insights about the framework, we need to choose reasonable specifications for f,, the action
update function for each agent v. Here, we choose the threshold function, a popular choice in literature
as the action update function of GDS (Adiga et al. 2019). Classically, in a threshold-based action update
function, a vertex v goes through a state transition when the number of neighbors in a different state exceeds
a specified threshold 7,. For threshold-based STP-GDS, it is reasonable to assume that this threshold should
be compared not only with the neighbors but also with some measure of the impact from the events, since
the external influence from the processes can be sufficient for the vertices to undergo a state transition even
without peer influence. Let us denote the total impact of events on agent v at time ¢ by H}. Then, we can
express f, as follows.

1 ifxd=1
VIEEARER S WD TR LYY e )
0 otherwise.

Here, 71 and 7, are constants that control the weight of peer influence and event influence respectively.
The remaining work is to model H}. Let us first model the impact of a single event b on agent v at time ¢,
denoted by h[v, »- Designed by Brunsdon et al. (2007), the spatiotemporal kernel density estimator (STKDE)
has initially been used for event density estimation. Later, this has also been used for visualizing crime
patterns (Nakaya and Yano 2010) and predictive crime modeling (Hu et al. 2018). We extend the STKDE
formulation to assess event impact on an agent as &, = K,(yy,2,)K;(v,t,1;). Here, Kj is a kernel function
for the spatial domain, and K; is a kernel function for the temporal domain. Thus, the total impact H!, can
be simply expressed as H) = Y ,cp /., ,0,(t,b).

Depending on the choice of the kernel functions, H! can assume different forms. Here, we discuss
some possible choices of them. For the choice of the spatial kernel K;, one can assume that events farther
away from the agents have less impact than events nearby. Thus, one can assume K;(yy,z5) = ks(A(yy,25))
where k(-) is a decay function based on distance (e.g., exponential decay model, k(d) = e~*? or gravity
model, ks(d) = d~%). For the temporal kernel K;, one possible choice is the temporal component of the
discounting utility model. Exponential discounting function is a well-studied example, and this gives K;
the following form K;(v,t,t,) = 6,7 where 6, (0 < 6, < 1) is the discounting rate parameter that controls
how much influence past events exert on agent v at time 7. We use the convention that 6/~ = 1 when
6, =0 and ¢ = 15, to ensure that only the current reward is preserved, consistent with choices made for
expansion of power series. See Hardy (2013) for a relevant discussion. When 6, =0, htv’b =0unless t =1t;
this is an example of a memoryless agent. When 6, > 0, the agent is retentive.

3.3 Analysis of Threshold Function based STP-GDS

For a specific choice of the observation profile O, the spatial kernel K and the temporal kernel K;, we
can study various important properties of STP-GDSs. In this section, we mathematically analyze one such
property which we term active neighborhood inference. Specifically, we ask the following question: given
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that an agent v with degree d, has transitioned from inactive to active state at time t, what fraction of its
neighbors were already in active state? Answering such a question can be important in scenarios with
limited information. An example of such a scenario is the case of conflict-induced forced migration, when
the available data regarding forced migrants is sparse. One de facto way of data collection is to perform
a Random-Digit-Dial (RDD) on a sample population (IOM 2025) and perform an upscale estimation. In
such a case, active neighborhood inference can offer a more principled way to approximate neighborhood
state information than a simple upscale approximation, assuming that state transitions occurred following
a threshold-function based approach.

Suppose an agent v has d, > 1 neighbors. If x/"! = 1 and ¥, = 0, and p,(¢) is the fraction of neighbors
of agent v in state 1 at time ¢, it follows that the following condition was satisfied at time ¢:

© — pE[H]]
N dy

where p,(¢) and H/ are random variables since the external processes are regarded as random events. To
calculate E[H]], we begin by making specific assumptions about the distribution of the process. Moreover,
we consider the space of the agents and the events to be the 2D Euclidean space, since the case studies we
conduct are based on real-life process-based events that happen in 2D geographic space.

Poisson Process Distribution: For this analysis, we assume that the events can happen uniformly anywhere
within the circle of radius r from v’s perspective and they are Poisson-distributed with a mean of A
temporally. Accordingly, we assume the observation profile for v as O, (t,b) = (A(yy,zp) < r,) AND (1, < 1),
K;(v,t,tp) = 617" and K(yy,2p) = ks(A(yy,2p)). Then, the following result can be shown.

Proposition 1 In a threshold-based STP-GDS with decay based spatial kernel and exponential discounting
temporal kernel (parameterized by 6,), if events are Poisson distributed with rate A with respect to an agent
v with visibility radius r,, then E[H!] = 4 i:g{; o kg (x)%dx , where x is the random variable corresponding

to the minimum distance between the event and the agent.

vipy(t)dy +pHL > 1, = Elp,(t)] > 2

A detailed derivation is provided in the extended version of our paper (Mehrab et al. 2025). Depending
on the choice of k(x), a closed-form of the above expression can be derived. One such example is when
the exponential decay model k,(x) = e~ *" is considered. In such a case, the following result holds.

Corollary 1.1 For exponential decay spatial kernel ks(x) = e~ ** and the setting outlined in Proposition 1,

the expected fraction of active neighborhood satisfies the following lower bound:
(1-6,)a%r27, —2pA(1—6) (1 —e %" (1+ar))
(1-6)a’r;yid,

Elpy(1)] = 3)

Proof: We start by observing when k;(x) = e~**, the integral term of E[H]] derived in Proposition 1

yields w. Substituting E[H!] with this expression in Equation (2) gives us the result. m

v

This gives us an expression for estimating number of active neighbors of an agent in a threshold-based
STP-GDS, assuming the events are Poisson distributed with temporal rate A and the quantities on the right
hand side of the expression are known. Most of the quantities refer to the vertex v-specific attributes and
can be obtained by probing the vertex v. Quantities such as @, ¥, and 9> can be chosen based on historical
data or empirical observations.

When the quantity ar, is small and the agent v is memoryless, one can show following approximation.

Corollary 1.2 For the exponential decay spatial kernel ks(x) = e~ ** such that ar, is small, agent v

us memoryless (i.e., 6, = 0), and the setting outlined in Proposition 1, the expected fraction of active

neighborhood satisfies the following lower bound: E[p,(¢)] > T‘;}%l

Our proof is in the extended version of our paper (Mehrab et al. 2025). It shows that, when or, is
small, the spatial kernel does not contribute much to the estimate of the active neighborhood.
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Hawkes Process Distribution: Across various scenarios, the events often exhibit clustering or triggering
behavior; that is, events at future timesteps are often triggered by past events (Reinhart 2018). Such events
are often characterized through the Self-exciting Hawkes process models (Hawkes 1971). Fundamentally,
the conditional intensity of the model at time ¢ is defined as A(t | H;) = Ao + [y ¢ (t — u)dN(u). Here, H,
is the history of past events, Ay is a constant background rate of events, N(-) is a counting measure that
measures the number of events that happened at any time and ¢ (-) is the triggering function that determines
the form of self-excitation. Following the definition in Lesage et al. (2022) where the expectation of
the conditional intensity is written as E[A(¢)] = Ao + J§ ¢ (t —u)E[A(u)]du, we can derive closed-form
expressions for E[H!] for various choices of ¢(-) and plug it into Equation (2) to derive the expected active
fraction during transition point. We perform a derivation for E[H]] for one such case.

Note that A(¢) and Ay have similar context in the case of the Hawkes model as the A in the Poisson

model. However, contrary to Poisson, it is important to note that the event rate in Hawkes is time-dependent,
which necessitates the use of a temporal component.
Proposition 2 In a threshold-based STP-GDS with memoryless agents and exponential decay based spatial
kernel (ks(x) = e~ *), if events follow a Hawkes distribution with base intensity A9 and exponential triggering
function ¢ (1) = ne~P" with respect to an agent v with visibility radius r,, then the expected impact from
events at time ¢ on agent v can be expressed as:

E[H!] = jffz <1 + ﬁ (1 e—f<ﬁ-">)> (1—e *(14an)) 4)

A proof is provided in the extended version of our paper (Mehrab et al. 2025). This expression can be
used to obtain an approximation for the neighborhood state of a transitioning agent in a Hawkes process
setting, similar to the equation derived for Poisson setting (Equation (3)), which can be further simplified
if we choose the parameters so that B —n and ar are small. In such a case, the expected fraction of
active neighbors satisfies the following lower bound: E[p,(¢)] > 7, —2%A0(1+nt)/7d,. This suggests
that, with enough time, the second term on the right hand side of the bound becomes larger than 7,, making
the expected critical fraction to be less than zero. In other words, the effect of the events becomes too
overwhelming to make the agent disregard peer influence. Thus, on average, agents of a STP-GDS where
events follow a Hawkes setting eventually transition to state 1 in the long run (i.e., as t — o).

4 CASE STUDIES

In this section, we apply our proposed framework in two case studies. First, we experimentally evaluate the
correctness of our active neighborhood state inference analysis by simulating networked agents forming a
threshold-based STP-GDS with homogeneous Poisson processes in the background. Second, we apply our
framework in a more realistic setting of evacuation due to coastal inundation where agents are placed in a
circular island where erosion events are experienced at the periphery of the island randomly. All simulation
scripts are written in Python 3.13 and publicly available in our GitHub repository.

4.1 Case Study 1: Active Neighborhood State Inference

This study begins by sampling an agent network Gy @, where N is the number of agents in the environment
and O denotes other parameters associated with the graph sampling process. For example, if we generate
ER (Erdos and Rényi 1960) networks, then Gy @ ~ Gy p, Where P denotes the wiring probability of an edge
in the ER Random Graph model. We select a homogeneous visibility radius and threshold across all agents
(r, =11, = 1,VYv) to reduce the complexity associated with possible covariates, although we emphasize
that the method works with heterogeneous values of the parameters. We also assume that y; + 79 =1,
so that the total amount of influence one can allot to peer and events is fixed and only ¥; (denoted by
y from here on) needs to be varied. Then, V¢ € {1,2,..,Tg}, we sample point processes around each
agent within a visibility radius of . We generate events following a homogeneous Poisson process with
rate A. Afterwards, the system is simulated for Ty steps following Equation (1) for 7§ simulation steps.
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Figure 1: Active neighborhood inference for threshold-based STP-GDS triggered by homogeneous Poisson
process. The RMSE between actual fraction of active neighborhood is compared with the expected active
neighborhood of our analysis (Equation (3) for agent networks modeled with WS (Figure 1a) and BA
(Figure 1b). Solid lines represent our estimation with one standard deviation accounted for in the shaded
region, while the dashed line represents naive estimation (7/d,). The estimation is shown for different
rates of the process (A) and different y values. For a fixed rate, while our estimation deviates from the
ground truth with increasing y (more peer influence), it is always better than naive estimation when A is
high (event-intensive situation). Each experiment was repeated 50 times.

When agents are retentive, they may update their states after the occurrence of the last event. Therefore,
it is important that Ty > Tg to account for any boundary effects. We also follow this for generality in
this experiment, even though the agents are assumed to be memoryless. Initially, all agents begin at
an inactive (0) state. Across all experiments, we keep the values of the following parameters invariant:
r=1,00=02,7=11,Tg =45,Ts = 100.

Once the simulation is complete, we compute the fraction of .4; in active state for an agent v when it
undergoes a state transition. Let p,(¢) be the fraction of active neighbors of v at time 7 during simulation.
Let 7, denote the last timestep when agent v is inactive. We calculate E[p?*"(7,)] using Equation (3) and
compare it against i, denoted as E[pP5(1,)], which naively calculates the active neighborhood fraction
without incorporating knowledge about background events. Finally, we compare the root mean square error
(RMSE) between p,(#,) and E[p2* (#,)] against the RMSE between p,(#,) and E[pSP5(%,)] and show it in
Figure 1 across agent networks created using Watts-Strogatz (WS) (Watts and Strogatz 1998) (Figure 1a)
and Barabasi-Albert (BA) graph models (Barabdsi and Albert 1999) (Figure 1b).

First, for WS agent networks, it is apparent that our method is more suitable when the impact from
events is significant (i.e., lower y and higher 1) in dictating agents’ decisions. On the other hand, for higher
values of 7, there is a certain threshold for A until which our estimation is slightly worse than the naive
approximation; this is due to the stochasticity of the event generation process itself. However, once that
threshold is crossed, our estimation always prevails over the naive estimation, which generates a somewhat
constant RMSE due to the homogeneous degree distribution of the WS model.

Second, for BA model, which is suitable for modeling real-world networks due to its scale-free nature
and power-law degree distribution, we find that our analytical estimation is always better, regardless of
the values of 7. To examine this further, we observe the dynamics of one sample experiment with BA
model more carefully when A = 16 and y = 0.6. The experiment converges with 18 out of the 100 agents
reaching the active state. From the 18 active agents, we sample three of them and present their dynamics
in Figure 2. The figure shows that our method was able to estimate more accurately the number of active
neighborhood during the transition point of each agent compared to naive estimation.

4.2 Case Study 2: Evacuation due to Coastal Erosion

While the previous case study assumed a homogeneous Poisson rate, real-life events usually do not follow
such a well-defined distribution. Moreover, the previous study focused on inferring state from the perspective
of individual agents. However, it is often interesting to study the behavior of such a system as a collective.
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Figure 2: Dynamics of 3 active agents at the end of the simulation with G(N = 100,M = 11) BA agent
network model, A = 16, and ¥ = 0.6. Here, we explain the dynamics for agents vy and vi3. They have
similar degree and the lower bound given by Equation (3) for the fraction of neighbors in active state
before these agents transition to active state are 0.187 and 0.183, respectively. On the other hand, when
background processes are not taken into account, the naive estimation leads to the lower bounds of 0.23
and 0.22 respectively for those two agents. During simulation, we find that v (vy3) transitions to active
state after 0.17 (0.16) fraction of neighbors are in active state, closer to the approximation that derived
from our framework. A similar argument holds for Agent v;.

In this section, we demonstrate how the STP-GDS framework can be used to study the collective behavior
of agents in a situation motivated by real-world events. Specifically, we create a small environment where
people are living on a circular island which is faced with coastal erosion due to sea level rise and other
climate-related factors. Each coastal erosion event is represented as a point process along the circumference
of the island. In this situation, the inhabitants may choose to stay on the island or decide to evacuate. Such
analysis has real-life importance since evacuation due to coastal erosion has been studied in the context of
different regions (Marino 2012; Buzard et al. 2023; Correa and Gonzalez 2000).

Modeling under STP-GDS: We express the model dynamics using our STP-GDS framework as follows.
First (G), for a configuration G'(V',E) € G, each vertex v € V' is associated with: the decision variable
¥ €S, and the location variable y, € R?. The locations are points on the 2D Euclidean plane and are
assumed to be stationary (household location). Second (S), we assume that the decision variable is binary,
where x}, = 1 (¥, = 0) means that agent v has decided to evacuate (not evacuate) by time ¢. Thus, S = {0,1}.
Third (B), each background process b € B is assumed to be an unmarked point process with unit weight
representing a coastal erosion event and associated with location z, € R? and time 1, of the erosion. Fourth
(0), we allow the agents to have a large visibility radius; they can observe all current and past events. Thus,
O,(t,b) =1, <t. Fifth(F), we use a threshold function as defined in Equation (1) with two modifications
in the second condition. Instead of the total number of neighbors, we look at the normalized neighbors and
instead of using H! as the event influence, we use 6(H,) as the event influence, where o is the activation
function of the form o (x) = (14 Qe~®*)~!, a simple parameterization of the general logistic equation, that
transforms the value of H to a value between 0 and 1. Here Q and @ are parameters to control the initial
bias and growth rate of the activation function, respectively. This modification allows us to control the
bounds of the threshold parameter. Consequently, the second condition in the update rule of Equation (1)

has the form 1 if yz“i}im +0(H!)(1—17) > 7. Finally (W), we assume the update scheme is synchronous.
Environment: Events are sampled along circumference of a circle of radius R, representing the island. The
agents are placed around the centroid in a subgrid-like structure, a structure used for representing actual
population (Barbuti et al. 2014). The parameter g, the number of grid subdivisions of the circle-inscribed
square, controls the placement of the agents. Figure 3 shows some possible placements of agents and
the events. Agent network is sampled from ER random graph (Erdos and Rényi 1960) model. While
other network models that consider proximity (e.g., KSW (Kleinberg 2000)) exist, their multi-parametric
form introduces complexity. Here, we explored the evacuation dynamics based on graph connectivity only.
However, the dynamics arising from a more spatial network would certainly exhibit differences.
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Figure 4: Evacuation dynamics under different conditions. The top row figures correspond to sparse agent
connectivity and bottom-row figures are for dense connectivity.

Simulation Settings: We simulate the evacuation dynamics of the agents across multiple settings. First, we
generate two scenarios of coastal erosion events. In the first scenario, there are 10 events, which we refer
to as the friendly environment. The other one is referred to as a hostile environment, where 50 events are
generated. Second, agents are placed according to various grid subdivision values g € {1,2,4,16}. Third,
the wiring probability p of the ER model is varied. Finally, the number of agents and the fractional threshold
parameter T are varied. We are interested in observing how the overall dynamics evolves as a result of the
interactions among these covariates. To account for uncertainties associated with the location of the events,
network sampling, and the locations of agents, each experiment was repeated 100 times. As for the other
parameters, we fixed the following values for them: Vv, 6, =0.9, 0 =233, =08, a =2, y=0.5. A
subset of the final results is shown in Figure 4 which displays the median result of the experiments with a
50% confidence interval. We highlight some key observations from the plots in Figure 4 below. Additional
results can be found in our extended paper (Mehrab et al. 2025).

Simulation Results: Sensitivity to 7 is readily observable in Figure 4. First, the total number of evacuees
at the end of the simulation is correlated to the environment sensitivity; as T increases, sensitivity to
peers and events decreases and so does the total number of evacuees. Moreover, this correlation depicts a
phase-transition-like behavior before and after certain ranges of values for 7; within a small variation in
7, the total number of evacuees drops from almost everyone to virtually nobody. Second, we observe that
the steepness of the transition varies depending on the network structure and the environment type. The
transition is more abrupt for dense networks (bottom row) than for sparse networks (top row). On the other
hand, for networks with similar density, the transition is less abrupt under a hostile environment. This
indicates the possibility of a dynamical system under an event-intensive environment with a large number
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of fixed points, possibly due to the creation of pockets of evacuees inside the network due to a wider point
process distribution. This makes having diverse scenarios more probable, which attributes to the different
fixed points. Third, the critical value of 7, where the phase transition occurs, is lower in the case of a
friendly environment than in a hostile environment. This is intuitive since in an event-intensive scenario,
it is possible to reach the threshold through impact from the events even when 7 is very high. Thus, the
switch from total evacuation to no evacuation does not happen until a very high 7 (bottom right figure).

The second observation is related to the sensitivity with respect to g. Interestingly we find that the
phase transition occurs for higher T when g = 1 than the case of g > 1 in friendly environment. The reason
for this behavior can be understood by examining Figure 3. When g = 1, there is a uniform likelihood that
v will experience coastal erosion along the border, regardless of their placement. On the other hand, for
g > 1, there are agents living in the cells of the inner grid, closer to the circle center. The effect of the
events is much less on the agents in the inner grid cells as they are farther away from those events compared
to those on the outer grid cells. In the network, if an agent v in an outer grid cell has many neighbors who
are in inner grid cells, then v may not have enough motivation to evacuate. Therefore, the phase transition
occurs for a lower value of 7 in the case of g > 1 than the case of g = 1. This phenomenon, however,
is less prominent in a hostile environment, where the summation of the impacts of different events from
different directions ultimately causes both boundary agents and central agents to behave similarly. Note
that g is only responsible for affecting agent-event proximity. It does not affect agent-agent proximity due
to the aspatial nature of ER. Under a spatial network model, the dynamics would show a more prominent
dependence on g.

Finally, we analyze the sensitivity with respect to N (the number of agents) and P (the wiring probability).
The agent dynamics appear to be generally robust with respect to N, the only difference being that there
seems to be a curvature along the right limit of T where the phase transition occurs for lower N, whereas
the transition is steeper for higher N. Lastly, when P is low in the case of 50 agents, for lower values of
T, some agents never evacuate, regardless of whether the environment is hostile or friendly. This is due to
isolated agents that do not experience evacuation caused by low average degrees (=~ 2.45 in this case).

5 FUTURE WORK

To simulate social dynamics triggered by external events, we propose the STP-GDS formal framework,
which provides a principled way to analyze how a networked system of agents behaves under combined
influence from these events and peers. Evaluating the agreement of this framework with ground truth
information is a natural future direction. Extending this framework to incorporate mobile agents through
dynamic network reconfiguration is of importance from a policymaking perspective. A comparison of this
extended framework under various mobility models is a promising research direction.
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