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ABSTRACT

Simulation optimization is often hindered by the high cost of running simulations. Multi-fidelity methods
offer a promising solution by incorporating cheaper, lower-fidelity simulations to reduce computational
time. However, the bias in low-fidelity models can mislead the search, potentially steering solutions away
from the high-fidelity optimum. To overcome this, we propose ASTRO-MFDF, an adaptive sampling trust-
region method for multi-fidelity simulation optimization. ASTRO-MFDF features two key strategies: (i) it
adaptively determines the sample size and selects appropriate sampling strategies to reduce computational
cost; and (ii) it selectively uses low-fidelity information only when a high correlation with the high-fidelity
is anticipated, reducing the risk of bias. We validate the performance and computational efficiency of
ASTRO-MFDF through numerical experiments using the SimOpt library.

1 INTRODUCTION

Simulation optimization (SO) has become a key method for optimizing objective functions in uncertain
environments, gaining significant attention for its ability to tackle real-world problems involving randomness
and complex systems, such as quantum computing and renewable energy (Ha et al. 2025; Sakki et al. 2022).
However, its practical implementation can be challenging due to high computational cost of evaluating a
stochastic function value. To address this, simulation models can be developed at different levels of
fidelity, which sometimes requires substantial modeling or coding effort, a method known as multi-fidelity
(MF) simulation. In MF simulation, models are designed with a hierarchical structure, where high-fidelity
models provide detailed and accurate representations of the process, while low-fidelity models offer a more
computationally efficient, simplified version. For example, a high-fidelity model may represent the full
manufacturing process in detail, whereas lower-fidelity models might omit certain machines that are not
critical (Zhang et al. 2022). Another way to construct MF simulation models is by modifying the length
of the simulation runs. When aiming to optimize systems under a steady-state condition, using shorter
run lengths results in lower-fidelity models that produce less accurate output estimates but require reduced
computational effort (Chen et al. 2017).

In this paper, we consider the multi-fidelity simulation optimization (MFSO) problem

min
x∈IRd

f 0(x) := EΞ0 [F0(x,ξ 0)], (1)

where f 0 : IRd → IR is nonconvex and has a lower bound, F0 : IRd ×Ξ0 → IR is a random function, and
ξ 0 : Ω → Ξ0 is a random element. Here, the index 0 represents the highest-fidelity simulation, while
increasing index values correspond to lower-fidelity simulations. We consider zeroth-order stochastic
oracles, where the derivative information is not directly available from the Monte Carlo simulation. We
allow each realization F0(x,ξ 0

i ) to be nonconvex and nonsmooth, as is common in complex simulation
models. Since we only have access to F0(x), we can estimate f 0(x) by F̄0(x,n) = n−1

∑
n
i=1 F0(x,ξ 0

i ),
variance of F0(x,ξ 0) by (σ̂0(x,n))2 = n−1

∑
n
i=1(F

0(x,ξ 0
i )− F̄0(x,n))2, and covariance between F0(x,ξ 0)

and F i(x,ξ i) by σ̂0,i(x,n) = n−1
∑

n
j=1(F

0(x,ξ 0
j )− F̄0(x,n))(F i(x,ξ i

j)− F̄ i(x,n)) for any i ∈N. Typically,
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iterative algorithms are used to solve (1) by generating a random sequence of iterates {Xk} that converges
toward an optimal solution. In the context of MFSO, the goal is to accelerate this convergence by effectively
leveraging information from MF simulations.

In deterministic MF problems, multi-fidelity Bayesian optimization (MFBO) is widely used, with
co-kriging serving as the surrogate model (Do and Zhang 2024). However, applying MFBO to solve
(1) requires two key assumptions (Foumani et al. 2023). First, function estimates must be sufficiently
accurate. Second, lower-fidelity functions should exhibit a strong correlation with the high-fidelity function
throughout the entire search space. Otherwise, lower-fidelity data can negatively impact the co-kriging
model, slowing down optimization even more than using only the high-fidelity model. To mitigate these
challenges, it is crucial to carefully select both the sample size (n) and the regions where lower-fidelity
data provides meaningful information. This consideration leads to the following research question:

(RQ) Where, which fidelity, and how many times should oracles be queried to efficiently solve (1)?

The adaptive sampling trust region method (ASTRO-DF) is one of the most effective algorithms for
addressing this question, as it dynamically adjusts the sample size and trust region (Shashaani et al.
2018). Specifically, the sample size is chosen to balance the trade-off between the optimality gap and
estimation errors, helping to reduce the computational burden. In addition, the search space is confined to
a neighborhood of the current iterate, known as the trust region, by constructing and optimizing a surrogate
model within this region. The trust region is updated based on whether the surrogate model provides a
sufficiently accurate approximation of the true objective function, enabling correlation measurement of
the MF functions within a localized search space. See (Conn et al. 2009) for the details of deterministic
trust region method for derivative-free optimization. To address (RQ) in the bi-fidelity setting, we recently
proposed an extension of ASTRO-DF, known as ASTRO-BFDF (Ha and Mueller 2024). ASTRO-BFDF
differs from ASTRO-DF in two primary aspects: i) it maintains two separate trust regions for high-fidelity
and low-fidelity functions, and ii) it employs an adaptive sampling approach that utilizes both Bi-fidelity
Monte Carlo (BFMC) and standard Monte Carlo (MC) to reduce the computational burden.

BFMC is a special case of the multi-fidelity Monte Carlo (MFMC) method that uses exactly two levels
of simulation fidelity. MFMC has been introduced in (Peherstorfer et al. 2016) to enhance the efficiency of
Monte Carlo methods by leveraging MF simulation oracles through a control variate approach. Specifically,
the MFMC estimate is obtained by

F̂ t(x,n,c) =
1
nt

nt

∑
j=1

F t(x,ξ t
j)+

q

∑
i=t+1

ci

(
1
ni

ni

∑
j=1

F i(x,ξ i
j)−

1
ni−1

ni−1

∑
j=1

F i(x,ξ i
j)

)
, (2)

where q denotes the index of the lowest-fidelity simulation, t is the target fidelity level, c= {c1,c2, · · · ,cq}
with ci indicating the coefficient associated with i-th fidelity oracle, and n= {n0,n1, . . . ,nq} with ni denoting
the sample size used for the i-th fidelity oracle. Given fixed n and c such that n0 < n1 < · · · < nq, and
assuming Common Random Numbers (CRN) coupling across fidelity levels, the MFMC estimate is unbiased
estimate for f 0(x) with a variance

Var(F̂ t(x,n,c)) =
(σ t(x))2

n
+

q

∑
i=t+1

(
1

ni−1 −
1
ni

)(
(ci)2(σ i(x))2 −2ci

σ
0,i(x)

)
, (3)

where (σ i(x))2 is the variance of F i(x,ξ i) and σ0,i is the covariance between F0(x,ξ 0) and F i(x,ξ i).
Suppose that we set t = 0 and q = 1. Then the variance reduction is achieved when the condition
2c1σ0,1(x) ≥ (c1)2(σ1(x))2 holds. The CRN assumption typically induces positive correlation between
fidelity levels, making this condition feasible; later we propose a principled choice of c to minimize the
variance of the MFMC estimator.

In this paper, we extend ASTRO-BFDF to address the MFSO problem (1) by incorporating the MFMC
technique, which we refer to as ASTRO-MFDF. We first present a multi-fidelity adaptive sampling algorithm
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in Section 2. Then, we introduce the ASTRO-MFDF algorithm in Section 3. Finally, we demonstrate the
performance of ASTRO-MFDF through experiments with stochastic Rosenbrock functions and continuous
(s,S) inventory problems in Section 4. Throughout the paper, we use capital letters for random variables
and bold font for vectors.

2 MULTI-FIDELITY ADAPTIVE SAMPLING

The adaptive sampling method used within ASTRO-DF performs sequential estimation to effectively reduce
computational effort associated with MC. Specifically, the sample size at x ∈ IRd has been determined by

Nk(x) = min
{

n ∈ N :
max{σlb, σ̂

0(x,n)}√
n︸ ︷︷ ︸

stochastic error

≤
κ∆2

k√
λk︸ ︷︷ ︸

optimality gap

}
, (4)

where κ , λk, and σlb are positive constants, ∆k is the trust region size at iteration k (Ha, Shashaani, and
Pasupathy 2024). The condition in (4) balances the stochastic error and the optimality gap, represented
by the standard deviation estimate and the square of the trust region size respectively. Following the same
principle, when employing the MFMC estimate, our goal is to determine n and c such that the condition
in (4) is satisfied by replacing the stochastic error term under MC, i.e., n−1(σ̂0(x,n))2, with that under
MFMC, i.e., the estimate of Var(F̂0(x,n,c)). However, incorporating the adaptive sampling strategy to
MFMC introduces the following two challenges:

(C1) The decision variables become multi-dimensional, consisting of the vectors n and c. In the MC
case, the decision variable is one-dimensional, specifically the scalar n. Thus, to determine Nk(x),
we initially compute σ̂0(x,n = 3) and increment n by one until the condition in (4) is satisfied,
due to the unknown variance (σ0(x))2. Similarly, the variances and covariances appearing in
(3) are also unknown, necessitating sequential estimation for these quantities as well. However,
designing a straightforward sequential estimation algorithm to determine n and c while minimizing
computational burden is challenging.

(C2) Considering factors such as the variances and covariances presented in (3) and the querying costs
of the MF simulation oracles, the computational cost of MFMC can be higher than that of MC for
achieving the same level of accuracy, despite MFMC being a variance reduction method. Hence, we
must determine which MC method (MC or MFMC) to use while sequentially estimating variances
and covariances, introducing an additional binary decision variable.

In (C1), we should determine the optimal n and c based on the available information. Suppose,
for example, that variance and covariance estimates are currently available with sample sizes ñi for the
i-th fidelity simulation for any ñi ≥ 2. Using these estimates, we can obtain an approximation of (3),
specifically, V̂ar(F̂0(x,n,c)), by replacing σ i(x) and σ0,i(x) with their corresponding estimators σ̂ i(x, ñi)
and σ̂0,i(x, ñ0), respectively. We can then determine the optimal solutions for n and c, denoted by n∗ and
c∗, by solving the following optimization problem:

[n∗,c∗] ∈ argmin
n,c∈IRq

q

∑
i=0

wini

subject to V̂ar(F̂0(x,n,c))≤ κ
2
∆

4
kλ

−1
k

ni −ni+1 ≤ 0 ∀i ∈ {0,1, . . . ,q−1}
ñi −ni ≤ 0 ∀i ∈ {0,1, . . . ,q},

(5)

where w = {w0,w1, . . . ,wq} with wi indicating the cost of querying the i-th fidelity simulation oracle. The
first constraint originates from the condition stated in (4). The predicted optimal cost of the MFMC method
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then becomes ∑
q
i=0 wini

∗. Additionally, the predicted optimal cost for the MC method is calculated as w0np,
where np = ⌈(σ̂0(x, ñ0))2λk(κ

2∆4
k)

−1⌉, based on the condition from (4). Therefore, MFMC is selected if
∑

q
i=0 wini

∗ ≤ w0n0
p; otherwise, MC is chosen. This resolves the issue mentioned in (C2). It is worth noting

that problem (5) is a nonlinear continuous optimization problem with mostly linear constraints and a single
nonlinear constraint, where the problem dimension is relatively small. Since the primary computational
cost in simulation optimization lies in the simulation itself, the cost of solving problem (5) is assumed to
be negligible. We also note that the optimal integer sample sizes can be obtained by rounding up n∗.

If the chosen estimate is sufficiently accurate—specifically, if it satisfies the condition in (4) based on its
own variance estimate—then that function estimate can directly serve as the final output of the multi-fidelity
adaptive sampling method. If this accuracy condition is not met, further replications are required to refine
the estimate. In this case, when MC has been chosen, the 0-th fidelity oracle naturally becomes the default
choice. Conversely, if MFMC is more economical but the accuracy condition V̂ar(F̂0(x, ñ,c∗))> κ2∆4

kλ
−1
k

remains unmet, i.e., ñ j < n j
∗−1 for some j ∈ {0,1, . . . ,q}, we proceed by querying the highest such fidelity

level, as allocating additional samples to higher fidelity levels is generally more effective in reducing the
variance. After selecting the appropriate fidelity level, we conduct additional replications, update variance
and covariance estimates accordingly, and then resolve the optimization problem (5). This iterative process
continues until one of the accuracy conditions is ultimately satisfied. Although we estimated f 0 above,
target fidelity can be any i ∈ {0,1, . . . ,q}.

To complement the algorithmic description, we include a flowchart that illustrates the overall logic of
the multi-fidelity adaptive sampling method (MFAS), including the decision-making process between MC
and MFMC, as well as the adaptive sample size update based on accuracy checks (see Figure 1).

Estimate function 

statistics at all fidelity 

levels via standard MC

If MFMC 

is cheaper

MFMC 

accurate

Estimate the costs of 

MC and MFMC by 

solving Problem (5)

MC 

accurate

True

Increase sample sizes 

and update estimates

False

False

True

True

False

Return 

MFMC 

estimator

Initialize 

parameters

Return 

standard MC 

estimator

Figure 1: Flowchart of MFAS. The algorithm first initializes relevant parameters and estimates function
statistics (mean, variance, and covariance) at all fidelity levels using standard MC sampling. The algorithm
then solves Problem (5) to assess the cost-effectiveness of MFMC versus standard MC estimators. If the
cheaper estimator also satisfies the required accuracy, it is selected and returned. Otherwise, the sample
sizes are increased, and the estimates are updated iteratively.

3 MULTI-FIDELITY STOCHASTIC TRUST REGION METHOD WITH MFAS

In traditional stochastic trust region methods (Chang, Hong, and Wan 2013; Chen, Menickelly, and
Scheinberg 2018), a single interpolation/regression model (Mk) is constructed at iteration k, and the next
candidate point is determined by approximately minimizing this model within the trust region, usually by
computing a Cauchy point or using iterative methods such as the conjugate gradient method; see (Nocedal
and Wright 2006) for further details. The key distinction of ASTRO-MFDF is that, instead of relying on a
single model, it can construct multiple interpolation models, denoted as Mi

k for any i ∈ {0,1, . . . ,q}, across
multiple trust regions, represented by ∆k := {∆0

k ,∆
1
k , . . . ,∆

q
k}. The local model constructed with lower-

fidelity oracles is prioritized in selecting the next iterate, effectively guiding the iterates closer to the optimal
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Figure 2: Illustration of the inner loop (Steps 2–9) of ASTRO-MFDF, which iteratively applies Algorithm 2
across fidelity levels. Since M2

k fails to generate a better candidate than X0
k , α2

k decreases, and M1
k is instead

utilized, successfully yielding a better candidate. As a result, at iteration k+1, M1
k will be constructed first

based on the updated αk+1.
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Figure 3: Illustration of Steps 10–15 in ASTRO-MFDF. Since all α i
k < αth, design points are shared across

all models. Lower-fidelity estimates (green and yellow dots) are used in the MFMC estimator (blue dots) to
approximate f 0 and are then reused in constructing M1

k and M2
k . As M2

k fails to improve over the incumbent,
α2

k decreases, while M1
k succeeds, increasing α1

k .

solution using only lower-fidelity simulations. However, constructing q local models at every iteration can
be cumbersome and a waste of computational resources, especially since lower-fidelity simulations may not
yield better solutions in certain feasible regions due to the inherent bias between the high-fidelity function
and the lower-fidelity functions. Hence, we employ an adaptive correlation vector αk := {α1

k , . . . ,α
q
k },

updated dynamically to capture the correlation between f 0 and f i for any i ∈ {1,2, . . . ,q}. Specifically,
if the candidate point generated by Mi

k achieves a sufficient reduction in the estimated objective function,
α i

k increases; otherwise, it decreases. When α i
k exceeds a threshold αth (See Figure 2), Mi

k is constructed
using the individual design set, as a strong correlation between f 0 and f i is expected. If α i

k < αth for
all i ∈ {1,2, . . . ,q} (See Figure 3), the main local model defaults to M0

k for finding the candidate point.
Meanwhile, Mi

k is constructed using same design points for 0-th fidelity simulation with the main purpose of
updating α i

k, even though some design points may lie outside B(Xk,∆
i
k), the trust region centered at Xk with

radius ∆i
k. It is important to note that constructing Mi

k with same design points requires minimal additional
computational effort, as numerous replications of the i-th fidelity simulation are already available from the
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Algorithm 1 ASTRO-MFDF

Input: Initial incumbent x0 ∈ IRd , initial and maximum trust region radius ∆0 and ∆max > 0, model fitness
thresholds 0 < η < 1 and certification threshold µ > 0, expansion and shrinkage constants γ1 > 1 and
γ2 ∈ (0,1), sample size lower bound sequence {λk}= {O(logk)}, adaptive sampling constant κ > 0,
correlation vector α0 = {α1

0 ,α
2
0 , . . . ,α

t
0}, and lower bound of an initial variance approximation σlb > 0,

and sufficient reduction constant ζ > 0.
1: for k = 0,1,2, . . . do
2: for t = q,q−1, . . . ,1 do
3: Obtain Xs

k and ∆t
k by calling Algorithm 2 (ASTRO-LFDF-t).

4: if Algorithm 2 yielded a candidate with sufficient HF function reduction (i.e., Xs
k ̸=X0

k ) then
5: Set (Xk+1,∆

t
k+1) = (Xs

k,γ1∆t
k) and α t

k+1 = γ1α t
k.

6: Set ∆
j
k+1 = max{∆

j
k,∆

t
k+1} for all j ∈ {0,1, . . . , t −1} and k = k+1.

7: break
8: end if
9: end for

10: if Algorithm 2 failed to find a better candidate than the current solution (i.e., Xs
k =X0

k ) then
11: Select {X i

k}2d
i=0 ⊂ B(Xk;∆0

k).
12: Estimate the t-fidelity function F̃ t at {X i

k}2d
i=0 using MFAS with ∆k = ∆0

k , construct local mod-
els Mt

k(X), approximately compute the minimizers Xs,t
k ∈ argmin∥X−Xk∥≤∆t

k
Mt

k(X) and then,

estimate the 0-fidelity function F̃0(Xs,t
k ) using MFAS with ∆k = ∆0

k for all t ∈ {0,1, . . . ,q}.
13: Set the candidate point Xs

k ∈ argmin
x∈{Xs,i

k }q
i=0

F̃0(x), and compute the success ratio ρ̂k and ρ̂ t
k

for any t ∈ {1,2, . . . ,q} as

ρ̂k =
F̃0(X0

k )− F̃0(Xs
k)

M0
k (X

0
k )−M0

k (X
s,0
k )

and ρ̂
t
k =

F̃0(X0
k )− F̃0(Xs,t

k )

max{ζ (∆0
k)

2,M0
k (X

0
k )−M0

k (X
s,t
k )}

.

14: If Mt
k succeeds (i.e., ρ̂ t

k ≥ η), set α t
k+1 = γ1α t

k; otherwise set α t
k+1 = γ2α t

k for all t ∈ {1,2, . . . ,q}.

15: Set (Xk+1,∆
0
k+1) =

{
(Xs

k,min{γ1∆0
k ,∆max}) if ρ̂k ≥ η and µ∥∇M0

k (Xk)∥ ≥ ∆0
k ,

(Xk,γ2∆0
k) otherwise.

16: Set ∆t
k+1 = min

{
∆t

k,∆
0
k

}
for all t ∈ {1,2, . . . ,q}, and k = k+1.

17: end if
18: end for

MFMC estimates in MFAS during the construction of M0
k . To provide an overview of the ASTRO-MFDF

procedure, we include a flowchart summarizing the main logic, including the role of the ASTRO-LFDF
subroutine, the adaptive update of αk, and the candidate selection (Figure 4). While the flowchart depicts
the bi-fidelity setting as a special case, the logic extends naturally to the general multi-fidelity setting. The
pseudo code of ASTRO-MFDF is listed in Algorithm 1.

We now outline some minor details of ASTRO-MFDF for practical purposes. First, we ensure that
∆i

k ≥ ∆
j
k for any i < j. In practice, the main computational challenge arises from the increasing sample

size, which scales at a rate of ∆
−4
k as ∆k converges to zero. Therefore, maintaining a large trust region

for higher-fidelity functions while progressing toward better iterates with a relatively smaller trust region
for lower-fidelity functions enhances finite-time efficiency. Second, when low correlation between f 0 and
f i for all i ∈ {1,2, . . . ,q} is predicted, i.e., α i

k < αth for all i ∈ {1,2, . . . ,q}, we generate q+1 candidate
points (Xs,q

k ) by minimizing Mi
k within ∆0

k for each i ∈ {0,1, . . . ,q} (Step 12 in Algorithm 1). The final
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current solution?

Increase 𝑎𝑘
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candidates using 
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1
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FalseTrue
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Find

the best 

candidate

Update trust regions;

accept/reject candidate;

set 𝑘 = 𝑘 + 1
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Figure 4: Flowchart of ASTRO-MFDF, illustrating the integration of ASTRO-LFDF (highlighted in blue),
the decision process based on the correlation measure, the generation of candidate solutions, and the update
of trust regions and correlation values. For clarity, the flowchart depicts the bi-fidelity case (q = 1) as a
special instance.

candidate (Xs
k) is then selected as the point with the lowest function estimate, maximizing the likelihood

of a successful iteration. Lastly, for an iteration with a candidate point from Mt
k for any t ∈ {1,2, . . . ,q} to

be considered successful, we impose the additional condition F̃0(X0
k )− F̃0(Xs,q

k ) ≥ ζ η(∆0
k)

2 to prevent
success arising from a negligible model reduction Mt

k(X
0
k )−Mt

k(X
s,t
k ) (Step 9 in Algorithm 2).

Algorithm 2 [Xs
k , ∆t

k] = ASTRO-LFDF-t

Input: X0
k , ∆t

k, model fitness thresholds 0<η < 1, expansion and shrinkage constants γ1 > 1 and γ2 ∈ (0,1),
sample size lower bound sequence {λk}= {O(logk)}, adaptive sampling constant κ > 0, correlation
constant α t

k > 0, correlation threshold αth > 0, lower bound of an initial variance approximation σlb > 0,
and sufficient reduction constant ζ > 0.

1: loop
2: if α t

k < αth then
3: Set Xs,t

k =X0
k

4: break
5: end if
6: Select the design set {X i

k}2d
i=0 ⊂ B(Xk;∆t

k).
7: Estimate t-fidelity function F̃ t(X i

k) at {X i
k}2d

i=0 using MFAS with ∆k = ∆t
k, construct local model

Mt
k(X), and approximately compute Xs,t

k = argmin∥X−Xk∥≤∆ℓ
k
Mℓ

k(X).

8: Estimate the 0-fidelity function F̃0
k (X

s,t
k ) and F̃0

k (X
0
k ) using MFAS with ∆k = ∆t

k.
9: Compute the success ratio ρ̂k = F̃0

k (X
0
k )− F̃0

k (X
s,t
k )/max{ζ (∆0

k)
2,Mt

k(X
0
k )−Mt

k(X
s,t
k )}.

10: if ρ̂k ≥ η then
11: break
12: end if
13: Set ∆t

k = γ2∆t
k and α t

k = γ2α t
k

14: end loop
15: return [Xs

k =Xs,t
k , ∆t

k]

4 NUMERICAL EXPERIMENTS

In this section, we analyze the finite-time performance of solvers such as ASTRO-MFDF, ASTRO-DF, and
Nelder-Mead, across two different problems. First, we test the solvers on a stochastic Rosenbrock function.
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Second, we use continuous (s,S) inventory problems to evaluate performance in steady-state simulation
optimization, where s is a threshold for ordering and S is a maximum inventory level.

The experiments in this study were carried out using SimOpt, a benchmarking framework designed for
evaluating simulation optimization algorithms (Eckman et al. 2023). The experimental process consists
of two stages. In the first stage, we generate 20 independent optimization runs (macro-replications) for
each solver on each problem, where each run represents a distinct stochastic trajectory. Every solver is
allocated a fixed budget specific to the problem at hand and must strategically decide how to utilize this
budget, including selecting locations, fidelity levels, and sample sizes. For instance, if the budget is set to
a specific number, such as B, it allows for B queries to the simulation oracle to solve the given problem. In
the MF scenario, we introduce a cost ratio vector (w), whose component satisfies w0 = 1 for the highest
fidelity and decrease thereafter, i.e., w0 > w1 > .. . . Therefore, if we query 10 oracles at fidelity level 0
and 20 oracles at fidelity level 1, the total budget consumed is calculated as 10w0 + 20w1. Throughout
each run, the solver estimates objective values at various solutions (design points), using a chosen number
of replications to guide its search. The second stage involves evaluating the recommended solutions from
each run using 200 additional simulations to estimate the true performance of the solutions.

4.1 Experiments on stochastic Rosenbrock function

The deterministic MF Rosenbrock functions were introduced in (Mainini et al. 2022) as f 0(x) =
∑

d
i=1 10(xi+1 − x2

i )
2 +(1− xi)

2, f 1(x) = ∑
d−1
i=1 5(xi+1 − x2

i )
2 +(−2− xi)

2 −∑
d
i=1 0.5xi, and f 2(x) = ( f 0 −

4−∑
d
i=1 0.5xi)(10+∑

d
i=1 0.25x1)

−1. See Figure 5 for two-dimensional loss landscapes. To introduce
stochasticity, noise terms Et

i (drawn from a normal distribution with zero mean and dimension-dependent
variance for any i ∈ {1,2, . . . ,d} and t ∈ {0,1,2}) are added: ∑

d
i=1 E0

i to f 0, ∑
d
i=1(E

0
i +E1

i )/2 to f 1, and
∑

d
i=1(E

0
i +E2

i )/2 to f 2. The cost of querying each fidelity oracle is given by w = (1, 0.3, 0.1).
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Figure 5: Contour map of the deterministic Rosenbrock MF function for d = 2. The optimal solution is
(1,1) for f 0, while the approximate optima for the lower-fidelity functions are (−1.4,2) for f 1 and (1.4,2)
for f 2 with a box constraint −2 ≤ xi ≤ 2 for all i ∈ {1,2}.

To illustrate the mechanism of ASTRO-MFDF, we compare its optimization trajectory with that of
ASTRO-DF on the 2-dimensional stochastic Rosenbrock function (Figure 6). As shown in Figure 6b, the
optimization with ASTRO-MFDF begins using the lowest-fidelity function f 2, indicated in red. After several
iterations, the local models constructed with lower-fidelity functions (M1

k and M2
k ) fail to yield improved

iterates, prompting the algorithm to rely more heavily on the highest-fidelity function, represented in
black. Later in the process, M2

k starts to produce better solutions again (red) enabling the algorithm to
reduce computational cost per iteration. As a result, ASTRO-MFDF completes 24 iterations within the
500 0-th fidelity budget, compared to just 11 iterations by ASTRO-DF. It is worth noting that M1

k has not
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been used, as the correlation between f 0 and f 1 is expected to be low—i.e., α1
k remains small—along

the sample path of {Xk} generated by ASTRO-MFDF (see the contour map of f 0 and f 1 in Figure 5).
This illustrates how ASTRO-MFDF can dynamically select the appropriate fidelity level at each iterate to
maximize the computational efficiency of the MF approach. We also tested higher-dimensional problems,
as shown in Figure 7. As the dimensionality increases, ASTRO-MFDF demonstrates faster convergence,
since constructing local models using lower-fidelity functions becomes significantly more cost-effective
than using high-fidelity functions in high-dimensional settings.
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(a) {Xk} trajectory with ASTRO-DF
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(b) {Xk} trajectory with ASTRO-MFDF

Figure 6: One sample path of {Xk} with ASTRO-DF and ASTRO-MFDF on the 2-dimensional stochastic
Rosenbrock function. Starting from the initial point (-0.5, -0.5) with a budget of 500 0-th fidelity oracle
calls, the sequence {Xk} converges to (0.55, 0.29) in (a), with a corresponding f 0 value of approximately
0.308, and to (0.67, 0.45) in (b), with a corresponding f 0 value of approximately 0.109.

(a) d = 10 (b) d = 20

Figure 7: Finite-time performance on the stochastic Rosenbrock function, with a 95% confidence interval
with initial design point (−0.5)×d. The x-axis represents a budget of 5000 0-th fidelity oracle calls, and
the y-axis shows the objective function value on a logarithmic scale.
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4.2 Experiments on continuous inventory problem

In this section, we consider the (s,S) inventory problem with continuous decision variables to create a more
realistic experimental setting. The objective is to determine the optimal values of s and S that minimize the
expected total cost, which includes holding costs, ordering costs, and backorder costs. Uncertainty in the
system arises from two sources: (1) demand in each period follows an exponential distribution with mean
θ , and (2) lead times are drawn from a Poisson distribution with mean ℓ periods. For further details, see
(Eckman, Henderson, Shashaani, and Pasupathy 2023). In the MF simulation, the 0-fidelity model runs
for 100 days, the 1-fidelity model for 50 days, and the 2-fidelity model for 30 days, which implies the cost
ratio vector w = (1,0.5,0.3).
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Figure 8: Contour map of the estimated expected total cost for the (s,S) inventory problem with θ = 400
and ℓ = 3. Since the true objective function is unknown, the plots are based on estimates obtained from
10 samples.
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(a) {Xk} trajectory with ASTRO-DF
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(b) {Xk} trajectory with ASTRO-MFDF

Figure 9: One sample path of {Xk} with ASTRO-DF and ASTRO-MFDF on the continuous (s,S) inventory
problem with θ = 400 and ℓ= 3. Starting from the initial point (500, 1000) with a budget of 1000 oracle
calls, the sequence {Xk} converges to (504.13, 1089.27) in (a), and to (1277.85, 1571.87) in (b). The
contour map shows the estimated expected total cost with 100 samples.

As shown in Figure 8, the estimated objective function with a small sample size appears highly non-
convex and non-smooth due to stochastic noise. As a result, the iterates are more likely to get stuck in
regions that may not even correspond to local minima of the true objective function. When this happens,
it typically indicates that the step size or search space has already become too small, making it difficult
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to escape without a significant amount of additional computational effort. As it can be seen in Figure
9, ASTRO-MFDF naturally addresses this issue by utilizing lower-fidelity models to escape suboptimal
regions and preserving a large trust region for the high-fidelity function, thereby minimizing unnecessary
computational costs. We also explored a range of settings for θ and ℓ, with θ ∈ {25,50,75,100} and
ℓ ∈ {1,2,3,4,5}. As shown in Figure 10, ASTRO-MFDF achieves faster convergence on most problems
and, in several cases, identifies better solutions, compared to ASTRO-DF and Nelder-Mead, in steady-state
simulation optimization.

(a) x0 = (200,500) (b) x0 = (500,1000)

Figure 10: The fraction of problems each method successfully solved under 10% optimality gap threshold.

5 CONCLUSION

In MF methods, information from lower-fidelity models can sometimes hinder, rather than help, the
optimization process. Therefore, it is crucial to sequentially determine whether to incorporate lower-fidelity
information based on the current state of the optimization. Without this selective approach, using multiple
information sources may actually slow convergence. To address this challenge, we introduce a novel
stochastic trust-region method, ASTRO-MFDF, designed for MFSO. As a key feature of ASTRO-MFDF,
a new adaptive sampling strategy, MFAS, is proposed utilizing MFMC to reduce the variance of function
estimates. MFAS dynamically determines the sample sizes for the MF simulations and chooses between
MFMC and MC based on sequential estimates of variance and covariance. MFAS helps minimize the
waste of computational resources in several ways, such as reducing variance in function estimates and
updating correlation vectors when reusing simulation outputs from past runs. Another important feature of
ASTRO-MFDF is the incorporation of a correlation vector, which is updated dynamically using information
from the optimization history. In particular, if the lower-fidelity models have not contributed to better
solutions in past iterations, the method shifts focus to primarily use high-fidelity simulations for the
optimization. Through numerical experiments with stochastic Rosenbrock functions and continuous (s,S)
inventory problems, we demonstrated that ASTRO-MFDF can achieve faster convergence. This is largely
due to its ability to preserve a large trust region for high-fidelity simulations while efficiently leveraging
low-fidelity ones, enabling more iterations under a limited budget. For future research, we plan to address
high-dimensional and computationally challenging traffic signal control problems in real-world networks
by leveraging ASTRO-MFDF with subspace methods and high-performance computing.
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