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ABSTRACT

This paper addresses the photolithography process scheduling problem, a critical bottleneck in both display
and semiconductor production. In display manufacturing, as the number of deposited layers increases
and reentrant operations become more frequent, the complexity of scheduling processes has significantly
increased. Additionally, growing market demand for diverse product types underscores the critical need for
efficient scheduling to enhance operational efficiency and meet due dates. To address these challenges, we
propose a novel graph-based reinforcement learning framework that dynamically schedules photolithography
operations in real time, explicitly considering mask locations, machine statuses, and associated transfer
times. Through numerical experiments, we demonstrate that our method achieves consistent and robust
performance across various scenarios, making it a practical solution for real-world manufacturing systems.

1 INTRODUCTION

In recent years, OLED display demand has surged dramatically across mobile phones, televisions, automotive
displays, and various other applications (Huang et al. (2020)). This market expansion, coupled with
continuous technological advancements, has significantly increased manufacturing complexity. In particular,
the fabrication of thin-film transistor (TFT) backplanes—components that control individual pixels in
OLED panels—has become particularly sophisticated (Ji et al. (2021)). Modern TFT backplanes require
numerous deposited layers, including various thin films, electrodes, and insulating materials, to achieve
higher resolutions and advanced pixel structures (Sun et al. (2023)). As layer complexity increases,
manufacturing processes increasingly involve reentrant flows, where specific operations must return to the
same equipment multiple times, further complicating production scheduling and management.

While TFT fabrication encompasses multiple processes, including deposition, cleaning, photolithog-
raphy, and etching, we concentrate specifically on photolithography as it represents the most significant
production bottleneck (Ghasemi et al. (2020)). This critical process uses light to transfer intricate circuit
patterns onto substrates using highly specialized and expensive equipment. Consequently, optimizing this
stage directly impacts overall production efficiency. However, scheduling photolithography operations
presents unique challenges beyond standard parallel-machine scheduling problems, as it requires simul-
taneous management of both machines and photomasks. These photomasks must be precisely tracked in
real time to ensure compatibility with specific jobs, with production timing dependent on both machine
availability and mask readiness.

Our research addresses these challenges by developing methods to rapidly generate high-quality schedules
for photolithography operations in dynamic production environments. In practice, photolithography tasks
arrive continuously, creating dual-resource constraints where both appropriate machines and required masks
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must be simultaneously available. This introduces additional complexity through operational factors such as
mask transport times and setup requirements. By integrating these elements into our scheduling approach,
we aim not only to enhance overall OLED manufacturing throughput but also address practical production
objectives, including prioritizing high-value products and meeting specific step targets by designated
deadlines. Furthermore, our real-time tracking system for mask locations and machine statuses enables
dynamic scheduling of incoming tasks, resulting in more efficient, responsive, and adaptable production
processes.

There are many studies that have explored photolithography scheduling using a variety of modeling
and optimization techniques. For example, Cakici et al. (2007) introduced a network-based optimization
model for parallel machine scheduling under auxiliary resource constraints, proposing heuristics that yield
near-optimal solutions for small-scale instances and refining them via Tabu search. Hung et al. (2013)
investigated rescheduling in semiconductor wafer fabrication, developing a “sensitivity search” strategy to
handle disturbances such as machine breakdowns and mask availability. Zhang et al. (2018) reduced total
completion time by combining a rolling horizon approach with an improved imperialist competitive algorithm,
while Deenen et al. (2023) modeled photolithography scheduling as an unrelated parallel-machine problem
and outperformed mixed-integer programming methods. More recently, Kim et al. (2023) introduced a
reinforcement learning (RL) approach for AMOLED photolithography. However, their deep Q-network
still requires retraining whenever mask counts or product types change, limiting its adaptability in highly
dynamic settings.

Graph-based methodologies have become increasingly common in the broader field of neural combi-
natorial optimization (NCO), where deep learning techniques are applied to tackle large-scale, evolving
combinatorial problems (Park, Bakhtiyar, and Park 2021). In diverse scheduling tasks—from crane op-
erations and parallel-machine environments to directed acyclic graph-based workflows—RL has shown
particular promise. For instance, Liu et al. (2023) presented a deep Q-network-based meta-dispatching
rule that adapts to both current and historical system states, while Chang et al. (2022) developed a double
deep Q-network with a soft ε-greedy policy for random job arrivals in flexible job shops. Similarly, Cho et
al. (2024) introduced a real-time RL-based scheduling algorithm for dynamic steel coil warehouses where
multiple cranes share a single track, and Ni et al. (2021) proposed a Multi-Graph Attributed Reinforcement
Learning–based Optimization (MGRO) algorithm for large-scale hybrid flow shop scheduling, effectively
leveraging multi-graph representations and reward shaping to adapt to real-time changes.

Despite these advances, few studies have addressed the unique combination of mask sharing and
machine-specific constraints inherent to photolithography. To bridge this gap, we propose a size-agnostic,
graph-based RL framework that accommodates mask sharing and reentrant flows, efficiently tackling the
dynamic nature of photolithography lines without incurring substantial retraining overhead when production
settings change.

2 PROBLEM FORMULATION

2.1 Scheduling Problem and Overall Approach

We consider a scheduling problem involving n jobs, m photolithography machines, and l masks, where
each job belongs to one of L distinct lot types. At time zero, an initial set of ninit jobs is already
present in the system, while the remaining jobs arrive in real time according to a specified inter-arrival
distribution. Each job j is assigned a weight w j that indicates its priority, reflecting factors such as urgency
or overall importance. Additionally, each job j can be processed only on a designated subset of machines
M j ⊆ {1,2, . . . ,m} (i.e., machine eligibility constraints). For every eligible job-machine pair ( j,k) where
k ∈M j, job j is assigned a specific mask µ jk ∈ {1,2, . . . , l} with a processing time p jk. By explicitly
incorporating mask allocation, mask transfer, and machine compatibility into our formulation, we aim to
generate efficient schedules for the photolithography process that effectively address these interdependent
resource constraints. Figure 1 provides a simple Gantt chart example that illustrates the complexity of
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Figure 1: Gantt chart illustrating job scheduling with mask transfers

scheduling when both mask allocation and machine assignment must be considered simultaneously, showing
a scenario with four photolithography machines where jobs require specific masks that may need to be
transferred between machines.

2.2 Key Performance Indicators (KPIs) and Aggregated Objective

To evaluate the quality of a schedule, we employ three Key Performance Indicators (KPIs) over a fixed time
horizon h. Let T = h denote the end of this horizon, and let C j be the completion time of job j. Our KPI
formulation builds upon the approach presented by Kim et al. (2023), which originally introduced three
metrics: throughput, step-target fulfillment, and setup count. Since setup reduction is ultimately reflected
in improved throughput, we omit the setup-related KPI and instead introduce a priority-oriented metric.
Specifically, we define:

• KPI1 (Throughput):

KPI1 =
n

∑
j=1

1{C j ≤ T},

where 1{·} is an indicator function that counts a job if it finishes by T . Higher values of KPI1
indicate better throughput within the horizon.

• KPI2 (Step Target):

KPI2 =
L

∑
ℓ=1

Deficitℓ,

where Deficitℓ denotes the shortfall in meeting the target number of lots for type ℓ by time T .
Lower values of KPI2 imply better fulfillment of each lot type’s production target.

• KPI3 (Weighted Priority):

KPI3 =
n

∑
j=1

(
w j max{T −C j,0}

)
,
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where w j is the priority weight of job j. The term max{T −C j,0} measures how much earlier job
j completes relative to T ; multiplying by w j places greater emphasis on finishing higher-priority
jobs earlier.

While each KPI can be evaluated independently, our primary goal is to optimize a weighted combination
of these metrics:

max
(

α1 ·KPI1 − α2 ·KPI2 + α3 ·KPI3

)
,

where α1,α2,α3 ≥ 0 denote user-specified weights reflecting the relative importance of throughput, step-
target fulfillment, and weighted priority, respectively. Note that KPI1 and KPI3 are designed to be maximized,
while KPI2 is designed to be minimized; hence we assign a minus sign before α2 ·KPI2 in the objective.
By jointly considering throughput (KPI1), step-target fulfillment (KPI2), and weighted priority (KPI3), we
achieve a balanced assessment of each schedule’s effectiveness within the specified horizon [0,T ].

3 PROPOSED APPROACH

3.1 Overall Architecture

Our approach models the scheduling environment as a graph where nodes contain information on jobs,
machines, and masks, while edges represent various relational constraints. A graph neural network (GNN)
processes this state representation, extracting meaningful latent features from the raw node attributes. These
features are then fed into a policy module that assigns probabilities to different job–machine–mask pair
actions. The complete framework is trained end-to-end using policy gradient methods, thereby encouraging
the selection of actions that lead to improved scheduling performance.

3.2 State

We represent the state as a graph Gt(Vt ,Et) that captures the scheduling environment at decision step t.
Figure 2 illustrates an example state, where job nodes (orange circles) and machine–mask nodes (blue
circles) are connected by different types of edges to represent various relationships among resources. Each
decision step corresponds to a point in the constructive scheduling process at which an assignment (i.e.,
a job to a machine-mask combination) is made, and the graph is updated accordingly. This graph-based
state representation provides the foundation for our approach’s size-agnostic property. By encoding the
scheduling environment as a graph with relative node and edge features, our method can naturally handle
varying numbers of machines, masks, and job types without requiring architectural modifications. The graph
neural network processes these variable-sized graphs through local message-passing operations, enabling
the learned policy to generalize across different problem scales.

The node set Vt is partitioned into two subsets:

• Job Nodes (V a
t ): Among all jobs that have arrived but are not yet completed (or scheduled) at time

t, each job j corresponds to one job node va
j . This job node is associated with a feature vector[

1(job), w j, ℓ j, τ j, ĥ
]
,

where 1(job) is an indicator that this node is a job node, w j is the priority (or weight) of job j, ℓ j
is the number of lots in job j, τ j represents the remaining step targets for the lot type of job j,
and ĥ = max(h− simt ,0) denotes the time remaining until a certain horizon h, measured from the
current simulation time.

• Machine-Mask Nodes (V b
t ): For each machine-mask combination (k, ℓ) that can potentially process

at least one of the arrived and unscheduled job nodes, we define a machine-mask node vb
kℓ. This

node is characterized by a feature vector[
1(pair), mkℓ, δkℓ, rmask

kℓ , rmch
k , ĥ

]
,
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(a) Edges between job and machine–mask nodes (Ea).
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(b) Edges among job nodes with the same lot type
(Eb).
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(c) Edges among machine–mask nodes for the same
machine (Ec).
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(d) Edges among machine–mask nodes for the same
mask (Ed).

Figure 2: An example of graphical representations of states, illustrating a state comprising 4 jobs, 2 lot
types, 2 machines, and 2 masks.

where 1(pair) indicates that this node is a pair (machine-mask) node, mkℓ indicates whether mask ℓ
is currently mounted on machine k, δkℓ is a binary value that equals 1 if mask ℓ was last used on
machine k, rmask

kℓ represents the remaining time until mask ℓ is available (or done with setup/cleaning)
on machine k, rmch

k is the time until machine k completes its current job, and ĥ = max(h− simt ,0)
again denotes the time remaining until the horizon h.

The edge set Et is segmented into four subsets:

• Edges between Job and Machine-Mask Nodes (Ea
t ): An edge exists between a job node va

j and a
machine-mask node vb

kℓ if job j can be processed on machine k with mask ℓ. The associated edge
feature—such as the expected processing time—is denoted by p jk when job j is compatible with
both machine k and mask ℓ.

• Edges among Job Nodes with the Same Lot Type (Eb
t ): These edges connect job nodes va

j and va
j′

that belong to the same lot type. Since each lot type has a different required quantity by a specific
time, and jobs in the same lot type share the same mask and machine, these edges highlight their
common resource needs.

• Edges among Machine–Mask Nodes for the Same Machine (Ec
t ): These edges connect ma-

chine–mask nodes vb
kℓ and vb

kℓ′ that belong to the same machine k. They capture transitions from
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one mask ℓ to another ℓ′. Without these edges, we would lose the representation that these nodes
share the same machine (Cai et al. (2021)).

• Edges among Machine–Mask Nodes for the Same Mask (Ed
t ): These edges connect machine–mask

nodes vb
kℓ and vb

k′ℓ corresponding to the same mask ℓ. Without these edges, we would lose the
representation that these nodes share the same mask.

By updating Gt(Vt ,Et) at each decision step t, we maintain a dynamic representation of the scheduling
state. This graph-based formulation flexibly encodes complex constraints such as machine-mask assignments,
job release times, and potential setup or transfer times, making it amenable to approaches based on graph
neural networks or reinforcement learning.

3.3 Action, State Transition, and Reward

Each action involves selecting an available job node va
j and a machine–mask pair node vb

kℓ in the Photo
stage. In other words, job j is assigned to the machine–mask pair consisting of machine k and mask ℓ.
For job j, the start time S j is defined as

S j = max
(

r j, machineReleasek + setup, maskReleaseℓ+ trans+ setup
)
,

where r j is the arrival time of job j, machine releasek is the time when machine k becomes available,
mask releaseℓ is the time when mask ℓ becomes available, transportation time is the delay required to move
mask ℓ to machine k (if needed), and setup is the setup time required before processing. Note that the
mask’s location and state are critical; if mask ℓ is already on machine k, no additional transportation time
is needed, and if it was the last mask used on machine k, the setup time becomes 0.

If no feasible assignment exists at the current simulation time simt , this leads to a state transition in
the scheduling system. Consequently, the event-driven simulation advances simt to the earliest time when
at least one machine–job pair becomes available—that is, when a job is released or a machine becomes
idle and meets the eligibility constraints. This ensures that the scheduling process proceeds continuously.

Once the scheduling process is complete—that is, when the simulation time exceeds a specified
threshold—the reward is computed. At this terminal state, the reward is defined as the negative of an
objective.

3.4 Graph Encoder

The graph encoder begins by transforming each node’s raw feature vector xi into an initial hidden repre-
sentation:

hi(0) = ReLU(W0 · xi),

where W0 is a trainable weight matrix and hi(0) is the initial embedding for node i.
The scheduling graph includes four distinct edge types, Ea

t , Eb
t , Ec

t , and Ed
t . We handle each corresponding

subgraph separately using a GATv2-based attention mechanism (Brody et al. (2021)). For each edge type
k ∈ {a,b,c,d} and for each layer l (with l = 0, . . . ,L−1), the encoder computes an unnormalized attention
score for an edge from node i to node j with associated feature fi j (e.g., a setup time) as follows:

ek
i j = ak(l) ·LeakyReLU

(
W k

1 (l) ·
[
hi(l)∥h j(l)∥ fi j

])
,

where ak(l) is an attention vector, W k
1 (l) is a learnable weight matrix, and ∥ denotes vector concatenation.

The attention coefficients are normalized via:

α
k
i j =

exp(ek
i j)

∑ j′∈Nk
i

exp(ek
i j′)

,
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with Nk
i representing the set of neighbors of node i connected via edge type k.

Using these attention weights, the updated representation for node i with respect to edge type k is
computed by:

hk
i (l) =W k

3 (l) ·LeakyReLU

(
∑

j∈Nk
i

α
k
i j ·
(

W k
2 (l)h j(l)

))
,

where W k
2 (l) and W k

3 (l) are learnable parameters.
Finally, the representations from all four edge types are aggregated through concatenation and a residual

connection to update the node embedding:

hi(l +1) = ReLU
(

hi(l)+W4 ·
[
ha

i (l)∥hb
i (l)∥hc

i (l)∥hd
i (l)
])

,

where W4 is a trainable weight matrix. This multi-layered attention mechanism is repeated for L layers,
yielding final node representations hi(L) that capture both local interactions and the overall structure of
the scheduling state.

3.5 Action Decoder and Probability Computation

The action decoder converts the final node embeddings into a probability distribution over possible scheduling
decisions. For each candidate job–machine assignment, we concatenate the corresponding node embeddings
and pass them through a feed-forward network:

yi =W6 ·ReLU
(

W5 ·
[
h(L)job ∥h(L)pair

])
+ log(maski),

where the mask maski zeros out logits corresponding to infeasible actions (e.g., due to eligibility constraints).
The logits yi are normalized with a softmax function:

pi = Softmax(yi),

which yields a valid probability distribution over the feasible actions. During training, actions are sampled
from this distribution, allowing the model to learn a scheduling policy that minimizes the overall objective.

3.6 Training Procedure

To train our proposed network, we adopt a policy learning approach based on the REINFORCE algorithm.
Following the method in Mao et al. (2019), we define a baseline b as the mean cumulative reward at the
final step of each episode. Let Ti denote the terminal time step of episode i; then the baseline is computed
as

b =
1
M

M

∑
i=1

Ri
Ti
.

This baseline is determined using an identical task arrival sequence, which reduces variance from random
arrival times and enhances training stability in dynamic environments. The complete procedure is detailed
in Algorithm 1.

4 COMPUTATIONAL EXPERIMENTS

4.1 Instance Generation

To evaluate our method, we generated synthetic instances that emulate real-world data using a custom
data generation process. Processing times were sampled uniformly over the interval [100,300] and job
weights were drawn from a uniform distribution over [0.2,1]. Job arrivals followed a Poisson process
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Algorithm 1 Policy Gradient Training Algorithm

1: Initialize policy parameters θ for πθ .
2: for each update iteration do
3: Set gradient accumulator ∆θ ← 0 and sample a mini-batch of B instances.
4: for each instance j = 1, . . . ,B do
5: Run M episodes with πθ to collect trajectories {τ i}M

i=1, where for each episode i, τ i =
{si

1,a
i
1, . . . ,s

i
Ti
,ai

Ti
,Ri

Ti
} with variable length Ti.

6: Compute baseline b← 1
M ∑

M
i=1 Ri

Ti
.

7: for each episode i = 1, . . . ,M do
8: Update gradient: ∆θ ← ∆θ +

1
BM ∑

Ti
t=1 ∇θ logπθ (si

t ,a
i
t)(R

i
Ti
−b).

9: end for
10: end for
11: Update parameters: θ ← θ +α ∆θ .
12: end for

with rates proportional to the number of machines—approximately 25 jobs per 4-hour period in training,
scaling linearly for test instances. In addition, the ratio of feasible machine–job pairs was set to 0.5, the
transportation time—the time required for a mask to move between machines—was fixed at 360, and the
setup time—the time required to change a mask on a machine—was set to 30. We adopt α1 = 1, α2 = 0.1,
and α3 = 0.25 to ensure a balanced evaluation across the three KPIs while reflecting both their relative
importance and scale differences in actual manufacturing settings. These weights prevent any single metric
from dominating the objective, with throughput as the primary focus in line with manufacturing priorities.

4.2 Model and Training Parameters

In our experiments, the model is configured with an embedding dimension of 128, 8 attention heads, and 3
encoder layers. Each training instance is generated with 25 initial jobs, processed on 5 machines with 20
available masks, and the simulation terminates if the process exceeds a 4-hour time horizon. The training
procedure is carried out over 100 iterations, each utilizing 1,500 instances (resulting in a total of 150,000
training instances) with a batch size of 50. For each problem instance, 6 schedules are generated; the
average reward of these schedules is used as the baseline for reinforcement learning.

The training took approximately 12 hours, with smooth convergence and monotonically decreasing
evaluation score. Despite training only on instances with 5 machines and 20 masks, our model successfully
generalized to problem sizes ranging from 5-20 machines and 20-160 masks. All experiments were
conducted on an Intel Core i9-14900KS CPU (64GB RAM) with NVIDIA RTX 4090 GPU (24GB).

4.3 Comparison Methods

4.3.1 Mask Setup Minimization Scheduling Heuristics

In our experimental setup, dispatching decisions are made on a per-machine basis at the moment a machine
becomes idle. However, conventional dispatching rules, such as SPT (Shortest Processing Time) or LPT
(Longest Processing Time), are not well-suited for our problem because they do not take into account the
use of the mask or its current location, which is critical under photolithography constraints. Therefore,
we propose a series of Mask Setup Minimization Heuristics (MSMH) that prioritize maintaining the same
mask on a given machine, thereby reducing changeover times. We further integrate the MSMH principle
with various tie-breaking criteria, including SPT, Priority, and StepTarget, to ensure that each rule aligns
with a specific scheduling objective (e.g., minimizing flow time, prioritizing high-value jobs, or meeting
step-target deadlines). All MSMH-based heuristics first look for a job that can use the mask last used on
the machine. If such jobs exist, they apply the selection rule below; otherwise, they pick the job (from all
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available) that achieves the earliest finish time (EFT) on the machine. The specific selection rule differs
as follows:

• MSMH–SPT: Among the mask-compatible jobs, pick the one with the shortest processing time.
• MSMH–Priority: Among the mask-compatible jobs, pick the one with the highest priority.
• MSMH–StepTarget: Among the mask-compatible jobs, pick the one with the largest step-target

deficit.

4.3.2 RL Approach

Following the fixed-dimension RL method proposed by Kim et al. (2023), we adopted their state represen-
tation as a baseline and then modified it to suit our KPI objectives. In our adaptation, we replaced the graph
attention module with a standard multilayer perceptron (MLP) while retaining the same RL procedure—i.e.,
using REINFORCE with a learning rate of 0.0001 and the Adam optimizer. Specifically, we defined the
state representation using four features: (1) the number of remaining lots per lot type, (2) the weight of
each lot type (a feature not considered in the original method), (3) the remaining step-target amount per
lot type, and (4) mask availability (this feature was slightly modified from the original to better align with
our KPI). The MLP architecture consists of three layers, each with 256 hidden units and ReLU activation.
Because the state vector is of a fixed size, this approach can only handle instances with predetermined
dimensions.

To accommodate the baseline’s limitation that no new mask or lot type be introduced, we trained
this model on problem instances in which (i) the set of machines available per lot type and (ii) the mask
associated with each lot type were fixed, while varying lot weights, release times, and step-target amounts.
Under these constraints, the baseline can operate effectively. However, if the environment changes (e.g., a
new mask is added), the trained baseline can no longer be applied. Hence, we generated problem instances
adhering to these restrictions in order to compare the baseline with our proposed approach.

4.4 Experimental Results

We compared our graph-based RL algorithm with three MSMH heuristics, with results in Tables 1-4.
We first tested a relatively low (baseline) arrival rate that aligns closely with the training distribution.
Parameters such as the initial number of jobs ninit, the number of machines m, and the number of masks
k were varied, but within ranges similar to the training set. As shown in Table 1, our RL-based method
consistently outperformed the MSMH heuristics, demonstrating that the learned policy reliably produces
high-quality schedules under conditions similar to those in which it was trained. Among the MSMH-based
methods, MSMH–SPT showed a slight edge over both MSMH–Priority and MSMH–StepTarget, largely
because selecting the shortest processing time tends to maximize the number of completed jobs, thereby
indirectly improving other metrics (e.g., priority-related or step-target-related outcomes). Notably, our
experiments include instances with up to 20 machines, which represents a practical scale comparable to
many real-world photolithography workcenters in display manufacturing facilities. Figure 3 shows how
the RL policy achieves high utilization while efficiently managing mask changes and minimizing setups
(hatched areas) on a 20-machine instance.

Table 1: Performance Evaluation under Baseline Arrival Rate Conditions

ninit m k MSMH–StepTarget MSMH–SPT MSMH–Priority Ours

25 5 20 7.99 9.18 8.00 17.82
50 10 40 23.01 25.22 23.77 35.40
100 20 80 73.92 78.15 74.58 83.81

Average 34.97 37.52 35.45 45.68
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We then compared our approach with RL Fixed on 100 instances. Although RL Fixed was specifically
tailored to fixed-dimension environments, our size-agnostic graph-based RL approach not only generalizes
to instances of varying dimensions but also outperforms RL Fixed even under fixed conditions, as shown
in Table 2. RL Fixed performs poorly due to insufficient state representation, particularly missing whether
masks were last used on their current machines—critical information for minimizing setups.

Table 2: Performance Evaluation under Fixed Conditions: RL Fixed vs. Proposed RL Approach

ninit m k MSMH–StepTarget MSMH–SPT MSMH–Priority RL–Fixed Ours

25 5 20 25.14 25.61 25.01 24.34 27.86

Subsequently, we evaluated performance under a significantly higher arrival rate—roughly twice as
large as in the baseline case—to reflect a more demanding environment. In Table 3, our RL-based approach
maintains its advantage under both light and heavy inflows, indicating robust generalization even when job
arrivals deviate substantially from the training conditions.

Table 3: Performance Evaluation under High Arrival Rate Conditions

ninit m k MSMH–StepTarget MSMH–SPT MSMH–Priority Ours

25 5 20 5.43 5.78 5.31 12.90
50 10 40 19.94 22.75 19.70 36.50

100 20 80 90.54 95.68 90.61 116.10

Average 38.64 41.40 38.54 55.17

Finally, we examined scenarios with machine-to-mask and job-to-mask ratios that differ notably from
those in the training distribution. Table 4 shows that our RL-based method continues to outperform the
MSMH heuristics, reflecting the policy’s ability to adapt to diverse capacity ratios without requiring additional
retraining. These findings underscore the flexibility of our graph-based RL approach in accommodating
different production conditions.

Table 4: Performance Evaluation under Diverse Job–Mask Ratios.

ninit m k MSMH–StepTarget MSMH–SPT MSMH–Priority Ours

50 10 20 6.51 8.84 3.43 13.35
50 10 80 36.79 38.51 38.15 43.57

100 20 40 13.75 13.96 8.16 19.88
100 20 160 89.09 91.76 91.34 89.93

Average 36.54 38.27 35.27 41.68

Overall, these results confirm that our framework performs robustly under diverse operating conditions,
including varying arrival rates and different resource ratios.

5 CONCLUSION

In this paper, we presented a graph-based reinforcement learning framework for photolithography scheduling.
Our approach models the scheduling environment with two distinct node types: job nodes and machine-
mask pair nodes. This formulation accurately tracks real-time mask locations and job statuses within a
unified graph structure. Furthermore, the scheduling policy is trained via reinforcement learning to adapt to
dynamic job arrivals, and its size-agnostic formulation reduces the need for repeated retraining as system
conditions change.
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Figure 3: Gantt chart of RL-based scheduling solution for a 20-machine instance with photomask constraints
and setup operations

Numerical results confirm that the proposed method outperforms three MSMH-based heuristics (MSMH-
SPT, MSMH-Priority, MSMH-StepTarget), demonstrating the effectiveness of a graph-based RL approach
under diverse scenarios. In addition, our framework’s flexibility in handling varying resource ratios and
job arrival rates suggests that it can be extended to other complex manufacturing systems.

While our current approach assumes fixed weights for the multi-objective function, real manufacturing
environments often require different priority settings based on operational conditions. Future work will
focus on developing a more generalized model that can adapt to various objective weight configurations
without retraining, enabling flexible deployment across different manufacturing scenarios with varying
performance priorities.
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