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ABSTRACT

High dimensional simulation optimization problems have become prevalent in recent years. In practice,
the objective function is typically influenced by a lower dimensional combination of the original decision
variables, and implementing dimensionality reduction can improve the efficiency of the optimization
algorithm. In this paper, we introduce a novel algorithm ASTROMOoREF that combines adaptive sampling
with dimensionality reduction, using an iterative trust-region approach. Within a trust-region algorithm a
series of surrogates or metamodels is built to estimate the objective function. Using a lower dimensional
subspace reduces the number of design points needed for building a surrogate within each trust-region
and consequently the number of simulation replications. We explain the basis for the algorithm within the
paper and compare its finite-time performance with other state-of-the-art solvers.

1 INTRODUCTION

Simulation optimization (SO), or optimization via simulation, describes a class of optimization algorithms
used to solve problems where the objective function can only be observed through replications of a
Monte Carlo simulation. Such problems are intrinsically stochastic and in recent years, high-dimensional
SO problems have become prevalent, e.g., inventory management (Wang and Hong 2023), uncertainty
quantification (Xie et al. 2014), and transportation optimization (Tay and Osorio 2024). A review of
high-dimensional SO is presented by Fan et al. (2024), which highlights the need to develop dimensionality
reduction methods to improve the efficiency of solvers on high-dimensional SO problems. The algorithm we
develop here, ASTROMOoRF, combines adaptive sampling with dimensionality reduction using an iterative
trust-region approach.
The unconstrained continuous SO problem is formally stated as

min f(x) = min E[F(x, {)], (1)
xcR” xcR”
where f: R" — R can only be observed through responses of the simulation model. The function F :
R" x Q — R is a stochastic function representing the responses from the simulation model. The sample
average approximation (SAA) at design point x is defined as the sample mean of n replications,

n

F(xin) =~ Y F(x,.§), @)

i3

which provides an unbiased estimator of f(x).

Simulation replications can be computationally expensive, and as a result, appropriate measures of
efficiency for SO algorithms use the total number of calls to the simulation model rather than the number of
algorithm iterations. Stochastic approximation algorithms that use gradient descent such as Kiefer-Wolfowitz
(Kiefer and Wolfowitz 1952), and simultaneous perturbation stochastic approximation (SPSA) (Spall 1992)
can be computationally inefficient in the derivative-free SO setting, requiring multiple replications to obtain
accurate gradient estimations. Furthermore, the choice of step-size for finite differencing under a stochastic
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setting requires fine-tuning, which can result in gradient estimators with poor quality (Asmussen and
Glynn 2007). SO solvers that prioritize stability and accuracy over asymptotically fast convergence are
consequently more promising. Deterministic model-based derivative-free trust-region (TRO-DF) algorithms
provide stable trajectories in a finite-run (Conn et al. 2009). In each iteration, a TRO-DF algorithm solves
the optimization problem on a surrogate model within a constrained (trust) region around the incumbent
solution. The acceptance of a new solution and the trust-region’s size adapt based on how well the surrogate
model predicts the simulation model’s behavior. The restriction of the feasible region to a neighborhood
around the current solution in each iteration allows a more stable trajectory to be achieved during the run
of the algorithm.

The first development of TRO-DF for SO was the deterministic unconstrained optimization by quadratic
approximation (UOBYQA) (Powell 2002). An adaptation to stochastic functions is provided by Deng and
Ferris (2006). UOBYQA ensures that the candidate solution is suitable for the maintained design set
by solving an optimization problem on the interpolation functions. In its extension to the stochastic
setting, UOBYQA controls the random error present from sampling by making repeated replications of the
simulation, deciding on the number of samples through Bayesian techniques. A new version of quadratic
approximation (NEWUOA) (Powell 2006) and its bounded complement bound constrained optimization
with quadratic approximation (BOBYQA) (Powell et al. 2009) build on UOBYQA. They both attempt
to reduce the number of design points sampled to 2rn + 1. Further developments include derivative-free
adaptive sampling trust-region optimization (ASTRO-DF) (Shashaani et al. 2016), which utilizes adaptive
sampling of the simulation model to ensure that the stochastic sampling error is in lock-step with the model
bias. The benefit of keeping these errors in lock-step is improved efficiency and stability of the algorithm
during its run. ASTRO-DF also conducts a direct search on the design set used to construct the surrogate
model at every iteration. When the estimated response at the candidate solution is less than the response
of the design points used to construct the surrogate model, the direct search solution is accepted over the
candidate solution. This allows for progress to be made in unsuccessful runs.

The TRO-DF algorithms avoid calculating first-order derivatives through construction of surrogate
models using interpolation. UOBYQA uses Lagrange interpolation with %(n +1)(n+2) design points,
where 7 is the dimension of the decision vector in the SO problem, whereas, ASTRO-DF uses 2n+ 1 points
with a fixed geometry (Ha and Shashaani 2024). This results in the model construction stage of UOBYQA
taking O(n?) simulation replications per iteration and ASTRO-DF taking O(n) simulation replications per
iteration. Furthermore, ASTRO-DF performs a first-order criticality check on the accuracy of the surrogate
model and if it fails to meet the accuracy threshold, the interpretation set is reconstructed under a smaller
trust-region. This first-order criticality check is crucial for ensuring convergence to a first-order stationary
point; however it can lead to multiple simulation replications within one iteration. The simulation cost to
construct accurate surrogate models through interpolation increases exponentially as the number of decision
variables increases. For a high-dimensional SO problem, the model construction stage can expend a large
number of simulation replications per iteration, which is prohibitive under a fixed replication budget.

In practice, the objective function in (1) is often largely affected by a relatively small subset of decision
variables in the decision vector around any point. Active subspaces (Constantine et al. 2014; Russi
2010) can be employed to identify this subset of components and isolate them into a reduced dimensional
subspace, mitigating the curse of dimensionality associated with model construction in TRO-DF. Active
subspace methods have been applied in uncertainty quantification (Smith 2024), where simulation model
inputs are sampled using Monte Carlo methods and the outputs are treated as a data set for statistical
analysis. The application of active subspaces in combination with TRO-DF has been successfully applied
in a deterministic setting. Two such solvers include the Ridge-Informed Trust Region Solver (RITR) (Gross
et al. 2020) and Optimization with Moving Ridge Functions (OMoRF) (Gross and Parks 2022). These
solvers have reduced the number of responses needed from the simulation model in a single run.

An alternative dimensionality-reduction method is applying global sensitivity analysis to determine
which decision variables have the most influence on the simulation model’s response before the solver is
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run (Kleijnen 2005), which has proven popular in the simulation community. Sensitivity analysis ranks the
coordinates of the inputs on the basis of which coordinate directions exhibit the most variability. Dimensions
that do not exhibit high variability are removed from the decision space, resulting in a reduced dimension
function after appropriate rotation (Saltelli et al. 2008). Within TRO-DF, the algorithm makes progress by
reducing the problem to a local optimization around the incumbent solution. Reducing the dimension of
the decision space through a global search may ignore local variability in the sensitivity of the objective
to different variables (Gould et al. 2005).

Our contribution is the proposal of a novel TRO-DF algorithm, Adaptive Sampling Trust Region
Optimization with Moving Ridge Functions (ASTROMoRF). ASTROMoRF combines the adaptive sampling
and design point selection from ASTRO-DF with techniques from OMoRF to construct local active subspace
matrices to project the surrogate model into a lower-dimensional subspace R,

The subspace dimension size d, is selected a priori by the experimenter. In practice, the optimal choice
for d is unknown but knowledge of the problem may suggest a good choice. Choosing a small value for d
reduces the simulation budget expended per iteration. We introduce novel adaptations to the selection of
design points in the projected subspace to construct a quadratic stochastic interpolation model. We also
introduce novel adaptations to the ridge function recovery method presented in Hokanson and Constantine
(2018) to ensure that the constructed surrogate model is fully-linear. The application of a local active
subspace allows the selection of coordinate directions that exhibit the most variability on the response
surface, enabling more substantial steps to be made in each iteration.

In Section 2, we discuss key implementation aspects of ASTROMORF that justify its fast convergence
to a first-order critical point with respect to the number of simulation replications, for high-dimensional
problems. Section 3 reports numerical results that demonstrate the performance of ASTROMORF against
ASTRO-DF and OMoRF on three high-dimensional SO test problems. Finally, we conclude in Section 4.

2 METHODOLOGY

ASTROMOoRF makes use of two main features of ASTRO-DF: (i) certification to ensure that the surrogate
model meets the conditions of being fully linear; and (ii) an adaptive sampling rule used in ASTRO-DF
to suggest the number of replications to be made for model construction and evaluation of the candidate
step. The addition we offer is the construction of a new basis matrix in each iteration, allowing us to
project design points into a subspace of the decision space. This permits us to sample a significantly
reduced number of design points, detaching the number of replications needed for model construction from
the dimension of the problem, and solving a known issue with TRO-DF solvers, whose main simulation
expense derives from the number of design points needing to be simulated in each iteration. Algorithm 1
describes ASTROMOREF, where the presentation of the algorithm closely follows the notation of Nocedal
and Wright (1999) and Ha and Shashaani (2024). In algorithm 1, we carry out a direct search on the finite
set of evaluated design points in the design set, by sorting the responses of the design set at each design
point and selecting the design point corresponding to the smallest response (Ha and Shashaani 2024).

In the following sections, we discuss key implementation characteristics of ASTROMOoRF that ensure
its finite-time performance. First, we discuss how our algorithm selects design points for constructing
the surrogate model through interpolation, how we ensure that the design points selected span the trust-
region within the projected subspace, and how we update the design points if they do not ensure that the
interpolation matrix is poised. Second, we present a method of variable projection to recover the ridge
function and active subspace matrix to construct the trust-region’s surrogate model and the corresponding
active subspace matrix. This is used to project the current iteration’s candidate solution to the reduced
subspace. Third, we discuss the adaptive sampling rule used to decide on the number of replications to
make at a design point in the current iteration.
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Algorithm 1 Adaptive Sampling Trust-Region Optimization with Moving Ridge Functions (ASTROMOoRF)

Require: Initial solution Xy € R”, initial trust-region radius Ay > 0, acceptance thresholds 0 < n; < 1M < 1,
minimum sample size Ay, subspace dimension d < n, trust-region radius expansion y; > 1, trust-region
radius shrinkage 7 € (0, 1), adaptive sampling constant k > 0, sufficient reduction constant 6 > 0.

1: Set k=0
2: while expended budget < budget do
3: Build a design set X from 2d + 1 points from the trust-region B(xy;Ax)
4: Obtain Ni(x;) replications of each design point of X = {xo,...,Xy4} using (12) and evaluate the

SAA (2) response at each design point F(x;;Ny(x;)) for i =0, ...,2d.
5: Construct a d-dimensional quadratic model m; and active subspace matrix U € R"*? using A}.
6 Find the stepsize s; by solving the trust-region subproblem:

si= min  mp(UL (x¢+5)).
= min ,(Ug (X +5))

7: Evaluate the candidate solution over Ny (x; + s;) replications using (12)

and evaluate the SAA (2) of these replications: F(x; + sg; Ng(xx +8¢)).

Find the direct search reduction, through a pattern search on X, = minyc y\y, F(x;Ng(x))

Calculate the ratio ry using the rate of change in the simulation model response against the surrogate

model values between the incumbent solution and the candidate solution:

o F(Xk;Nk(Xk)) — F(Xk + Sk;Nk(Xk + Sk>) B 5F(Xk + Sk)
ry = T T = .
mk(Uk Xk) —mk(Uk (Xk—l—Sk>) 5mk(xk+sk)

10: Accept/Reject the Candidate solution x; +-s; and update the trust-region radius based on the

following criteria:

e, SF(%;) > max{SF(x; +si), 047} min{ 1A, Vi [|skl, Amax}, 7% > M2
X+l = Xk +S6, k=M A1 =  min{y1Ax, Amax }, m<rn<m
X, re <M YA, re <m

11: Update k =k+ 1.
12: end while
13: return {Xo,Xi,...} and the intermediate budgets.

2.1 Ensuring Full-Linearity of the Surrogate Model

The quality of the surrogate model is highly dependent on the choice of design set. This dependency affects
the numerical stability of the interpolation matrix V(¢;X). A numerically stable V(¢;X’) implies that the
design set is poised (Conn et al. 2008). The numerical stability of V(¢;X) is crucial as we obtain the
coefficients ¢ for the surrogate model by solving the system of linear equations,

V(9: X)e =1(X). (3)

Each row of the matrix V(¢; X’) represents the evaluation of a design point in the design set X = {x;,...,X,}
at each element of the polynomial basis ¢(x) = {¢i(x),...,¢,(x)}, such that V(¢;X); ; = ¢;(x;). The
vector f(X') consists of the responses of the model at each design point. Solving (3) for the coefficients

of the model ¢ = [cy,...,cy], allows us to obtain the polynomial surrogate model:
q
m(X) = Zci(])i(x). 4
i=1
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A poised design set ensures that V(¢;X') is non-singular, implying that a solution to the linear system
(3) exists. Conn et al. (2009) show that that the design set is nonpoised if all the design points lie on a
polynomial manifold of degree r or less, where r is the degree of the surrogate model. The property of the
design set being poised is a necessary condition for the surrogate model to be fully-linear. A fully-linear
surrogate model is one that satisfies the Taylor-like bounds,

1 (%) = me(x)]| < Kepdf ®)
IVF(x) = Vi (x)|| < KegAr

and ensures that the TRO-DF converges to a first-order optimal solution. These bounds must hold for all
design points x within the current trust-region 5(x;;A) at iteration k, where the trust-region is defined as
the ball with center x; and radius Ay. The constants K, r, k,, > 0 are defined a priori.

2.2 Choosing Design Points for the Model Construction Step

We construct the design set for the surrogate model using an approach taken from Ha et al. (2024). Their
method selects 2n+ 1 design points, where 7 is the dimension of the decision space, resulting in a quadratic
model on a fixed geometry with a diagonal Hessian (Coope and Tappenden 2021). This fixed geometry
has been shown to have an optimal design (Ragonneau and Zhang 2024).

The design set construction for ASTROMoRF differs by constructing a design set that spans the
trust-region in the projected subspace and whose points are mutually orthogonal, such that they do not lie
on a polynomial manifold of degree 2 or less. For the set, 2d points form the basis of the trust-region
with the additional point being the projected incumbent solution at the center. The interpolation design of
Ha et al. (2024), allows for reuse of previously visited design points in subsequent iterations to conserve
computational resources, as well as a rotated coordinate basis to obtain more precise estimates of the
gradient at x;. In our case, we only require 2d + 1 < 2n+ 1 design points to ensure a solution to (3),
because we are working in a reduced dimension d (Ragonneau and Zhang 2024).

The 2d + 1 design points are selected by first projecting the incumbent solution x; into the subspace by
Uy. If there exists previously visited design points within the trust-region after projection, then the design
point furthest from the projected incumbent solution is selected. We then select the remaining 2d — 1 points
within the projected trust-region using the design set construction presented in Ha et al. (2024). After the
design set is constructed, it is projected back into the original space.

In the case that there are no previously visited points within the projected trust-region, we apply the
design set construction presented in Shashaani et al. (2016), which relies on a coordinate-stencil approach.
This set construction does not always result in V(d);U,{Xk) being poised. In the case that our design set
is ill-poised, we apply a pivoting algorithm adapted from Conn et al. (2008) to improve the design set by
removing a point that causes the set to be ill-poised and replacing it with a better design point. This relies
on using Gaussian elimination with row pivoting on V(¢ ;U,{Xk). We continually improve the design set
until we can certify that the surrogate model constructed under the design set is fully-linear. The benefit of
applying a geometry improving algorithm over completely reconstructing the design set is that it reduces
the number of design points resampled in each iteration.

2.3 Constructing the Stochastic Polynomial Interpolation Model and Active Subspace

We adapt the method presented in Hokanson and Constantine (2018) to obtain better approximations of the
response surface on the trust-region at every iteration k. The algorithm simultaneously obtains the active
subspace matrix that is near-optimal at identifying the effective dimension within the trust-region. We first
introduce Hokanson’s method and then go on to describe how we adapt it to our problem.
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2.3.1 Hokanson’s Method for Polynomial Ridge Recovery

Hokanson’s method presents an alternating algorithm to recover the surrogate model coefficients and the
active subspace matrix by solving the least-squares problem

min x) — m (Ul'x 2. 6
e EZX £ (x) = mi (U x)] (6)

Range Uy € G(d,R")

Assuming that U has orthonormal columns (Constantine et al. 2017), and that the approximated ridge
function my has the structure equivalent to the interpolation function (4), which is characterized by the
vector of coefficients ¢, we can reformulate this problem and solve it with respect to ¢ and U;. We solve
(3) to fix ¢, and express the problem in terms of Uy

min - [I(X) = V(93 Ux X V(95 Ug ) £ 13 )
Range U,eG(d,R")
This is the norm of the orthogonal projector of f(X}) onto the range of V(¢;UJ X}), which we denote as
Pé( U7 X)f(Xk)' The optimization problem (7) can be solved using Newton’s method on the Grassmann
Yk

manifold. Golub and Pereyra (1973) provides an explicit formulation of the Jacobian of Pt( o:U7 X)f(Xk)
Sk

with respect to Uy, denoted as 7 (Uy). Furthermore, Uy is orthogonal with slices of 7 (Uy). Therefore,
the second-order derivative information of Newton’s method can be approximated using the Gauss-Newton
approximation, allowing the normal equations,

WTA =0, Hessp(A,X)=—(grad ¢,X), VX suchthat U' X =0 ®)

that selects a search direction A € R"*¢ tangent to the current estimate of Uy to be replaced with a better
conditioned least squares problem

min ec(J(Up)) vec (A) —PL
minvee((UL) vee () - Py

such that ufa=o.

RS ®

The function ¢ in (9) is an arbitrary function of the active subspace matrix U on the Grassmann manifold,
and X € R™¢ is a test matrix that, along with A, defines the Hessian of ¢ on the Grassmann manifold.
The algorithm presented in Hokanson and Constantine (2018) undergoes a variable projection scheme,
computing the ridge function coefficients ¢ before solving (7) through the Gauss-Newton algorithm on
Grassmann manifolds, through a step on the geodesic

U(t) = UyZcos (X1) Z" + Ysin(Z) 27, (10)

where the SVD of A is YXZT . It iterates through this variable projection scheme until the active subspace
matrix Uy converges. Hokanson’s variable projection algorithm provides much faster convergence than the
alternating algorithm presented in Constantine et al. (2017).

The method of Hokanson and Constantine (2018) requires an initial estimate of the active subspace
matrix Uy; they compute this initial estimate by sampling design points from the normal distribution and
finding Uy through the QR decomposition. Furthermore, the projected points are scaled and shifted into
the d-dimensional hypercube [—1,1]¢. This transformation is done so that the selected polynomial basis
¢ can be chosen to ensure that the matrix V(¢;U’ ;) is well-conditioned. The polynomial basis chosen
to ensure a well-conditioned V(¢; U] X;) is the Legendre basis.
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2.3.2 Applying Hokanson’s Method

We first obtain our initial estimate for U; by sampling d n-dimensional design points around the current
trust-region as an n X d design matrix, and obtain the initial estimate of U through a QR decomposition of
the design matrix. This initial estimate requires no additional replications of the simulation model. Second,
in approximating the surrogate model, we do not map the design points into the d-dimensional hypercube.
Avoiding this transformation ensures the surrogate model constructed is an interpolation model. We also
apply the natural monomial polynomial basis instead of the Legendre basis that is used in Hokanson
and Constantine (2018). Our method provides certifications on the constructed surrogate model after
evaluating ¢, by checking the inequality Ay < p||Vmy(xx)| holds. This bound ensures the model will
converge to a first-order critical point. A similar “criticality check” is common in modern TRO-DF solvers,
making the algorithm more numerically efficient, albeit with more complicated trust-region management
and convergence analysis. If the model does not provide a large enough gradient, we update the design set
using the pivoting algorithm mentioned above until the condition is met.

2.4 The Adaptive Sampling Rule

In handling errors derived from the sampling of the response of the simulation model, we apply the adaptive
sampling rule described in Ha et al. (2024), which improves on the adaptive sampling rule introduced in
Shashaani et al. (2016). The rule provides us with an optimal number of replications Ny (x;) to make at a
particular design point x; € R” at iteration k of the solver,

S(xit) _ KA} }

— 11
S (11

where {A;} is a deterministically increasing sequence with a logarithmic growth. The logarithmic growth
allows for the simulation budget to be saved later on in the run of the algorithm. This sequence is used to
determine the minimum sample size at iteration k. Here, 62(xy,¢) denotes the estimated variance from ¢
replications of the model at x; and x > 0 is a constant defined a priori by the user. The adaptive element of
the sampling rule, defined by the inequality within the set construction of (11), ensures that the stochastic
sampling error, defined as the standard error of the estimated response by SAA, is in lock-step with the
first-order optimality gap, defined by the right hand side of the inequality. As the first-order optimality gap
cannot be calculated during the run, a proxy of the true gradient norm is used. Enforcing that the estimation
error is in lock-step with the optimization error allows us to identify a sample size that is neither too small
nor too large, reducing the possibility of oversampling and inefficiently expending the simulation budget.

Ha et al. (2024) improved this rule by reducing the number of times the variance 62(x;,?) needs to be
calculated. The initial sample size for iteration k is set to A;. If A is sufficient to attain an accurate estimate
of the response of the simulation model at x; then there is no need to obtain additional responses from
the simulation model at x;, giving the sample size as Ny (x;) = A. For the case that A; is an insufficient

Ni(xx) = min{t > A

sample size, we can set Ni(x¢) = 462 (X, At) (KAZ‘)_l. This means that Ny (x;) will always satisfy (11)
under an arbitrary choice of k and x;. The resulting two-stage adaptive sampling rule is formalized as

(AFZ(X](,A,]()
Nk(xk):lkmax{l,KAz}. (12)

This sampling process is a heuristic of the sampling process presented in (11) that reduces the number
of times 62(xy,Ax) needs to be evaluated. Note that if A; is mis-specified, and set to be too small then
62 (xx, Ax) may be a poor estimator of the variance. The method can also fail if 62(xy,Ay) is very large,
leading to a potentially large Ny (x).

The implementation of adaptive sampling in ASTROMOoREF has two main benefits. First, the responses
of the simulation model at each design point during model construction have a lower variance, allowing for
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more accurate surrogate models to be constructed. This results in candidate solutions being found during
the subproblem that are more likely to be accepted. Second, we can obtain more accurate responses of the
candidate solution, improving the chance of the candidate step being accepted as the new solution. These
benefits are evident when comparing ASTROMOoRF with deterministic TRO-DF algorithms that use active
subspaces. For example, the finite-time performances of OMoRF and RITR are heavily affected by the
stochastic noise in SO problems.

2.5 Effect of the Active Subspace Matrix

We conclude with a brief discussion on the effect the active subspace matrix has on the performance of
ASTROMORE. Unless the objective function is an exact ridge function, the projected points in the active
subspace y = U” x will exhibit additional noise when replicating the model at y. This is because the mapping
y — X is not unique, due to a non-unique choice of basis matrix. The projection error can be treated as
additive noise on the evaluations of the surrogate model and is dependent on the active subspace and x. It
can be interpreted as the information loss from mapping into the active subspace and then back into the
original subspace. This projection error can be mitigated by an adaptive sampling rule. By considering the
projection error as a form of model bias, an adaptive sampling rule can be developed that will keep the
model bias bounded by controlling the stochastic sampling error as well as the projection error through
SAA. The adaptive sampling rule presented above (11) can be extended to keep this model error in lock-step
with the optimization error.

RITR actively handles this projection noise differently, by checking algorithmic progress and detecting
if progress is halted under the same conditions as BOBYQA (Cartis and Roberts 2019). However, this
method may not be beneficial to the performance of the solver under a fixed simulation budget, due to
multiple warm restarts of the algorithm.

3 NUMERICAL RESULTS

In this section, we report on ASTROMOoRF’s overall finite-time performance against state-of-the-art SO
solvers included in the SimOpt library (Eckman et al. 2023). We test primarily against ASTRO-DF
as a benchmark due to ASTROMOoRF being an extension of ASTRO-DF and because of ASTRO-DF’s
superiority against other SO solvers seen in Ha and Shashaani (2024).

We consider three problems in our analysis. ‘DYNAMNEWS-1’ is provided by the SimOpt library and
consists of selecting an initial inventory level for a one-period inventory model that is modeled after a
newsvendor problem with dynamic consumer substitution (Mahajan and Van Ryzin 2001). This problem
has a dimension of 10 and contains a single source of randomness, in the form of a multinomial logit
model, that assigns a utility value for each customer-product pairing in the model. The other two problems
presented are minimization problems of the Rosenbrock function (De Jong 1975) and the Zakharov function
(Surjanovic and Bingham 2013), each of dimension 15. Both of these functions have feasible regions defined
as the hypercube in R'>, [—5,10]'>. The source of randomness comes from normally-distributed additive
noise on f, Fi(x) = f(x) + &, where & ~ N(0,62); and in our experiments o = 0.1. We present the
Rosenbrock and Zakharov functions in their deterministic form in (13) and (14) respectively,

n—1

fx) =Y (100(xis1 —x7)* + (i — 1)%), (13)
i=1

n d 1 2 d 1 4
= Fot (£ 3i) +(£300) a4
i=1 1

i= i=1

Before running our experiments, we run an initial test for each solver that applies dimensionality-reduction
techniques on each problem. We run each problem-solver pair at each possible subspace dimension for their
respective problems. We then identify the subspaces that perform the best after 10 macroreplications and 100
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postreplications on the SimOpt library for each problem-solver, selecting these optimal subspace dimensions
in our comparison of the finite-time performance against other SO solvers on the same problem suite. This
preliminary investigation into the optimal subspace for OMoRF and ASTROMOoREF, helps to understand
the underlying structure of each problem. In practice, it is useful for an experimenter to understand the
structure of the simulation model and its source of randomness. Heuristically, choosing a smaller subspace
dimension without this preliminary investigation will achieve comparable results; however these results
may be present with more variability between macroreplications due to poor handling of projection error.

Each problem-solver pair is executed until a specified simulation budget of 10,000 calls to the simulation
is exhausted. We run 20 macroreplications on each problem-solver pair before running 200 postreplications
on each problem-solver pair at the intermediate solutions of each macroreplication to estimate the unbiased
objective function. For each of the experiments, we keep the parameters the same, set to the initial values
in Table 1, which are common within the literature. We set an initial solution for the newsvendor problem
with dynamic substitution to (3,...,3) € R'?. The initial solutions for the Rosenbrock and the Zakharov
functions are both set to (2,...,2) € R,

Table 1: Initial Parameters for Solvers.

Solver | Subspace Dimension m | M2 | n 453 Amin
DYNAMNEWS-1: 1
ASTROMOoRF ROSENBROCK-1: 5 0.1 108 |25|051|5
ZAKHAROV-1: 8

DYNAMNEWS-1: 1
OMOoRF ROSENBROCK-1: 1 0.1 108|25|05|NA
ZAKHAROV-1: 7
ASTRO-DF | NA 0.1 108|25]05]|5

Figure 1 and Table 2 suggest that ASTROMOREF solves the three problems extremely well with rapid
progress towards stationary points of different high-dimensional problems. In fact, within less than 200
replications of the simulation model, ASTROMOoRF has solved almost 85% of the problems within a
0.1-optimality gap. One of the issues highlighted with ASTRO-DF, which is present in Figure 1 is
that, for higher-dimensional problems, there is a transient phase of progress early on as it makes steady
progression towards optimal solutions. With ASTROMOoRF, we have eliminated this transient phase for
high-dimensional problems. As seen in Table 2, ASTRO-DF presents much larger relative optimality gaps
with fewer iterations in comparison to ASTROMOoREF. This contributes to much larger average decreases in
the objective function value on successful iterations. When comparing ASTRO-DF and ASTROMOoRF on
DYNAMNEWS-1, where both solvers undergo a similar number of iterations, we see that ASTROMoRF
has a larger average decrease on successful iterations. This implies that while both algorithms display
steady trajectories ASTROMORF seemingly exploits the geometry of the space and makes a consistent
and substantial jump to a neighborhood of the optimal solution early on, before engaging in a very stable
exploitation phase of converging around the optimal solution. It can be seen in Figure 1 that OMoRF has
not performed well, which we assume is because of the stochastic noise present in the problems. OMoRF
is not designed to handle stochastic sampling error and the poor performance of OMoREF justifies our use
of adaptive sampling on the replications of the model to improve the performance in a stochastic setting.

4 CONCLUSION

Within the past few years, we have seen a rise in simulation problems with decision spaces that have become
increasingly higher dimensional. We have shown that applying a popular variational dimensionality-reduction
method of active subspaces is a viable method for handling these high-dimensional SO problems. In this
paper, we have described a novel solver, ASTROMOoREF, that combines the active subspace dimensionality-
reduction seen in deterministic-solvers like OMoRF, with the adaptive sampling rule of algorithms like
ASTRO-DF. We have discussed implementation aspects of ASTROMOoREF that allow the algorithm to
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CDF-Solvability Profile for SOLVER_SET
Profile of CDFs of 0.1-Solve Times
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Figure 1: Fraction of problems solved within the SimOpt library solved to a 0.1-optimality with 95%
confidence intervals from 20 runs of each algorithm.

Table 2: Computational times and performance benchmarks of each Problem-Solver pair.

Solver Computational Times (s) Iterations Relative Optimality Gap Average Decrease on Success-
ful Iterations
DYNAMNEWS-1: 1.706 DYNAMNEWS-1: 9.2 DYNAMNEWS-1: 9.80 DYNAMNEWS-1: 18.41
ASTROMoRF | ROSENBROCK-1: 0.2305| ROSENBROCK-1: 64.95 ROSENBROCK-1: 5.93 ROSENBROCK-1: 352.56
ZAKHAROV-1: 0.3545 ZAKHAROV-1: 96.25 ZAKHAROV-1: 0.40 ZAKHAROV-1: 7.05 x 10°
DYNAMNEWS-1: 2.06 DYNAMNEWS-1: 11.8 DYNAMNEWS-1: 26.28 DYNAMNEWS-1: 29.26
OMOoRF ROSENBROCK-1: 0.068 ROSENBROCK-1: 17.25 ROSENBROCK-1: 3049.69 ROSENBROCK-1: 1.13 x 108
ZAKHAROV-1: 2.138 ZAKHAROV-1: 632.3 ZAKHAROV-1: 8.26 x 107 ZAKHAROV-1: 3291.10
DYNAMNEWS-1: 1.834 DYNAMNEWS-1: 9.15 DYNAMNEWS-1: 4.35 DYNAMNEWS-1: 10.60
ASTRO-DF ROSENBROCK-1: 0.0745 ROSENBROCK-1: 19.95 ROSENBROCK-1: 17.17 ROSENBROCK-1: 441.17
ZAKHAROV-1: 0.082 ZAKHAROV-1: 20.75 ZAKHAROV-1: 5.36 ZAKHAROV-1: 1.66 x 107

be convergent and reduce the number of simulation replications when dealing with high-dimensional
SO problems. The numerical results reported suggest that ASTROMORF is a reasonable framework for
simulation models with high dimensionality and low to high variability.

Ongoing research will focus on an extended analysis of theoretical and practical matters surrounding
ASTROMOREF. These include undergoing more testing on a larger problem suite, including more problems
that are stochastic simulation models instead of deterministic functions with added stochastic noise, to
observe how the solver performs against problems that are less prone to artificial solution-dependent
estimators (Ha and Shashaani 2024). Thought also needs to be given to identifying the optimal subspace
dimension in practice and the penalties associated with mis-identification. Future work will include a more
comprehensive set of convergence results. Currently ASTROMOREF is ensured convergence by the notion
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that the model is ensured to be fully linear using results from Bandeira et al. (2014). An analysis of the
asymptotic convergence rate of ASTROMOoREF, and its comparison to the optimal asymptotic convergence

. 1y . . . . .
rate of gradient-based solvers of O(n™2) is needed, as well as an analysis of the iteration complexity to
reach e-optimality in expectation.
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