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ABSTRACT

The development of object detection models for construction safety is often limited by the availability of
high-quality, annotated datasets. This study explores the use of synthetic images generated by DALL-E 3
to supplement or partially replace real data in training YOLOVS for detecting construction-related objects.
We compare three dataset configurations: real-only, synthetic-only, and a mixed set of real and synthetic
images. Experimental results show that the mixed dataset consistently outperforms the other two across
all evaluation metrics, including precision, recall, IoU, and mAP@0.5. Notably, detection performance for
occluded or ambiguous objects such as safety helmets and vests improves with synthetic data augmentation.
While the synthetic-only model shows reasonable accuracy, domain differences limit its effectiveness when
used alone. These findings suggest that high-quality synthetic data can reduce reliance on real-world data
and enhance model generalization, offering a scalable approach for improving construction site safety
monitoring systems.

1 INTRODUCTION

Recently, many powerful deep learning models in object detection tasks have been proposed (Zou et al.
2023). These models bring growing applications in safety-critical domains such as construction. Automated
construction safety monitoring systems rely on accurate and efficient detection models to identify hazards,
assess personal protective equipment (PPE) compliance, and detect unsafe behaviors (Kanan et al. 2018;
Awolusi et al. 2018). However, the development of such systems is often hindered by the scarcity of
large-scale, high-quality annotated datasets. Challenges such as privacy concerns, site variability, and the
labor-intensive nature of manual labeling make data collection in construction environments particularly
difficult.

To mitigate this limitation, researchers have explored data augmentation techniques to expand training
datasets artificially. While augmentation methods such as flipping, rotation, and color adjustments im-
prove model generalization, they are inherently constrained by the representational scope of the original
dataset (Shorten and Khoshgoftaar 2019). Recent advancements in generative Al, including models like
DALL-E 3 (OpenAl 2021) and Stable Diffusion (Rombach et al. 2022), offer a promising alternative by
generating synthetic images that closely resemble real-world scenarios (Eigenschink et al. 2023). These
synthetic images can supplement existing real datasets or, in some cases, be used to construct standalone
training data.

In this paper, we investigate the impact of synthetic image generation for training object detection
models in the context of construction safety. Specifically, we evaluate the performance of YOLOv8 under
three different fine-tuning configurations: (1) fine-tuning with 3,000 real-world images, (2) finetuning with
3,000 synthetic images generated via DALL-E 3 with 30 carefully designed prompts, and (3) fine-tuning
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with a balanced combination of 1,500 real and 1,500 synthetic images. Through these experiments, we aim
to assess whether synthetic images can replace or supplement real data to improve detection performance.

The results of our experiments demonstrate that synthetic data can effectively enhance the performance
of object detection models when used in combination with real data. The mixed dataset (real + synthetic)
configuration consistently outperformed both the Real-Only and Synthetic-Only setups across all evaluation
metrics, including precision, recall, IoU, mloU, and mAP@0.5. Notably, improvements were observed in
the detection of classes such as safety helmets and safety vests—objects that often appear blurred or occluded
in real-world images—suggesting that synthetic data introduces beneficial variation in appearance, pose, and
environmental context. Although models trained exclusively on synthetic data performed reasonably well,
they exhibited a performance gap likely due to domain discrepancies between synthetic and real images.
These findings suggest that while synthetic data alone may not yet fully substitute for real data, it plays a
critical role in augmenting and diversifying training datasets, thereby improving model generalization and
robustness in complex construction environments.

This paper contributes to the research related to exploring generative Al for data-centric deep learning and
shows practical implications for the development of scalable, cost-effective construction safety monitoring
systems. By demonstrating that high-quality synthetic data can partially replace real data without sacrificing
model performance, this paper supports a promising pathway toward reducing data dependency in safety-
critical applications.

2 RELATED WORK
2.1 Construction Safety and Object Detection

Recent advancements in computer vision, particularly object detection, have significantly contributed to
improving construction site safety. These technologies enable real-time monitoring of dynamic environments,
helping identify potential hazards such as unauthorized personnel, falling objects, or unsafe behaviors.
Deep learning-based object detection models, including YOLO (You Only Look Once) (Redmon et al.
2016; Redmon and Farhadi 2017; Redmon and Farhadi 2018; Bochkovskiy et al. 2020; Jocher 2020;
Li et al. 2022; Wang et al. 2023; Jocher et al. 2023), Faster R-CNN (Ren et al. 2015), and SSD (Liu
et al. 2016), have been widely used in construction sites to detect critical safety elements such as personal
protective equipment (PPE) - helmets, safety vests, and masks - as well as to monitor worker behaviors
indicative of potential hazards, including slipping, fall, tripping risks (Liu et al. 2025; Fang et al. 2018).

For example, Kim et al. (2023) proposed a deep learning-based framework for detecting safety risk
factors using YOLOvS and YOLOVS, demonstrating the system’s potential for improving the work process,
quality control, and progress management in addition to safety management. Similarly, Wang et al. (2021)
and Li et al. (2020) employed deep convolutional neural networks to detect workers’ personal protective
equipment (PPE), ensuring compliance and minimizing risk. Moreover, Jeelani et al. (2021) demonstrated
the use of real-time object tracking to prevent potential equipment—worker collisions on construction
sites. These studies all emphasize the practical applicability of these systems in dynamic construction
environments.

2.2 Data Scarcity and Synthetic Data Generation

Collecting large-scale, annotated datasets from real-world construction sites poses significant challenges.
Factors such as safety concerns, restricted access, variable site conditions, and the presence of heavy
machinery often limit the feasibility of continuous data collection (Xu et al. 2024; Cuypers et al. 2021).
Due to privacy issues and the high cost of manual labeling, obtaining diverse, high-quality annotated
datasets remains a major bottleneck. This scarcity of real data has motivated researchers to explore
alternative approaches, such as synthetic data generation, to supplement training datasets and improve
model performance in construction-specific vision tasks (Neuhausen et al. 2020; Hong et al. 2021;
Barrera-Animas and Davila Delgado 2023).
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Generative models are increasingly popular in computer vision due to their ability to synthesize
high-fidelity and contextually rich images. Two large families of these models—Generative Adversarial
Networks (GANs) (Goodfellow et al. 2014) and diffusion models (Ho et al. 2020)—have demonstrated
strong potential in augmenting datasets, particularly for tasks where real-world data collection is costly or
limited. For example, Kim and Yi (2024) have explored the use of generative models to generate training
image data for deep neural networks (DNNs) to enhance safety monitoring on construction sites. However,
the application of generative models for synthetic data generation remains relatively underexplored and
more experiments are needed to fully understand their potential and limitations on construction safety.

3 YOLOVS

YOLOVS (Jocher et al. 2023), released by Ultralytics in 2023, represents a fundamental redesign of the
YOLO architecture. It introduces several novel components and methodological advancements, particularly
suited for deployment in dynamic and cluttered environments such as construction sites. This section
provides a detailed overview of the YOLOvS8 framework, particularly in the context of its suitability for
construction safety applications.

3.1 Architecture

YOLOVS8 adopts a fully convolutional, anchor-free architecture that departs from traditional anchor-based
approaches employed in earlier versions (e.g., YOLOv3-YOLOVS (Redmon and Farhadi 2018; Bochkovskiy
et al. 2020; Jocher 2020)). Anchor-free detection simplifies the model by removing the need for predefined
anchor box sizes and aspect ratios. Instead, object center points are directly regressed from feature maps,
allowing for improved generalization to variable object scales and shapes. This modification is particularly
advantageous in construction settings, where objects such as helmets, tools, and machinery may exhibit
significant intra-class variability. The overall structure of YOLOVS is shown in Figure 1.

The backbone of YOLOVS is constructed using C2f (Concatenate-to-Fusion) modules, which improve
feature extraction efficiency by enabling feature reuse and enhanced gradient flow. This module is a
modification of the Cross Stage Partial (CSP) structure used in YOLOVS, wherein feature maps are
partitioned, processed separately, and later fused. YOLOV8’s C2f modules introduce additional skip
connections that preserve spatial detail while maintaining low computational overhead.

The neck of YOLOvS8 combines elements from Path Aggregation Networks (PANet) (Liu et al. 2018)
and Feature Pyramid Networks (FPN) (Lin et al. 2017) to enable multi-scale feature fusion. This is
critical for detecting small and large objects in the same scene, which is often required in construction
environments, where object scales can vary dramatically across views.

The detection head in YOLOvS8 employs a decoupled structure that separates classification and bounding
box regression branches. This architectural choice aligns with recent findings in object detection literature,
where decoupling these tasks leads to improved learning dynamics and reduced task interference, ultimately
enhancing both localization accuracy and classification confidence.

3.2 Loss Functions and Optimization

YOLOVS utilizes a composite loss function (1) consisting of three principal components:

e Box regression loss (2, where b is the predicted bounding box and »%' is the ground truth box):
Based on the Complete Intersection over Union (CloU) metric, which integrates overlap area, center
distance, and aspect ratio differences between predicted and ground truth boxes.

» Objectness loss (3, where y € {0,1} indicates object presence and p is the predicted objectness
score): A binary cross-entropy loss applied to the objectness score to determine the presence of an
object within a predicted box.
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Figure 1: The general architecture of YOLOVS.

* Classification loss (4, where C is the number of classes, y. is the ground truth for class ¢, and p,
is the predicted probability for class ¢): A sigmoid-based binary cross-entropy loss allowing for
multi-label classification within a single bounding box.

LYOoLOV8 = Abox * ZCloU + Aobj - Lobj + Acls - Lels )
.,ZﬂCIOU =1- CIOU(b, bgt) (2)
ZLovj = — [ylog(p) + (1 —y)log(1 - p)] 3)
c
ez:ls = - Z LVC log(pc) + (1 _yC) log(l - Pc)] (4)
c=1

This loss formulation allows YOLOVS to handle ambiguous and partially occluded objects—conditions
frequently encountered in construction environments. Furthermore, YOLOvS benefits from modern training
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strategies, including label smoothing, learning rate warm-up, gradient accumulation, and mixed-precision
training via Automatic Mixed Precision (AMP), all of which contribute to faster convergence and improved
generalization.

3.3 Model Scaling and Inference

YOLOVS is released in five scalable model variants: YOLOv8n (nano), YOLOvS8s (small), YOLOv8m
(medium), YOLOvSI (large), and YOLOvS8x (extra-large). These variants differ in the number of parameters,
floating-point operations per second (FLOPs), and backbone depth, thereby providing a flexible trade-off
between computational complexity and detection performance. Table 1 summarizes the key characteristics
of each model. In our experiments, due to limited computational resources, we restrict our fine-tuning to
the available pretrained YOLOvV8s model.

Table 1: Comparison between different sizes of YOLOv8 model.

Model Parameters (M) | FLOPs (B) | COCO mAP@0.5 | Inference Speed (A100)
YOLOvV8n ~3.2M ~8.7 ~37.3% ~2.2 ms/image
YOLOVS8s ~11.2M ~28.6 ~44.9% ~3.0 ms/image
YOLOv8m ~25.9M ~78.9 ~50.2% ~4.6 ms/image
YOLOVSI ~43.TM ~165.2 ~52.9% ~6.2 ms/image
YOLOvV8x ~68.2M ~257.8 ~53.9% ~8.2 ms/image

4 RESEARCH METHODOLOGY - DATA GENERATION
4.1 Ground Dataset

Due to the high cost of collecting data on personal protective equipment on the construction site, we selected
3,500 labeled images from publicly available datasets on Kaggle and Roboflow as our real dataset. The
ground dataset includes 3,000 training images and 500 testing images. Each image contains annotations
for multiple object categories relevant to safety compliance, including Person, Safety Helmet, Safety Vest,
and Safety Cone. We focus on these four object classes due to their direct relevance to construction site
safety monitoring. These classes correspond to primary safety compliance indicators (e.g., PPE adherence
and site demarcation). While other site hazards involve conditions (e.g., exposed wires, open trenches) or
actions (e.g., running, falling), these are more complex to annotate reliably across datasets and may require
video-based behavior recognition. Our scope in this work is to validate object-based compliance indicators,
with future research targeting action- and condition-based hazard detection. The dataset reflects a range
of real-world construction site conditions, with variations in lighting, occlusion, and object scale. All
annotations follow the YOLO format (<class_id>, <x_center>, <y_center>, <width>, <height>), specifying
bounding boxes and class labels. Before training, we also applied standard preprocessing steps, including
image resizing to 640x640 and normalization. We show some examples in Figure 2.

4.2 Data Generation - DALL-E 3

To generate the synthetic dataset to validate if the generative model can help with data limitation issues on
construction safety, we used DALL-E 3 (Betker et al. 2023) to generate 640x640 images focused on the
same four object categories with annotations following the YOLO format for our experiments specifically.

DALL-E 3 is a cutting-edge text-to-image generation model developed by OpenAl. As the third iteration
of the DALL-E series (OpenAl 2021; Ramesh et al. 2021; Ramesh et al. 2022), DALL-E 3 demonstrates
significantly improved semantic understanding and visual fidelity compared to DALL-E 1 and DALL-E
2. It is built upon GPT-4 (Achiam et al. 2023) architecture and is capable of translating complex textual
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Figure 2: Some ground data examples.

descriptions into photorealistic or contextually rich images, making it highly suitable for creating synthetic
datasets for computer vision applications such as object detection and PPE compliance monitoring.

Since DALL-E 3 cannot directly output annotations in YOLO format, we designed some structured and
consistent prompts, then used the automatic Roboflow annotation tool to label the generated images and
save them in YOLO format. We designed 30 distinct prompts, each used to generate 100 images, resulting
in a total of 3,000 images that comprise our synthetic dataset. All the prompts used are listed in appx A.
We also show three synthetic generated data samples in Figure 3.
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(a) Synthetic data sample 1 (b) Synthetic data sample 2 (c) Synthetic data sample 3

Figure 3: Some synthetic data examples.

A known limitation of using DALL-E 3 for synthetic image generation is the tendency to generate
subject-centric images with shallow depth and minimal background clutter. This diverges from the far-field
characteristics of real construction surveillance footage. However, we deliberately structured our prompts
(see appx A) to include environmental context (e.g., cranes, equipment, distant workers) and diverse viewing
angles (e.g., aerial, wide-angle). Despite these efforts, current generative models often struggle to fully
emulate complex far-field scenes. We acknowledge this limitation and plan to incorporate far-field domain
adaptation techniques or 3D simulation-based rendering (e.g., BlenderProc (Denninger et al. 2023) or
UnrealCV (Qiu et al. 2017)) in future work.

5 EXPERIMENT
5.1 Experiment Settings

We conducted three fine-tuning experiments on the pretrained models using 3,000 ground images, 1,500
ground images and 1,500 synthetic images, 3,000 synthetic images, respectively. For all experiments,
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the fine-tuned model was evaluated on the same test set of 500 real construction site images to maintain
consistency. Evaluation metrics included Precision, Recall, Intersection over Union (IoU), mean IoU
(mloU), mean Average Precision at [oU=0.5 (mAP@0.5).

All fine-tuning experiments were conducted using the Ultralytics YOLOv8 framework, implemented in
Python 3.10 and PyTorch 2.1. We utilized the YOLOv8s model as a balance between detection performance
and computational efficiency. Although YOLOvVI11 has recently been released, YOLOvVS was selected for
our study due to its demonstrated stability, comprehensive documentation, and validated performance
across a wide range of real-world object detection tasks. Currently, YOLOvI11 lacks publicly available
pretrained weights and has not yet been used in many evaluations in the context of construction safety
monitoring. Future work may include a comparative analysis incorporating YOLOv11 once its performance
and compatibility with construction-specific datasets are more thoroughly established. To fine-tune the
pretrained YOLOvV8s model for our experiments, we used the official training configuration provided by
Ultralytics, with data augmentation explicitly disabled to maintain consistency and control over input data
variability. The fine-tuning process was performed on a high-performance computing setup equipped with
two 32 GB NVIDIA V100 GPUs and running Rocky Linux 8. The fine-tuning was conducted using a batch
size of 16, an image resolution of 640x640 pixels, and a total of 100 epochs. Automatic Mixed Precision
(AMP) was enabled to optimize GPU memory usage and training speed. The model was initialized with
pretrained weights. An initial learning rate of 0.01 with cosine learning rate scheduling was used, alongside
a weight decay of 0.0005 and momentum of 0.937 to enhance optimization stability. We also adopted early
stopping with a patience of 100 epochs to stabilize model performance.

To decrease the effect of the randomness in training, each experimental condition was run independently
five times using different random seeds. The final reported performance metrics—Precision, Recall, IoU,
mloU and mAP@(.5—represent the mean values across these five runs. The evaluation metrics are
introduced in detail in appx B

6 RESULTS & DISCUSSION

Our experimental results are summarized in Table 2 and 3. The results highlight the benefits of using
synthetic data to replace part of the real images in the training dataset for object detection tasks in construction
environments. Among the three experiment settings, the model trained with a mixed dataset of real and
synthetic images consistently outperformed the Real-Only and Synthetic-Only configurations across all
evaluation metrics. This performance suggests that synthetic images, when generated with sufficient visual
realism and contextual diversity, serve as effective data augmentation tools. They help reduce overfitting
and introduce variation in object appearances, poses, and lighting conditions that may not be fully captured
in limited real-world datasets. The Safety Helmet and Safety Vest objects, which are often blurred or
partially occluded in real images, benefited most from synthetic augmentation.

Table 2: The general performance of each fine-tuned model.

Precision | Recall | IoU | mloU | mAP@0.5
Real-Only 0.84 0.78 | 0.66 | 0.61 0.81
Real + Synthetic 0.85 0.81 | 0.66 | 0.62 0.85
Synthetic-Only 0.75 0.70 | 0.59 | 0.54 0.76

The Synthetic-Only model, while demonstrating reasonable performance, lagged behind the models
fine-tuned by the real images, likely due to domain gaps between synthetic and real images’ distributions.
Although DALL-E-3 produced highly detailed and contextually rich scenes, subtle discrepancies in texture,
background clutter, and object realism can lead to reduced generalizability when evaluated on real-world
images. This observation is consistent with prior findings in domain adaptation and synthetic-to-real transfer
learning research.
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Table 3: Per-Class mAP@0.5 of each fine-tuned model.

Class Real-Only | Real + Synthetic | Synthetic-Only
Person 0.88 0.91 0.79
Safety Helmet 0.76 0.82 0.71
Safety Vest 0.79 0.85 0.70
Safety Cone 0.81 0.84 0.74

Furthermore, the per-class performance also proves the idea that synthetic data is most valuable when it
augments real data rather than replaces it. The superior performance of the mixed training method supports
that strategically balancing real and synthetic data can yield robust models with enhanced generalization
across diverse object types and scenes.

7 CONLCUSION

This study demonstrates the potential of using high-quality synthetic images generated by DALL-E 3 to
improve object detection models for construction safety monitoring. Among the three fine-tuning config-
urations tested, the mixed dataset—combining real and synthetic images—achieved the best performance
across all evaluation metrics, particularly improving detection of occluded or ambiguous objects like safety
helmets and vests. While synthetic-only training showed reasonable results, domain discrepancies limited
its effectiveness when used in isolation. Additionally, manually designed prompts may not capture the full
range of real-world variability. These limitations suggest that synthetic data is best used to supplement—not
fully replace—real images. Future work will focus on improving the diversity and realism of synthetic
images through automated prompt generation and domain adaptation, as well as scaling evaluations across
more object classes and deployment scenarios. Overall, this approach offers a promising, cost-efficient
path toward building more robust and generalizable safety monitoring systems in construction and other
high-risk environments.
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A DESIGNED PROMPTS

The designed prompts for generating synthetic images are shown in table 4.

B EVALUATION METRICS
B.1 Precision

Precision evaluates the accuracy of positive predictions made by the object detection model. It is defined
as the ratio of correctly predicted positive samples (true positives, TP) to all samples predicted as positive,
including both true positives and false positives (FP). A higher precision indicates fewer false positives.

.. TP
Precision = ——— ©)
TP+ FP
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Table 4: Different prompts used for generating synthetic images.

1 "An outdoor construction site on a sunny day, with workers wearing and not wearing safety helmets and vests, safety cones
along the path, realistic lighting and tools in the background, 640x640."

2 "Construction zone at night with artificial lighting, workers partially compliant with PPE, safety cones reflecting light, realistic
textures, 640x640."

3 "Indoor construction area in a warehouse, 2-3 people working, some missing safety gear, cones near structural materials,
640x640."

4 "Roadwork construction site under cloudy weather, workers standing near safety cones, wearing mixed PPE, photorealistic
setting, 640x640."

5 "Construction workers in a high-rise building site during sunset, some wearing safety helmets and vests, others not, safety cones
marking areas, wide-angle view, 640x640."

6 "One construction worker close-up wearing a vest but no helmet, with safety cone nearby, blurred background, 640x640."

7 "Three workers collaborating at a construction zone, one not wearing a helmet, cones marking boundaries, daylight environment,
640x640."

8 "Group of 5 workers actively working, some fully geared, some non-compliant, safety cones and construction tools visible,
realistic textures, 640x640."

9 "Two people walking on a construction site, wearing safety vests, one missing helmet, cones near sidewalk, industrial background,
640x640."

10 | "Ten workers scattered across a construction area, various PPE conditions, cranes in the background, multiple cones on the
ground, 640x640."

11 | "Aerial view of a construction site with workers wearing different combinations of PPE, safety cones placed in zones, natural
lighting, 640x640."

12 | "Side-view of a construction worker placing a cone, wearing vest but no helmet, industrial background with equipment, 640x640."

13 | "Front view of two construction workers talking, one without safety vest, cones behind them, clear site layout, 640x640."

14 | "Wide-angle shot of an active construction site, multiple workers, mixed PPE use, cones forming a path, 640x640."

15 | "Close-up photo of a safety helmet and vest placed on the ground, a worker standing nearby without PPE, cone in distance,
640x640."

16 | "Street construction zone with heavy traffic nearby, workers in high-visibility vests, some missing helmets, cones separating
lanes, 640x640."

17 | "Construction site inside a tunnel, low lighting, workers wearing vests, some with no helmets, cones placed for safety, 640x640."
18 | "High-rise scaffolding with one worker visible, wearing vest but no helmet, safety cone placed at entry, cloudy sky background,
640x640."

19 | "Suburban road under maintenance, two workers near cones, only one wearing proper PPE, small construction machinery in
background, 640x640."

20 | "Bridge construction site with several workers, partial PPE usage, orange safety cones, water in background, 640x640."

21 "Construction workers handling a jackhammer, one wearing helmet and vest, the other not, cones around the tool area, 640x640."

22 | "Worker operating a small bulldozer near cones, not wearing a helmet, another person standing nearby with PPE, open space,
640x640."

23 | "Workers lifting pipes in a trench, with cones marking the danger zone, one missing a vest, realistic shadow and lighting,
640x640."

24 | "Two workers painting lane lines, cones spread out, both wearing vests but only one has a helmet, road construction environment,
640x640."

25 | "Scaffolding construction with worker climbing, wearing vest and helmet, another below missing helmet, cones below the

structure, 640x640."

26 | "Diverse group of male and female construction workers, mixed PPE compliance, safety cones in foreground, multicultural
team, 640x640."

27 "Female construction worker in vest and helmet, standing next to another worker without PPE, cones on the ground, modern
construction site, 640x640."

28 | "Construction workers of different ethnic backgrounds, in different PPE combinations, safety cones organized around them,
inclusive team, 640x640."

29 | "A worker walking past a safety cone without any PPE, others in background fully geared, construction hazard zone, 640x640."
30 | "Worker climbing on unsafe structure with no helmet, safety cone nearby, others wearing proper PPE observing, realism
emphasized, 640x640."

B.2 Recall

Recall measures the ability of the model to identify all relevant objects in the dataset. It is calculated as the
ratio of correctly predicted positive samples (TP) to the total number of actual positive samples, including
both true positives and false negatives (FN). A higher recall indicates fewer missed detections.
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TP
Recall = ——
eca TP+FN (6)

B.3 Intersection over Union (IoU & mloU)

IoU quantifies the overlap between the predicted bounding box and the ground-truth bounding box. It is
defined as the area of intersection divided by the area of union between the two boxes. For a dataset with
multiple detection instances, mean IoU (mloU) is used to report the average IoU across all predictions.

ToU — Areaof 0veiflap )
Area of Union
1 N
mloU = =Y IoU; ®)
N=

B.4 mean Average Precision (mAP)

mAP is one of the most commonly used evaluation metrics for object detection. It summarizes the precision-
recall curve by calculating the area under the curve for each class and then taking the mean across all
classes. In this study, we report mAP at a fixed IoU threshold of 0.5, meaning that a prediction is considered
correct if its IoU with the ground truth is at least 0.5.

1 C
mAP@0.5 = = ) AP 9)
c=1
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