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ABSTRACT

Extracting Agent-Based Models (ABMs) from data, also known as Data-Driven Agent-Based Modeling
(DDABM), requires a clear understanding of data requirements and their mappings to the corresponding
ABM components. DDABM is a relatively new and emerging topic, and as such, there are only highly
customized and problem-specific solutions and approaches. In our previous work, we presented a
framework for DDABM, identifying the different components of ABMs that can be extracted from data.
Building on this, the present study provides a comprehensive analysis of existing DDABM approaches,
examining prevailing trends and methodologies, focusing on the mappings between data and ABM
components. By synthesizing and comparing different DDABM approaches, we establish explicit mappings
that clarify data requirements and their role in enabling DDABM. Our findings enhance the understanding
of DDABM and highlight the role of data in automating model extraction, highlighting its potential for
advancing data-driven agent-based simulations.

1 INTRODUCTION

Agent-Based Modeling and Simulation (ABMS) has emerged as one of the most effective modeling
approaches for simulating Multi-Agent Systems (MASs), which are systems composed of multiple
autonomous agents that interact with one another and their environment (Macal and North 2014). Examples
of MASs include supply chains (Chaib-draa and Miiller 2006), where agents represent suppliers and
consumers that make autonomous decisions to optimize logistics; and transportation management systems
(Aloui et al. 2024), where agents represent vehicles, infrastructure and traffic management system, each
making decisions that collectively influence system-wide behavior. More broadly, MASs are found across
multiple domains in real life (Lii et al. 2011).

One approach to building simulation models of MASs is through Data-Driven Agent-Based Modeling
(DDABM), which implies deriving agent-based models from real-world data, enabling more informed and
realistic simulations (Lee et al. 2025). One of the important applications of data-driven ABMs could be in
Digital Twins (DTs), which are virtual representations of physical systems that enable real-time simulation,
optimization, and monitoring (Mariani et al. 2022). DTs typically rely on simulation models to replicate
behaviors of real-world systems. Compared to traditional Discrete-Event Simulation (DES), ABMS can be
amore suitable modeling and simulation approach for developing underlying core models of DTs for certain
types of systems, e.g., production systems (Moyaux et al. 2023). This is because ABMs allow for
autonomous decision-making by agents, enabling simulations that can capture micro-level behaviors and
provide various levels of system abstraction. In contrast, DES relies on predefined events to drive the
simulation, limiting its ability to model complex, agent-driven behaviors (Moyaux et al. 2023).

Despite the research by dos Santos et al. (2022) showing that in the past DTs relied more on models
built using DES, there has been a growing trend in recent years towards using ABMs as core models of DT
simulations (Marah and Challenger 2024; Ambra and Macharis 2020; He and Shen 2025; Stary 2021). This
shift is driven by the recent advancements of ABMS tools, increased data availability, and improved
computational capabilities that have expanded ABMs’ applications across various domains and disciplines
(Macal and North 2014; Jamali and Lazarova-Molnar 2024).
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Consequently, DDABM has emerged as a promising methodology for improving modeling and
simulation accuracy, especially for complex systems and social phenomena, by utilizing real data (Sajjad
et al. 2016; Monti et al. 2023). Data-driven approaches enable the extraction of ABMs directly from data
by identifying ABMs’ components (agents, environment, interaction rules), rather than relying solely on
modelers’ judgement. DDABM has been applied across various disciplines (Lounis and Bagal 2020;
Venkatramanan et al. 2018; Yang and van Dam 2022; Lee et al. 2021; Bae et al. 2024). The growing
adoption of DDABM highlights its potential beyond general simulation, especially for DTs requiring
dynamic updates (Niloofar et al. 2023).

One of the key factors to consider when developing a DT is ensuring it facilitates the automatic
generation of simulation models through continuous data collection (Lazarova-Molnar 2024). In our earlier
work (Jamali and Lazarova-Molnar 2024), we developed a DDABM framework, where we identified the
key components of ABMs that can be extracted from data. However, as demonstrated across different fields
and studies, existing approaches in DDABM appear to be problem-specific, lacking a more generalized
approach for extracting ABMs from data.

Building on this, our previous study introduced the Multi-Agent Systems’ Digital Twins (MASDT)
conceptual framework (Lee et al. 2025) for constructing DTs for MASs. In this framework, data-driven
ABMs serve as core simulation models of DTs. MASDT conceptualized the dynamic extraction and
continuous updating of the ABM-based DT models using real-world data. The framework also establishes
a bidirectional feedback loop between the digital and physical systems: data from the real world informs
the ABM-based DT, while insights and decisions generated by the DT are fed back into the physical system.
This feedback loop supports adaptive and data-informed decision-making.

To enable effective data-driven ABMs, it is essential to have a clear understanding of data requirements
and their mapping to the corresponding components in ABMs. This understanding supports the overarching
goal of advancing DDABM (Jamali and Lazarova-Molnar 2024) and MASDT (Lee et al. 2025)
frameworks, and is essential for operationalizing them in real-world applications. In this study, we conduct
a comprehensive review of existing DDABM approaches, systematically identifying their data
requirements and mapping them to the corresponding ABM components, including agents, states/attributes,
interactions, environment, and decision-making rules. Our goal is to identify prevailing trends and
approaches in DDABM, with a particular focus on clarifying how and which data are mapped to the
different ABM components. Based on this analysis, we provide recommendations for enhancing DDABM
practices of extracting ABMs from data, thereby enabling the development of more accurate ABMs.

The main contribution of this paper is a structured analysis of existing DDABM works, synthesizing
data requirements based on ABMs’ components, and offering practical guidelines for implementing
DDABMs. By analyzing what types of data can be used for which ABM components, our study provides a
useful reference for researchers and modelers to integrate data effectively when designing DDABMs.

Our paper is structured as follows: Section 2 provides the background and state-of-the-art developments
in DDABM, along with the foundational requirements for ABMs extraction. Section 3 presents the results
from our literature review on the data requirements for existing DDABM approaches, summarizing key
insights. Section 4 offers our analysis, insights and findings. Lastly, Section 5 concludes the paper and
provides recommendations for future research and practice.

2 BACKGROUND & RELATED WORK

2.1 Data-driven Agent-based Modeling

Data-driven simulation is a modeling paradigm that integrates empirical data into simulations to improve
model accuracy, relevance, and adaptability. Understanding this broader paradigm is important as DDABM
is a specific instance of it, combining data-driven approaches and ABMs. A useful distinction within this
paradigm is between Static Data-Driven Simulation (SDDS) and Dynamic Data-Driven Simulation
(DDDS) (Niloofar et al. 2023) that helps position current DDABM practices and highlights their limitations.
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SDDS typically relies on classical statistical models and utilizes static datasets as input. In contrast,
DDDS employs automated systems that continuously update simulation models using real-time data,
making it suitable for building DT models. DDABM, as an emerging approach, extends beyond the direct
utilization of static datasets to run simulations. It aims to extract key ABM components from data, and
ideally, facilitate continuous model updates to reflect real-world dynamics (Jamali and Lazarova-Molnar
2024), which aligns with DDDS paradigm.

However, most existing DDABM approaches rely on static data, aligning more closely with the SDDS
paradigm rather than DDDS. For example, most studies in the field of DDABM (Zhang and Tan 2024; Lee
et al. 2021; Ravaioli et al. 2023; Sajjad et al. 2016; Bae et al. 2024) are using pre-collected datasets instead
of real-time data streams. As a result, these models can only run simulations with the data already available
and cannot adapt dynamically to new information.

Additionally, the current landscape of DDABM is characterized by solutions and approaches that are
often highly customized and problem specific. For example, the DDABM proposed by Bae et al. (2024) is
tailored specifically for simulating the public bicycle-sharing system in Sejong city. Thus, the general
DDABM literature remains limited, with no existing studies systematically addressing the data
requirements for extracting ABMs from real-world data. Given these limitations, it is essential to examine
what types of data are necessary to extract accurate ABMs from real-world datasets. Section 2.2 describes
the common data types and practices used in the development of data-driven ABMs.

2.2 Common Data Types and Practices for Data-driven ABMs Development

Different types of data serve different roles in ABM extraction and development, influencing how agents
are characterized, environments are represented, and interaction rules are derived. These data types can be
categorized based on their properties (qualitative vs. quantitative), level (micro vs. macro), and
spatiotemporal dimension (capturing the complexity of location and time). Understanding these differences
is key to selecting the appropriate data to extract ABMs’ components.

In general, all data can be categorized as either empirical qualitative or empirical quantitative, based
on how it is measured and represented. These data types are common in many studies (Ghorbani et al. 2015;
Lu Yang and Gilbert 2008; Paudel and Ligmann-Zielinska 2023) that develop data-driven ABMs.
Empirical quantitative data are measurable and enable capturing of trends through data; while empirical
qualitative data are not directly measurable, and they provide valuable insights into behaviors and decision
making (Ghorbani et al. 2015). Qualitative data are typically collected through surveys, interviews,
observation and experiments (Ghorbani et al. 2015), particularly common in studies of social and behavioral
science (Squazzoni and Boero 2005).

Beyond this broad classification, data can also be distinguished by their scales of analysis, particularly
in ABMs. Data can be categorized into micro-level and macro-level based on their scale and granularity,
which refers to the level of detail at which data are collected, analyzed, and applied within a model. These
two types of data complement each other by providing insights into both detailed individual behavior and
aggregated system-wide patterns, making their distinction vital for understanding complex systems.

Micro-level data focuses on individual agent level, such as demographic attributes (age, gender, etc.),
behavioral patterns, and decision-making processes. This type of data is essential for simulating individual
agents and understanding how their behaviors or decisions contribute to system-wide phenomena (Bruch
and Atwell 2015). For example, Walsh et al. (2013) demonstrate the integration of household-level data
into ABMs to model land use changes effectively. Micro-level data can be sourced from various sources,
including government census data and user databases.

Macro-level data, on the other hand, represents aggregate information at a larger scale, such as system-
wide phenomena or emergent patterns resulting from the collective behavior of agents. Examples include
national census or population statistic typically obtained from government reports and databases. Often,
macro-level data can be derived from the same source as micro-level data by aggregating the individual
records. For instance, individual income data (micro) can be aggregated into the average income of a
population in a town (macro). The same variable, such as income data, can therefore be used at both levels,
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depending on the goal of the simulation. The interplay between these two levels of data is fundamental to
ABMs, as it allows researchers to explore how individual behaviors contribute to higher-level outcomes
while examining how system-wide patterns influence individual actions (Monti et al. 2023).

Temporal data captures time-dependent information, typically including timestamps to indicate when
events occur. It is often represented as time-series data, which is essential for capturing the dynamic nature
of the system being modeled, as it reflects changes over time (Monti et al. 2023). In DDABM, temporal
data enables accurate tracking of trends and patterns in agent behaviors and system states, providing insight
into system dynamics. This data type can be obtained from various sources, such as sensors, system logs,
transaction records, and other time-stamped datasets. For instance, log data is a common source of temporal
data, it records system events with precise timestamps, allowing for tracking changes and behavior over
time (Rahman 2014). Temporal data has been effectively utilized in ABM to simulate dynamic human
behavior and enhance predictive accuracy, as demonstrated by Flamino et al. (2019).

Spatial data is critical for ABMs that rely on location data or geographical information. This data type
is typically represented and stored using Geographic Information Systems (GIS) (Brown et al. 2005).
Spatial data can be obtained through various methods, including GPS, satellites, and other technologies.
This data type is essential for ABMs that require location as agents’ parameter as relevant for the goals of
a given simulation study. This can be exemplified by the use of ABMS in epidemiology (Hunter et al.
2018), where human agents’ locations influence the spread of disease.

Furthermore, spatial data is often associated with and used together with temporal data, as space and
time can be relative (Brown et al. 2005). For instance, a study of urban planning by Tian and Qiao (2014)
utilize spatiotemporal data to simulate urban expansion of Guangzhou city over time.

Data preparation is an essential initial step in ABM extraction (Kavak et al. 2018) to ensure the accuracy
and reliability of the extracted model. It involves several key processes, including data cleaning, data
integration, data transformation, data reduction, and data discretization (Bell and Mgbemena 2018). In our
previous study, we proposed a component called the “Data Pipeline” within our DDABM framework to
collect, validate, preprocess, and analyze data before it is used for model extraction (Jamali and Lazarova-
Molnar 2024). By performing steps such as handling missing values, removing duplicates, and validating
the collected data during preprocessing, the robustness and validity of the extracted ABMs can be enhanced.

2.3  Extractable Agent-Based Models Components from Data

ABMSs have three primary components extractable in a data-driven manner: agents, environment, and
interaction rules, as identified in our previous work (Jamali and Lazarova-Molnar 2024). Each component
can be further broken down into sub-components that can be also derived using data-driven approaches.
Table 1 summarizes these components and their sub-components, along with brief explanations.

Table 1: Components and sub-components of ABMs.

Component | Sub-Component Explanation
Agents Type/Group Categories or classifications of agents based on their characteristics in the model
Characteristics Static (e.g., age, gender) and dynamic (e.g., income, health status) attributes of agents
Behaviors Actions, decision-making processes, and goals of agents within the model
Environment | Components Physical and non-physical elements that make up the model's setting
Characteristics Properties of the environment that can influence agent behavior
Structure Spatial and temporal organization of the environment
Interaction Agent-Agent Rules governing how agents interact with each other
Rules Agent-Environment | Rules defining how agents interact with their environment
Topology Structure of connections or networks among agents and environmental elements
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In most existing studies, only some ABM components are extracted in a data-driven manner, while
others are predefined or manually specified. Rather than deriving the entire model from data, researchers
typically focus on extracting specific components. For instance, in a crime pattern simulation, Rosés et al.
(2021) used machine learning (decision trees) to derive agent-environment interaction rules from spatial
and temporal data. Their model incorporated diverse data sources, including location-based social networks,
taxi trip data, weather conditions, land use information, population density, and points of interest, to define
the environment’s spatial layer. This illustrates how real-world data can inform key ABM components.

Building on the background in Section 2, which covers common data types in DDABM and extractable
ABM components, Section 3 offers a detailed analysis of the data requirements and their mapping to various
components of ABMs.

3 DATA REQUIREMENTS FOR AGENT-BASED MODEL EXTRACTION

Understanding the data requirements for ABM extraction is essential for enabling and advancing data-
driven ABMs as underlying models of DTs. To this end, we conducted a comprehensive literature review
to compare and analyze various approaches for extracting different ABM components from data. Our study
focused on several key properties: application domain, extracted ABM components, extraction approaches,
data sources, data types, data collection infrastructure and simulation goal. We also indicated the simulation
approach — static (SDDS) or dynamic (DDDS), in the same column as the simulation goal.

We followed a systematic three-step search strategy to identify studies on DDABM. First, we conducted
a keyword search on Google Scholar using terms such as “data-driven agent-based model, “agent-based
model extraction”, and “data-requirement of agent-based model” to identify relevant studies published in
the past ten years. Second, we screened titles, keywords, abstracts and conclusions to select relevant studies.
Third, the selected papers were analyzed and categorized based on predefined properties.

By analyzing these properties across multiple studies in different application domains, we aim to
provide a comprehensive overview of the current state of data-driven ABM extraction. This analysis helps
us better understand how different types of data are used to inform the development of ABMs and identify
potential areas of improvements in DDABM approaches. We summarized the results of our study in the
Table 2 to provide an overview of our findings.

Table 2: Comparative summary of empirical studies using data-driven agent-based model extraction.

Study Application Extracted ABM | Approach of Data Source Data Type/ Simulation
Domain Components Extraction Collection Goal /
Method Approach
Hunter et | Epidemiology | Agents Not explicitly Census data; Quantitative; Reducing
al. (2018) (Characteristics, | stated GIS data; Spatial; outbreak
Behavior) School and impact
workplace locations; | Data Collection -
Vaccination data method: Simulating the
Environment GIS analysis GIS data Databases spread of
(Components, (Central airborne
Properties) Statistics infectious
Interaction Rules | Inferred as School and Office (CSO) | diseases in
(Agent-Env, Probabilistic workplace locations | of Ireland) Irish towns
Agent-Agent) Inference (SDDS)
Bell and Business Agents Decision Tree Dataset provided by | Quantitative; Retain
Mgbemena (Type, (CART) a mobile network customers
(2018) Characteristic, operator Data Collection -
Behavior) method: Simulating
Interactions Social Network Not explicitly | customer
(Agent-Agent) Analysis stated, likely behavior to
from databases | stay or churn
with Telco
(SDDS)
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Table 2 (Continued)

Study Application Extracted ABM | Approach of Data Source Data Type/ Simulation
Area Components Extraction Collection Goal/
Method Approach
Bae et al. Transportation | Agents Not explicitly Interview Data; Qualitative; Improve user
(2024) (Characteristics, | stated, likely Rental-return Quantitative; | convenience
Behavior) Probabilistic Information; Temporal; and system
Inference; Spatial | Member information; Spatial; utilization
and Temporal Station Information; -
Analysis; Station monitoring Data Simulating
Agent Behavior | History; Collection user
Learning from Population Information; | method: behavior in a
Data Road network Interview, and | public
Information others are Not | bicycle
Environment Not explicitly GIS data; explicitly sharing
(Components, stated, likely Station locations; stated. For system
Properties, Spatial and Road network data demographic/ (SDDS)
Structure) Temporal operational
Analysis data, it is likely
Interaction Rules | Not explicitly Rental-return data; from System
(Agent-Env, stated Station monitoring logs/ Databases
Agent-Agent) history; Traffic data
Zhang and | Transportation | Agents Not explicitly GPS trajectory data of | Spatial; Enhance
Tan (2024) (Characteristics, | stated, likely ETs; Temporal; charging
Behavior) Probabilistic Charging event logs Quantitative; station
Inference, Spatial layout
and Temporal Data -
Analysis, and Collection Simulating
Agent Behavior method: traveling and
Learning from Not explicitly | charging
Data stated, likely behaviors of
Environment Not explicitly GIS data; from Electric
(Components, stated, likely Traffic data; Databases, Taxis (ETs)
Properties, Spatial and Road network data Sensors, (DDDS)
Structure) Temporal System logs
Analysis and
Traffic analysis
Interaction Rules | Probabilistic GPS trajectory data;
(Agent-Env, inference-based | Charging event logs;
Agent-Agent) rules for Traffic data
charging
decisions
Lee et al. Disaster Agents Not explicitly Demographic data; Quantitative; Improve
(2021) Management (Characteristics, | stated Evacuation data; Real- | Spatial; disaster
Behavior) time gas station data; management
Evacuation order data; | Data strategy
Meteorological data Collection -
Environment Not explicitly Meteorological data; method: Simulating
(Components, stated, likely GIS data Not explicitly | eyacuation
Properties, Spatial and stated, likely behavior
Structure) Temporal includes during
Analysis for government hurricanes
spatial data databases, (DDDS)

Interaction Rules
(Agent-Env,
Agent-Agent)

Decision Field
Theory (DFT)
and Extended
DFT (EDFT)

Survey data;
Meteorological data;
Traffic data;
Evacuation order data;
Logistic regression
results

surveys, and
real-time data
sources
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Table 2 (Continued)

Study Application Extracted ABM | Approach of Data Source Data Type/ Simulation
Area Components Extraction Collection Goal/
Method Approach
Ravaioli et | Agriculture Agents Machine Census; Surveys; Qualitative; Improve
al. (2023) (Characteristics, | Learning (ML) Interviews; GIS Data; | Quantitative; | policy
Behavior) Remotely Sensed Data | Spatial; assessment
Environment GIS and Remote | GIS Data; Satellite -
(Components, Sensing analysis | Images; Land use maps | Data Simulating
Properties) Collection farmers’
Interaction Rules | Hybrid: ML and | Agent-environment method: decisions for
(Agent-Env, spatial analysis | feedback data; flepends on | land use
Agent-Agent) Social/spatial proxies implementation (SDDS)
Sajjad et al. | Sociology Agents Probabilistic Census Data Quantitative; | Understand
(2016) (Characteristics, | modeling Spatial; family
Behavior) formation
Environment Not explicitly Data dynamics
(Components, stated but likely Collection -
Properties) involves Spatial method: Simulating
analysis Not explicitly | family
Interaction Rules | Probabilistic stated, likely formation
(Agent-Env, equation from (SDDS)
Agent-Agent) government
databases
Yang and | Urban Agents Not explicitly GIS files; Quantitative; Support
van Dam Planning/ (Characteristics, | stated, but likely | Population statistics; Spatial; urban
(2022) Sociology Behavior) involves Agent | Activity patterns; transport
Behavior Mode choice Data planning
Learning parameters Collection -
Environment Not explicitly Road network data; method: Simulating
(Components, stated, but likely | Public space design Behavioral activities and
Properties, involves Spatial | parameters; surveys, behaviors of
Structure) and Temporal Air pollution data Sensors, and individuals
Analysis others are in an urban
Interaction Rules | Not explicitly Walking/driving speed; | not explicitly environment
(Agent- stated Pedestrian parameters; | stated, likely (SDDS)
Environment) Car-related pollution from
coefficients government
databases
Rosés et al. | Sociology Agents Machine learning | NYPD complaint data; | Quantitative; Support
(2021) (Characteristics, | (Decision Tree Census data and street | Spatial; crime
Behavior) for decision- segment data; Temporal; reduction
making) Location-Based Social strategies
Network data; Not explicitly -
Taxi trip data; stated, likely Simulating
Weather data; from GIS crime
Population density; maintained by | patterns in
Calls for service government an urban
Environment Not explicitly GIS data; agencies and environment
(Components, stated, but likely | Land use information; | other (SDDS)
Properties, involves Spatial | Points of interest; organizations
Structure) and Temporal Public transportation;

Analysis of GIS
data

Tree census data;
School locations

Interaction Rules
(Agent-Env)

Machine learning
(decision tree for
spatial
probabilities)

Combination of agent
and environment data;
Spatial and temporal
data from GIS layers
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Table 2 provides a detailed overview of the nine data-driven ABM approaches we analyzed. These
approaches were selected to represent some of the few available contributions in the emerging field of
DDABM. After careful screening, we considered them offer valuable insights as they describe the data
sources used for ABM extraction and the data extraction approaches. In the following section, we offer a
narrative summary of the key findings, and our insights derived from this analysis.

4 MAIN FINDINGS OF THE STUDY

Our review of approaches for extracting data-driven ABM components and their data requirements revealed
several patterns and insights. These findings reflect the current state of DDABM and have important
implications for developing DTs for MASs using data-driven ABMs. In this section, we present our key
observations and discuss the potential of data-driven ABMs as core models for DTs of MASs.

4.1 General Observations

Our analysis revealed that while the interest in DDABM is growing, the field remains relatively new with
relatively few studies compared to other established modeling approaches. We observed considerable
variability in the reviewed literature, with some studies clearly describing data sources and methods, while
others lack transparency in their methodologies. A few studies proposed frameworks to develop data-driven
ABMs for specific domains. For instance, Ravaioli et al. (2023) introduced a framework for simulating
farmers' land-use decisions. As noted in the background, existing frameworks and studies are highly
domain- or problem-specific, so data types and methodologies cannot be directly applied to simulations in
other areas. This emphasizes the need for generalizable, flexible and adaptable methodologies that can
support DDABM development across diverse domains, presenting both a significant challenge and an
opportunity for future research in the field of DDABM.

4.2 Data-Driven Approaches for Derivation of Agent-based Models

Our review highlights a current predominance of SDDS approaches over DDDS in existing studies, which
is not unexpected given that DDDS remains a relatively emerging research area. Traditionally, most data-
driven ABM studies using SDDS rely on static datasets (Li et al. 2016), often sourced from databases to
construct ABMs. However, recent advancements in real-time data availability enable more accurate and
promising analyses and predictions through simulations (Li et al. 2016).

Although often categorized as data-driven, these existing SDDS approaches primarily only map and
use the data to extract certain ABM components (such as agents’ state), calibrate parameters (Sajjad et al.
2016), and run simulations. SDDS approaches demonstrate the feasibility of data-informed ABM
development but remain limited in their ability to calibrate and update the models dynamically. As a result,
SDDS-produced models are less accurate than DDDS, as they rely on static data mapping without
continuous adaptation and refinement.

In contrast, DDDS approaches integrate real-time data streams, enabling ongoing model refinement.
This enables the identification of data changes and continuous adjustment of both simulation outcomes and
model parameters (Niloofar et al. 2023). For instance, in a simulation study of traveling and charging
behavior of electronic taxis (ETs), Zhang and Tan (2024) extracted ETs agents from data. These agents
make decisions based on the real-time environment (which is the real-time state of charging stations nearby)
and interact with other agents. This approach produces a more accurate simulation results, better aligning
with actual driver habits and real-world behaviors, and represent an innovation over existing static data-
driven ABMs’ study.

While DDDS remains underutilized in data-driven ABMs, its emerging applications signify a critical
shift in modeling ABMs. This approach represents greater potential for advancing modeling and simulation
techniques, particularly in supporting the growing need for the adaptive and responsive DTs of multi-agent
systems across multiple domains. The opportunity associated with incorporating DDDS for ABMs in the
context of supporting DTs for MASs will be further explored in Section 4.4.
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4.3 Data Requirements and Corresponding Components in Data-driven Agent-based Models

Data-driven ABMs require extensive, high-quality data to extract accurate models of agents’ behaviors,
environmental conditions and interaction patterns. Our review reveals distinct patterns in data requirements
across different types of ABMs. These requirements can be categorized based on the nature of the system
being modeled and the agents’ behaviors. Although reviewed studies do not specifically mention distinct
data types, we classify them based on their data sources and extraction methods. We identify patterns in
how data is obtained and used. For example, we classify behavioral survey as micro-quantitative because
it is quantitative data at the individual-level. This approach allows us to better categorize and analyze
various data requirements and map them to the corresponding ABM components.

In human-related data-driven ABMs, both micro- and macro-level data are critical for extracting and
modeling human agents. Micro-level data includes detailed individual data, such as demographic data or
government census (e.g., gender, age, income), essential for simulating individual agents’ behavior. In
contrast, macro-level data describes broader system trends, such as overall population statistics, which are
essential for understanding group behaviors and the emergence of collective dynamics within a population.

These data types can be both empirical quantitative and empirical qualitative. Empirical quantitative
data are collected through surveys (Yang and van Dam 2022), whereas empirical qualitative data are
typically gathered via interviews, as demonstrated by Bae et al. (2024) and Ravaioli et al. (2023). These
data types are crucial for extracting agents’ characteristics, properties, and behaviors.

In studies related to transportation (considering human behavior) (Bae et al. 2024), disaster
management (Lee et al. 2021), sociology (Sajjad et al. 2016; Rosés et al. 2021), epidemiology (Hunter et
al. 2018), urban planning (Yang and van Dam 2022), and business (customer behavior) (Bell and
Mgbemena 2018), both micro-level and macro-level data of individuals and populations are integrated.
Micro-level data enables agents to make autonomous decisions, while macro-level data captures the
collective outcomes of these individual decisions, shaping the overall system dynamics.

To inform environment design (components, characteristics, structure) in ABMs, spatial data is
commonly used (8 out of 9 studies). Since environment in ABMs often involve spatial dimensions, GIS
data representing geographical locations is frequently applied to model environmental structures, such as
the layout of a city, street network or land use zones. These data types are classified as quantitative-micro
as they contain agent-level information and are empirically collected from GIS databases. For instance, as
demonstrated by Rosés et al. (2021) in a study simulating crime patterns in an urban environment,
environmental components are extracted from spatial data such as GIS layers, public transport stops, and
school locations, likely sourced from government databases.

As noted earlier, spatial data and temporal data are interconnected, with some GIS data containing both
time and location information. Even though this is not always explicitly stated, ABM components can be
extracted from these data types through spatial and temporal analysis. Of course, not limited to extracting
environmental components, spatial and temporal data are also used to extract components of agents,
depending on the nature of the system. An example can be seen in the study by Zhang and Tan (2024),
where GIS data is used to extract both agents' components and environmental components, as well as
interaction rules. An example of temporal data can also be seen in the same study, where charging event
logs of taxis are used to extract and model agent behavior over time.

When it comes to extracting interactions (agent-agent, agent-environment, topology), some literature
does not disclose the extraction methods or data sources, while others mention machine learning,
probabilistic (rule-based) methods, hybrid models, and decision trees. There is no clear pattern in terms of
the data types used for extracting interaction rules. The data types mainly include quantitative, spatial, and
temporal data, with quantitative and spatial being the most common. The use of these data types does not
appear to be strongly tied to the specific extraction methods employed, as both probabilistic and machine
learning methods are applied across various data types.

612



Lee, and Lazarova-Molnar

4.3.1 Mapping Data to ABM Components: Potential Practical Guidance for DDABM Development

Based on our synthesis, we propose preliminary practical guidance to assist DDABM modelers in choosing
suitable data types for key ABM components, as shown in Table 3. This mapping helps identify what data
is typically used to extract each component.

Furthermore, we recommend incorporating dynamic real-time data when possible, following the DDDS
approach. It helps improve the model’s accuracy and enables continuous refinement, which static data alone
cannot support. When real-time data is unavailable, combining micro-level and macro-level static data can
provide a more complete view of agent behavior and support more effective modellings, especially for
capturing both individual decisions and aggregate trends. We also recommend extracting data from both
quantitative and qualitative (especially knowledge from experts or experience from real users) sources,
when possible, as these data types can complement each other and improve the accuracy of ABMs.

Table 3: Recommended data types for mapping ABM Components.

Component Relevant Data Type
Agents Quantitative data (e.g., surveys); Qualitative data (e.g., interviews) for decision rules and contextual
behaviors; Temporal data (e.g., activity log) to extract agent behavior over time.
Environment Spatial data (e.g. GPS data), especially important for modeling agent movement.
Interaction Rules Qualitative data (e.g., expert input); Micro-level quantitative data (e.g., activity logs)

Spatial data for agent-environment interactions.

4.4 Challenges and Opportunities for Data-driven ABMs

We identified a lack of structured approaches for data-driven extraction of ABMs in existing studies.
Notably, many studies do not consistently document how data is integrated or how ABM components are
derived from data. For example, none of the reviewed studies explicitly describe input data properties,
granularity, or data types, nor do they detail methods for extracting all ABM components. This gap limits
transparency and hinders both replicability and the extension of existing work. While the ODD (Overview,
Design concepts, Details) Protocol by Grimm et al. (2020) provides a standard framework for describing
ABMs, it currently does not capture detailed information on data integration or components derivation. To
address this gap and better support DDABM, we propose extending the ODD Protocol to include the
elements such as data sources and characteristics, as well as model (components) derivation approaches.
This extension can improve the transparency and replicability of DDABM studies.

Furthermore, while SDDS approaches still dominate current data-driven ABM studies, the shift toward
DDDS presents a valuable opportunity for improving model accuracy and adaptability. By incorporating
real-time data, DDDS allows agent behaviors to evolve in response to changing conditions, making
simulations more aligned with real-world complexity. This is especially important when we adopt ABMs
as underlying core models of DTs for MASs, where continuous refinement and adjustments are needed to
reflect the real-world complexities of agent interactions, environmental changes, and decision-making
processes.

5 SUMMARY AND OUTLOOK

This study provides an overview of the emerging field of Data-Driven Agent-Based Modeling (DDABM),
focusing on the data requirements for deriving Agent-Based Models (ABMs) from real-world data.
DDABM offers a novel approach to model development by integrating dynamic and static data sources to
represent agents, their interactions, and environmental components. Our findings reveal that while most
studies primarily use static data, there is a shift toward dynamic data-driven approaches, which hold
potential for more adaptive and accurate models. However, challenges remain, the lack of standardized
frameworks and structured approaches for data-driven ABMs hinders reproducibility and transparency.
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This study emphasizes the need for clearer mappings between data types and ABM components, as well as
the utilization of dynamic data sources for dynamic model refinement.

The future of DDABM lies in developing flexible methodologies applicable across various domains,
moving beyond problem-specific approaches. Shifting from static Data-Driven Simulations (SDDS) to
Dynamic Data-Driven Simulations (DDDS) offers significant promise, especially when using data-driven
ABMs as the core models of Digital Twins (DTs) for Multi-Agent Systems (MASs), where real-time data
updates are crucial for accurate, responsive simulations and continuous model refinements.

REFERENCES

Aloui, A., H. Hachicha, and E. Zagrouba. 2024. “Multi-Agent Based Framework for Cooperative Traffic Management in C-ITS
System:” In Proceedings of the 16th International Conference on Agents and Artificial Intelligence Vol. 1, edited by Rocha,
A. P, Steels, L., and van den Herik, J., 420-427. Setiibal: SCITEPRESS — Science and Technology Publications.

Ambra, T. and C. Macharis. 2020. “Agent-Based Digital Twins (ABM-Dt) In Synchromodal Transport and Logistics: The Fusion
of  Virtual and Pysical Spaces.” In 2020  Winter  Simulation  Conference  (WSC), 15969
https://doi.org/10.1109/WSC48552.2020.9383955.

Bae, J. W,, C.-H. Lee, J.-W. Lee, and S. H. Choi. 2024. “A Data-Driven Agent-Based Simulation of the Public Bicycle-Sharing
System in Sejong City.” Simulation Modelling Practice and Theory 130(1): 1-15.

Bell, D. and C. Mgbemena. 2018. “Data-Driven Agent-Based Exploration of Customer Behavior.” SIMULATION 94(3): 195-212.

Brown, D. G., R. Riolo, D. T. Robinson, M. North, and W. Rand. 2005. “Spatial Process and Data Models: Toward Integration of
Agent-Based Models and GIS.” Journal of Geographical Systems 7(1): 25-47.

Bruch, E. and J. Atwell. 2015. “Agent-Based Models in Empirical Social Research.” Sociological Methods & Research 44(2): 186—
221.

Chaib-draa, B. and J. P. Miiller, eds. 2006. Multiagent Based Supply Chain Management (Studies in Computational Intelligence,
Vol. 28). Berlin, Heidelberg: Springer.

Flamino, J., W. Dai, and B. K. Szymanski. 2019. “Modeling Human Temporal Dynamics in Agent-Based Simulations.” In
Proceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, 99-102. Chicago IL USA:
ACM.

Ghorbani, A., G. Dijkema, and N. Schrauwen. 2015. “Structuring Qualitative Data for Agent-Based Modelling.” Journal of
Artificial Societies and Social Simulation 18(1): 1-6.

Grimm, V., S. F. Railsback, C. E. Vincenot, U. Berger, C. Gallagher, D. L. DeAngelis, B. Edmonds, et al. 2020. “The ODD Protocol
for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural
Realism.” Journal of Artificial Societies and Social Simulation 23(2): 1-20.

He, Y. and W. Shen. 2025. “Agent-Based Digital Twins for Collaborative Machine Intelligence Solutions.” /ET Collaborative
Intelligent Manufacturing 7(1): 1-4.

Hunter, E., B. Mac Namee, and J. Kelleher. 2018. “An Open-Data-Driven Agent-Based Model to Simulate Infectious Disease
Outbreaks.” PLOS ONE 13(12): 1-35.

Jamali, R. and S. Lazarova-Molnar. 2024. “A Comprehensive Framework for Data-Driven Agent-Based Modeling.” In 2024 Winter
Simulation Conference (WSC), 620-631 https://doi.org/10.1109/WSC63780.2024.10838766

Kavak, H., J. J. Padilla, C. J. Lynch, and S. Y. Diallo. 2018. “Big Data, Agents, and Machine Learning: Towards a Data-Driven
Agent-Based Modeling Approach.” In Proceedings of the Annual Simulation Symposium, edited by Frydenlund, E., Shafer,
S., and Kavak, H.,1-12. San Diego: Society for Computer Simulation International.

Lazarova-Molnar, S. 2024. “A Vision for Advancing Digital Twins Intelligence: Key Insights and Lessons from Decades of
Research and Experience with Simulation:” In Proceedings of the 14th International Conference on Simulation and Modeling
Methodologies, Technologies and Applications, 5-10. Setubal: SCITEPRESS — Science and Technology Publications.

Lee, H. M., R. Jamali, and S. Lazarova-Molnar. 2025. “A Conceptual Framework for Digital Twins of Multi-Agent Systems.”
Procedia Computer Science 257: 321-328.

Lee, S., S. Jain, K. Ginsbach, and Y.-J. Son. 2021. “Dynamic-Data-Driven Agent-Based Modeling for the Prediction of Evacuation
Behavior during Hurricanes.” Simulation Modelling Practice and Theory 106: 1-26.

Li, Z., X. Guan, R. Li, and H. Wu. 2016. “4D-SAS: A Distributed Dynamic-Data Driven Simulation and Analysis System for
Massive Spatial Agent-Based Modeling.” ISPRS International Journal of Geo-Information 5(4): 42.

Lounis, M. and D. K. Bagal. 2020. “Estimation of SIR Model’s Parameters of COVID-19 in Algeria.” Bulletin of the National
Research Centre 44(1): 1-6.

Li, J., G. Chen, and X. Yu. 2011. “Modelling, Analysis and Control of Multi-Agent Systems: A Brief Overview.” In 2011 IEEE
International Symposium of Circuits and Systems (ISCAS), 2103-2106.

Macal, C. M. and M. J. North. 2014. “Tutorial on Agent-Based Modeling and Simulation.” In Agent-Based Modeling and
Simulation, edited by Simon J. E. Taylor, 11-31. London: Palgrave Macmillan UK.

614


https://doi.org/10.1109/WSC48552.2020.9383955
https://doi.org/10.1109/WSC63780.2024.10838766

Lee, and Lazarova-Molnar

Marah, H. and M. Challenger. 2024. “MADTwin: A Framework for Multi-Agent Digital Twin Development: Smart Warehouse
Case Study.” Annals of Mathematics and Artificial Intelligence 92(4): 975-1005.

Mariani, S., M. Picone, and A. Ricci. 2022. “About Digital Twins, Agents, and Multiagent Systems: A Cross-Fertilisation Journey.”
In Autonomous Agents and Multiagent Systems. Best and Visionary Papers, edited by Francisco S. Melo and Fei Fang, 114—
129. Cham: Springer International Publishing.

Monti, C., M. Pangallo, G. De Francisci Morales, and F. Bonchi. 2023. “On Learning Agent-Based Models from Data.” Scientific
Reports 13(1): 1-12.

Moyaux, T., Y. Liu, G. Bouleux, and V. Cheutet. 2023. “An Agent-Based Architecture of the Digital Twin for an Emergency
Department.” Sustainability 15: 1-13.

Niloofar, P., S. Lazarova-Molnar, F. Omitaomu, H. Xu, and X. Li. 2023. “A General Framework for Human-in-the-Loop Cognitive
Digital Twins.” In 2023 Winter Simulation Conference (WSC), 3202-3013
https://doi.org/10.1109/WSC60868.2023.10407598

Paudel, R. and A. Ligmann-Zielinska. 2023. “A Largely Unsupervised Domain-Independent Qualitative Data Extraction Approach
for Empirical Agent-Based Model Development.” Algorithms 16(7): 1-12.

Rahman, N. 2014. “Temporal Data Update Methodologies for Data Warchousing.” Journal of the Southern Association for
Information Systems 2(1): 25-41.

Ravaioli, G., T. Domingos, and R. F. M. Teixeira. 2023. “A Framework for Data-Driven Agent-Based Modelling of Agricultural
Land Use.” Land 12(4): 1-17.

Rosés, R., C. Kadar, and N. Malleson. 2021. “A Data-Driven Agent-Based Simulation to Predict Crime Patterns in an Urban
Environment.” Computers, Environment and Urban Systems 89: 1-15.

Sajjad, M., K. Singh, E. Paik, and C.-W. Ahn. 2016. “A Data-Driven Approach for Agent-Based Modeling: Simulating the
Dynamics of Family Formation.” Journal of Artificial Societies and Social Simulation 19(1): 1-14.

Santos, C. H. dos, J. A. B. Montevechi, J. A. de Queiroz, R. de Carvalho Miranda, and F. Leal. 2022. “Decision Support in
Productive Processes through DES and ABS in the Digital Twin Era: A Systematic Literature Review.” International Journal
of Production Research 60(8): 2662—-2681.

Squazzoni, F., and R. Boero. 2005. “Does Empirical Embeddedness Matter? Methodological Issues on Agent-Based Models for
Analytical Social Science.” Journal of Artificial Societies and Social Simulation 8(4)): 1-6.

Stary, C. 2021. “Digital Twin Generation: Re-Conceptualizing Agent Systems for Behavior-Centered Cyber-Physical System
Development.” Sensors 21(4): 1-24.

Tian, G. and Z. Qiao. 2014. “Modeling Urban Expansion Policy Scenarios Using an Agent-Based Approach for Guangzhou
Metropolitan Region of China.” Ecology and Society 19(3): 1-14.

Venkatramanan, S., B. Lewis, J. Chen, D. Higdon, A. Vullikanti, and M. Marathe. 2018. “Using Data-Driven Agent-Based Models
for Forecasting Emerging Infectious Diseases.” Epidemics 22: 43-49.

Walsh, S. J., G. P. Malanson, B. Entwisle, R. R. Rindfuss, P. J. Mucha, B. W. Heumann, P. M. McDaniel, et al. 2013. “Design of
an Agent-Based Model to Examine Population-Environment Interactions in Nang Rong District, Thailand.” Applied
Geography 39: 183-198.

Yang, Liu and K. H. van Dam. 2022. “Data-Driven Agent-Based Model Development to Support Human-Centric Transit-Oriented
Design.” In Autonomous Agents and Multiagent Systems. Best and Visionary Papers, edited by Francisco S. Melo and Fei
Fang, 60—66. Cham: Springer International Publishing.

Yang, Lu and N. Gilbert. 2008. “Getting Away from Numbers: Using Qualitative Observation for Agent-Based Modeling.”
Advances in Complex Systems 11(02): 175-185.

Zhang, Y. and J. Tan. 2024. “A Data-Driven Approach of Layout Evaluation for Electric Vehicle Charging Infrastructure Using
Agent-Based Simulation and GIS.” SIMULATION 100(3): 299-319.

AUTHOR BIOGRAPHIES

HUI MIN LEE is a PhD student at the Institute of Applied Informatics and Formal Description Methods at Karlsruhe Institute of
Technology. Her research interests include data modeling and simulation, digital twins, and especially data-driven agent-based
modeling and simulation. Her email address is hui.lee@kit.edu.

SANJA LAZAROVA-MOLNAR is a Professor at both the Karlsruhe Institute of Technology and the University of Southern
Denmark. Her research focuses on data-driven simulation, Digital Twins, and cyber-physical systems modeling, with an emphasis
on reliability and energy efficiency. She develops advanced methodologies to optimize complex systems and leads several
European and national projects in these areas. Prof. Lazarova-Molnar holds leadership roles in IEEE and The Society for Modeling
& Simulation International (SCS), where she currently serves as SCS Representative to the Winter Simulation Conference (WSC)
Board of Directors. She was Proceedings Editor for WSC in 2019 and 2020 and serves as Associate Editor for SIMULATION:
Transactions of The Society for Modeling and Simulation International. Her email address is lazarova-molnar@kit.edu.

615


https://doi.org/10.1109/WSC60868.2023.10407598
mailto:hui.lee@kit.edi
mailto:lazarova-molnar@kit.edu

	050-con150s3-file1-aa

