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ABSTRACT 

Extracting Agent-Based Models (ABMs) from data, also known as Data-Driven Agent-Based Modeling 
(DDABM), requires a clear understanding of data requirements and their mappings to the corresponding 

ABM components. DDABM is a relatively new and emerging topic, and as such, there are only highly 
customized and problem-specific solutions and approaches. In our previous work, we presented a 
framework for DDABM, identifying the different components of ABMs that can be extracted from data. 
Building on this, the present study provides a comprehensive analysis of existing DDABM approaches, 
examining prevailing trends and methodologies, focusing on the mappings between data and ABM 
components. By synthesizing and comparing different DDABM approaches, we establish explicit mappings 

that clarify data requirements and their role in enabling DDABM. Our findings enhance the understanding 
of DDABM and highlight the role of data in automating model extraction, highlighting its potential for 
advancing data-driven agent-based simulations. 

1 INTRODUCTION 

Agent-Based Modeling and Simulation (ABMS) has emerged as one of the most effective modeling 
approaches for simulating Multi-Agent Systems (MASs), which are systems composed of multiple 

autonomous agents that interact with one another and their environment (Macal and North 2014). Examples 
of MASs include supply chains (Chaib-draa and Müller 2006), where agents represent suppliers and 
consumers that make autonomous decisions to optimize logistics; and transportation management systems 
(Aloui et al. 2024), where agents represent vehicles, infrastructure and traffic management system, each 
making decisions that collectively influence system-wide behavior. More broadly, MASs are found across 
multiple domains in real life (Lü et al. 2011).  

 One approach to building simulation models of MASs is through Data-Driven Agent-Based Modeling 
(DDABM), which implies deriving agent-based models from real-world data, enabling more informed and 
realistic simulations (Lee et al. 2025). One of the important applications of data-driven ABMs could be in 
Digital Twins (DTs), which are virtual representations of physical systems that enable real-time simulation, 
optimization, and monitoring (Mariani et al. 2022). DTs typically rely on simulation models to replicate 
behaviors of real-world systems. Compared to traditional Discrete-Event Simulation (DES), ABMS can be 

a more suitable modeling and simulation approach for developing underlying core models of DTs for certain 
types of systems, e.g., production systems (Moyaux et al. 2023). This is because ABMs allow for 
autonomous decision-making by agents, enabling simulations that can capture micro-level behaviors and 
provide various levels of system abstraction. In contrast, DES relies on predefined events to drive the 
simulation, limiting its ability to model complex, agent-driven behaviors (Moyaux et al. 2023).  
 Despite the research by dos Santos et al. (2022) showing that in the past DTs relied more on models 

built using DES, there has been a growing trend in recent years towards using ABMs as core models of DT 
simulations (Marah and Challenger 2024; Ambra and Macharis 2020; He and Shen 2025; Stary 2021). This 
shift is driven by the recent advancements of ABMS tools, increased data availability, and improved 
computational capabilities that have expanded ABMs’ applications across various domains and disciplines 
(Macal and North 2014; Jamali and Lazarova-Molnar 2024).  
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 Consequently, DDABM has emerged as a promising methodology for improving modeling and 
simulation accuracy, especially for complex systems and social phenomena, by utilizing real data (Sajjad 
et al. 2016; Monti et al. 2023). Data-driven approaches enable the extraction of ABMs directly from data 

by identifying ABMs’ components (agents, environment, interaction rules), rather than relying solely on 
modelers’ judgement. DDABM has been applied across various disciplines (Lounis and Bagal 2020; 
Venkatramanan et al. 2018; Yang and van Dam 2022; Lee et al. 2021; Bae et al. 2024). The growing 
adoption of DDABM highlights its potential beyond general simulation, especially for DTs requiring 
dynamic updates (Niloofar et al. 2023).  
 One of the key factors to consider when developing a DT is ensuring it facilitates the automatic 

generation of simulation models through continuous data collection (Lazarova-Molnar 2024). In our earlier 
work (Jamali and Lazarova-Molnar 2024), we developed a DDABM framework, where we identified the 
key components of ABMs that can be extracted from data. However, as demonstrated across different fields 
and studies, existing approaches in DDABM appear to be problem-specific, lacking a more generalized 
approach for extracting ABMs from data.  
 Building on this, our previous study introduced the Multi-Agent Systems’ Digital Twins (MASDT) 

conceptual framework (Lee et al. 2025) for constructing DTs for MASs. In this framework, data-driven 
ABMs serve as core simulation models of DTs. MASDT conceptualized the dynamic extraction and 
continuous updating of the ABM-based DT models using real-world data. The framework also establishes 
a bidirectional feedback loop between the digital and physical systems: data from the real world informs 
the ABM-based DT, while insights and decisions generated by the DT are fed back into the physical system.  
This feedback loop supports adaptive and data-informed decision-making. 

 To enable effective data-driven ABMs, it is essential to have a clear understanding of data requirements 
and their mapping to the corresponding components in ABMs. This understanding supports the overarching 
goal of advancing DDABM (Jamali and Lazarova-Molnar 2024) and MASDT (Lee et al. 2025) 
frameworks, and is essential for operationalizing them in real-world applications. In this study, we conduct 
a comprehensive review of existing DDABM approaches, systematically identifying their data 
requirements and mapping them to the corresponding ABM components, including agents, states/attributes, 

interactions, environment, and decision-making rules. Our goal is to identify prevailing trends and 
approaches in DDABM, with a particular focus on clarifying how and which data are mapped to the 
different ABM components. Based on this analysis, we provide recommendations for enhancing DDABM 
practices of extracting ABMs from data, thereby enabling the development of more accurate ABMs. 

The main contribution of this paper is a structured analysis of existing DDABM works, synthesizing 
data requirements based on ABMs’ components, and offering practical guidelines for implementing 

DDABMs. By analyzing what types of data can be used for which ABM components, our study provides a 
useful reference for researchers and modelers to integrate data effectively when designing DDABMs. 
 Our paper is structured as follows: Section 2 provides the background and state-of-the-art developments 
in DDABM, along with the foundational requirements for ABMs extraction. Section 3 presents the results 
from our literature review on the data requirements for existing DDABM approaches, summarizing key 
insights. Section 4 offers our analysis, insights and findings. Lastly, Section 5 concludes the paper and 

provides recommendations for future research and practice. 

2 BACKGROUND & RELATED WORK 

2.1 Data-driven Agent-based Modeling  

Data-driven simulation is a modeling paradigm that integrates empirical data into simulations to improve 
model accuracy, relevance, and adaptability. Understanding this broader paradigm is important as DDABM 
is a specific instance of it, combining data-driven approaches and ABMs. A useful distinction within this 

paradigm is between Static Data-Driven Simulation (SDDS) and Dynamic Data-Driven Simulation 
(DDDS) (Niloofar et al. 2023) that helps position current DDABM practices and highlights their limitations. 
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 SDDS typically relies on classical statistical models and utilizes static datasets as input. In contrast, 
DDDS employs automated systems that continuously update simulation models using real-time data, 
making it suitable for building DT models. DDABM, as an emerging approach, extends beyond the direct 

utilization of static datasets to run simulations. It aims to extract key ABM components from data, and 
ideally, facilitate continuous model updates to reflect real-world dynamics (Jamali and Lazarova-Molnar 
2024), which aligns with DDDS paradigm. 
 However, most existing DDABM approaches rely on static data, aligning more closely with the SDDS 
paradigm rather than DDDS. For example, most studies in the field of DDABM (Zhang and Tan 2024; Lee 
et al. 2021; Ravaioli et al. 2023; Sajjad et al. 2016; Bae et al. 2024) are using pre-collected datasets instead 

of real-time data streams. As a result, these models can only run simulations with the data already available 
and cannot adapt dynamically to new information. 
 Additionally, the current landscape of DDABM is characterized by solutions and approaches that are 
often highly customized and problem specific. For example, the DDABM proposed by Bae et al. (2024) is 
tailored specifically for simulating the public bicycle-sharing system in Sejong city. Thus, the general 
DDABM literature remains limited, with no existing studies systematically addressing the data 

requirements for extracting ABMs from real-world data. Given these limitations, it is essential to examine 
what types of data are necessary to extract accurate ABMs from real-world datasets. Section 2.2 describes 
the common data types and practices used in the development of data-driven ABMs.  

2.2 Common Data Types and Practices for Data-driven ABMs Development 

Different types of data serve different roles in ABM extraction and development, influencing how agents 
are characterized, environments are represented, and interaction rules are derived. These data types can be 

categorized based on their properties (qualitative vs. quantitative), level (micro vs. macro), and 
spatiotemporal dimension (capturing the complexity of location and time). Understanding these differences 
is key to selecting the appropriate data to extract ABMs’ components. 
 In general, all data can be categorized as either empirical qualitative or empirical quantitative, based 
on how it is measured and represented. These data types are common in many studies (Ghorbani et al. 2015; 
Lu Yang and Gilbert 2008; Paudel and Ligmann-Zielinska 2023) that develop data-driven ABMs. 

Empirical quantitative data are measurable and enable capturing of trends through data; while empirical 
qualitative data are not directly measurable, and they provide valuable insights into behaviors and decision 
making (Ghorbani et al. 2015). Qualitative data are typically collected through surveys, interviews, 
observation and experiments (Ghorbani et al. 2015), particularly common in studies of social and behavioral 
science (Squazzoni and Boero 2005).  
 Beyond this broad classification, data can also be distinguished by their scales of analysis, particularly 

in ABMs. Data can be categorized into micro-level and macro-level based on their scale and granularity, 
which refers to the level of detail at which data are collected, analyzed, and applied within a model. These 
two types of data complement each other by providing insights into both detailed individual behavior and 
aggregated system-wide patterns, making their distinction vital for understanding complex systems. 
 Micro-level data focuses on individual agent level, such as demographic attributes (age, gender, etc.), 
behavioral patterns, and decision-making processes. This type of data is essential for simulating individual 

agents and understanding how their behaviors or decisions contribute to system-wide phenomena (Bruch 
and Atwell 2015). For example, Walsh et al. (2013) demonstrate the integration of household-level data 
into ABMs to model land use changes effectively. Micro-level data can be sourced from various sources, 
including government census data and user databases. 

Macro-level data, on the other hand, represents aggregate information at a larger scale, such as system-
wide phenomena or emergent patterns resulting from the collective behavior of agents. Examples include 

national census or population statistic typically obtained from government reports and databases. Often, 
macro-level data can be derived from the same source as micro-level data by aggregating the individual 
records. For instance, individual income data (micro) can be aggregated into the average income of a 
population in a town (macro). The same variable, such as income data, can therefore be used at both levels, 
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depending on the goal of the simulation. The interplay between these two levels of data is fundamental to 
ABMs, as it allows researchers to explore how individual behaviors contribute to higher-level outcomes 
while examining how system-wide patterns influence individual actions (Monti et al. 2023). 

 Temporal data captures time-dependent information, typically including timestamps to indicate when 
events occur. It is often represented as time-series data, which is essential for capturing the dynamic nature 
of the system being modeled, as it reflects changes over time (Monti et al. 2023). In DDABM, temporal 
data enables accurate tracking of trends and patterns in agent behaviors and system states, providing insight 
into system dynamics. This data type can be obtained from various sources, such as sensors, system logs, 
transaction records, and other time-stamped datasets. For instance, log data is a common source of temporal 

data, it records system events with precise timestamps, allowing for tracking changes and behavior over 
time (Rahman 2014).  Temporal data has been effectively utilized in ABM to simulate dynamic human 
behavior and enhance predictive accuracy, as demonstrated by Flamino et al. (2019). 

Spatial data is critical for ABMs that rely on location data or geographical information. This data type 
is typically represented and stored using Geographic Information Systems (GIS) (Brown et al. 2005). 
Spatial data can be obtained through various methods, including GPS, satellites, and other technologies. 

This data type is essential for ABMs that require location as agents’ parameter as relevant for the goals of 
a given simulation study. This can be exemplified by the use of ABMS in epidemiology (Hunter et al. 
2018), where human agents’ locations influence the spread of disease.  

Furthermore, spatial data is often associated with and used together with temporal data, as space and 
time can be relative (Brown et al. 2005). For instance, a study of urban planning by Tian and Qiao (2014) 
utilize spatiotemporal data to simulate urban expansion of Guangzhou city over time. 

 Data preparation is an essential initial step in ABM extraction (Kavak et al. 2018) to ensure the accuracy 
and reliability of the extracted model. It involves several key processes, including data cleaning, data 
integration, data transformation, data reduction, and data discretization (Bell and Mgbemena 2018). In our 
previous study, we proposed a component called the “Data Pipeline” within our DDABM framework to 
collect, validate, preprocess, and analyze data before it is used for model extraction (Jamali and Lazarova-
Molnar 2024). By performing steps such as handling missing values, removing duplicates, and validating 

the collected data during preprocessing, the robustness and validity of the extracted ABMs can be enhanced. 

2.3 Extractable Agent-Based Models Components from Data 

ABMs have three primary components extractable in a data-driven manner: agents, environment, and 
interaction rules, as identified in our previous work (Jamali and Lazarova-Molnar 2024). Each component 
can be further broken down into sub-components that can be also derived using data-driven approaches. 
Table 1 summarizes these components and their sub-components, along with brief explanations. 

Table 1: Components and sub-components of ABMs. 

Component Sub-Component Explanation 

Agents Type/Group Categories or classifications of agents based on their characteristics in the model 

Characteristics Static (e.g., age, gender) and dynamic (e.g., income, health status) attributes of agents 

Behaviors Actions, decision-making processes, and goals of agents within the model 

Environment Components Physical and non-physical elements that make up the model's setting 

Characteristics Properties of the environment that can influence agent behavior 

Structure Spatial and temporal organization of the environment 

Interaction 

Rules 

Agent-Agent Rules governing how agents interact with each other 

Agent-Environment Rules defining how agents interact with their environment 

Topology Structure of connections or networks among agents and environmental elements 
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 In most existing studies, only some ABM components are extracted in a data-driven manner, while 
others are predefined or manually specified. Rather than deriving the entire model from data, researchers 
typically focus on extracting specific components. For instance, in a crime pattern simulation, Rosés et al. 

(2021) used machine learning (decision trees) to derive agent-environment interaction rules from spatial 
and temporal data. Their model incorporated diverse data sources, including location-based social networks, 
taxi trip data, weather conditions, land use information, population density, and points of interest, to define 
the environment’s spatial layer. This illustrates how real-world data can inform key ABM components. 
 Building on the background in Section 2, which covers common data types in DDABM and extractable 
ABM components, Section 3 offers a detailed analysis of the data requirements and their mapping to various 

components of ABMs. 

3 DATA REQUIREMENTS FOR AGENT-BASED MODEL EXTRACTION  

Understanding the data requirements for ABM extraction is essential for enabling and advancing data-
driven ABMs as underlying models of DTs. To this end, we conducted a comprehensive literature review 
to compare and analyze various approaches for extracting different ABM components from data. Our study 
focused on several key properties: application domain, extracted ABM components, extraction approaches, 

data sources, data types, data collection infrastructure and simulation goal. We also indicated the simulation 
approach — static (SDDS) or dynamic (DDDS), in the same column as the simulation goal. 
 We followed a systematic three-step search strategy to identify studies on DDABM. First, we conducted 
a keyword search on Google Scholar using terms such as “data-driven agent-based model, “agent-based 
model extraction”, and “data-requirement of agent-based model” to identify relevant studies published in 
the past ten years. Second, we screened titles, keywords, abstracts and conclusions to select relevant studies. 

Third, the selected papers were analyzed and categorized based on predefined properties.  
 By analyzing these properties across multiple studies in different application domains, we aim to 
provide a comprehensive overview of the current state of data-driven ABM extraction. This analysis helps 
us better understand how different types of data are used to inform the development of ABMs and identify 
potential areas of improvements in DDABM approaches. We summarized the results of our study in the 
Table 2 to provide an overview of our findings. 

Table 2: Comparative summary of empirical studies using data-driven agent-based model extraction. 

Study Application 

Domain 

Extracted ABM 

Components  

Approach of 

Extraction 

Data Source  Data Type/ 

Collection 

Method 

Simulation 

Goal / 

Approach 

Hunter et 

al. (2018) 

Epidemiology Agents 

(Characteristics, 

Behavior) 

Not explicitly 

stated 

Census data;  

GIS data; 

School and 

workplace locations;  

Vaccination data 

Quantitative; 

Spatial; 

 

Data Collection 

method: 

Databases 

(Central 

Statistics 

Office (CSO) 

of Ireland) 

Reducing 

outbreak 

impact 

- 

Simulating the 

spread of 

airborne 

infectious 

diseases in 

Irish towns 

(SDDS) 

Environment 

(Components, 

Properties) 

GIS analysis GIS data 

Interaction Rules 

(Agent-Env, 

Agent-Agent) 

Inferred as 

Probabilistic 

Inference  

School and 

workplace locations 

Bell and 

Mgbemena 

(2018) 

Business Agents  

(Type, 

Characteristic, 

Behavior)  

Decision Tree 

(CART) 

Dataset provided by 

a mobile network 

operator  

Quantitative; 

 

Data Collection 

method: 

Not explicitly 

stated, likely 

from databases 

Retain 

customers 

- 
Simulating 

customer 

behavior to 

stay or churn 

with Telco 

(SDDS) 

Interactions 

(Agent-Agent) 

Social Network 

Analysis  

608



Lee, and Lazarova-Molnar 
 

 

Table 2 (Continued) 

Study Application 

Area 

Extracted ABM 

Components  

Approach of 

Extraction 

Data Source  Data Type/ 

Collection 

Method 

Simulation 

Goal/ 

Approach 

Bae et al. 

(2024) 

Transportation Agents 

(Characteristics, 

Behavior) 

Not explicitly 

stated, likely 

Probabilistic 

Inference; Spatial 

and Temporal 

Analysis; 

Agent Behavior 

Learning from 

Data 

Interview Data;  

Rental-return 

Information; 

Member information; 

Station Information; 

Station monitoring 

History;  

Population Information; 

Road network 

Information 

Qualitative; 

Quantitative; 

Temporal; 

Spatial; 

 

Data 

Collection 

method: 

Interview, and 

others are Not 

explicitly 

stated. For 

demographic/ 

operational 

data, it is likely 

from System 

logs/ Databases  

Improve user 

convenience 

and system 

utilization 

- 

Simulating 

user 

behavior in a 

public 

bicycle 

sharing 

system 

(SDDS)  

Environment 

(Components, 

Properties, 

Structure) 

Not explicitly 

stated, likely 

Spatial and 

Temporal 

Analysis 

GIS data; 

Station locations; 

Road network data 

Interaction Rules 

(Agent-Env, 

Agent-Agent) 

Not explicitly 

stated 

Rental-return data; 

Station monitoring 

history;Traffic data 

Zhang and 

Tan (2024) 

Transportation Agents 

(Characteristics, 

Behavior) 

Not explicitly 

stated, likely 

Probabilistic 

Inference, Spatial 

and Temporal 

Analysis, and 

Agent Behavior 

Learning from 

Data 

GPS trajectory data of 

ETs;  

Charging event logs 

Spatial;  

Temporal; 

Quantitative; 

 

Data 

Collection 

method: 

Not explicitly 

stated, likely 

from 

Databases, 

sensors, 

System logs 

Enhance 

charging 

station 

layout 

- 
Simulating 

traveling and 

charging 

behaviors of 

Electric 

Taxis (ETs) 

(DDDS) 

Environment 

(Components, 

Properties, 

Structure) 

Not explicitly 

stated, likely 

Spatial and 

Temporal 

Analysis and 

Traffic analysis 

GIS data;  

Traffic data;  

Road network data 

Interaction Rules 

(Agent-Env, 

Agent-Agent) 

Probabilistic 

inference-based 

rules for 

charging 

decisions  

GPS trajectory data;  

Charging event logs;  

Traffic data 

Lee et al. 

(2021) 

Disaster 

Management 

Agents 

(Characteristics, 

Behavior) 

Not explicitly 

stated 

Demographic data; 

Evacuation data; Real-

time gas station data; 

Evacuation order data; 

Meteorological data 

Quantitative; 

Spatial; 

 

Data 

Collection 

method: 

Not explicitly 

stated, likely 

includes 

government 

databases, 

surveys, and 

real-time data 

sources 

Improve 

disaster 

management 

strategy 

- 
Simulating 

evacuation 

behavior 

during 

hurricanes 

(DDDS) 

Environment 

(Components, 

Properties, 

Structure) 

Not explicitly 

stated, likely 

Spatial and 

Temporal 

Analysis for 

spatial data 

Meteorological data;  

GIS data 

Interaction Rules 

(Agent-Env, 

Agent-Agent) 

Decision Field 

Theory (DFT) 

and Extended 

DFT (EDFT) 

Survey data;  

Meteorological data;  

Traffic data; 

Evacuation order data;  

Logistic regression 

results 
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Table 2 (Continued) 

Study Application 

Area 

Extracted ABM 

Components  

Approach of 

Extraction 

Data Source  Data Type/ 

Collection 

Method 

Simulation 

Goal/ 

Approach 

Ravaioli et 

al. (2023) 

Agriculture Agents 

(Characteristics, 

Behavior) 

Machine 

Learning (ML) 

Census; Surveys; 

Interviews; GIS Data; 

Remotely Sensed Data 

Qualitative; 

Quantitative; 

Spatial;  

 

Data 

Collection 

method: 

depends on 

implementation 

Improve 

policy 

assessment  

- 
Simulating 

farmers’ 

decisions for 

land use 

(SDDS) 

Environment 

(Components, 

Properties) 

GIS and Remote 

Sensing analysis 

GIS Data; Satellite 

Images; Land use maps 

Interaction Rules 

(Agent-Env, 

Agent-Agent) 

Hybrid: ML and 

spatial analysis 

Agent-environment 

feedback data; 

Social/spatial proxies 

Sajjad et al. 

(2016) 

Sociology Agents 

(Characteristics, 

Behavior) 

Probabilistic 

modeling 

Census Data Quantitative; 

Spatial; 

 

Data 

Collection 

method: 

Not explicitly 

stated, likely 

from 

government 

databases 

Understand 

family 

formation 

dynamics 

- 
Simulating 

family 

formation 

(SDDS) 

Environment 

(Components, 

Properties) 

Not explicitly 

stated but likely 

involves Spatial 

analysis  

Interaction Rules 

(Agent-Env, 

Agent-Agent) 

Probabilistic 

equation  

Yang and 

van Dam 

(2022) 

Urban 

Planning/ 

Sociology 

Agents 

(Characteristics, 

Behavior)  

Not explicitly 

stated, but likely 

involves Agent 

Behavior 

Learning 

GIS files; 

Population statistics; 

Activity patterns;               

Mode choice 

parameters 

Quantitative; 

Spatial; 

 

Data 

Collection 

method: 

Behavioral 

surveys, 

Sensors, and 

others are 

not explicitly 

stated, likely 

from 

government 

databases 

Support 

urban 

transport 

planning 

- 
Simulating 

activities and 

behaviors of 

individuals 

in an urban 

environment 

(SDDS) 

Environment 

(Components, 

Properties, 

Structure)  

Not explicitly 

stated, but likely 

involves Spatial 

and Temporal 

Analysis  

Road network data; 

Public space design 

parameters; 

Air pollution data 

Interaction Rules 

(Agent-

Environment)  

Not explicitly 

stated 

Walking/driving speed; 

Pedestrian parameters; 

Car-related pollution 

coefficients 

Rosés et al. 

(2021) 

Sociology Agents 

(Characteristics, 

Behavior)  

Machine learning 

(Decision Tree 

for decision-

making) 

NYPD complaint data; 

Census data and street 

segment data; 

Location-Based Social 

Network data; 

Taxi trip data; 

Weather data; 

Population density; 

Calls for service 

Quantitative; 

Spatial; 

Temporal; 

 

Not explicitly 

stated, likely 

from GIS 

maintained by 

government 

agencies and 

other 

organizations 

Support 

crime 

reduction 

strategies 

- 
Simulating 

crime 

patterns in 

an urban 

environment 

(SDDS) 

Environment 

(Components, 

Properties, 

Structure)  

Not explicitly 

stated, but likely 

involves Spatial 

and Temporal 

Analysis of GIS 

data 

GIS data; 

Land use information; 

Points of interest; 

Public transportation; 

Tree census data; 

School locations 

Interaction Rules 

(Agent-Env)  

Machine learning 

(decision tree for 

spatial 

probabilities) 

Combination of agent 

and environment data; 

Spatial and temporal 

data from GIS layers 
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 Table 2 provides a detailed overview of the nine data-driven ABM approaches we analyzed. These 
approaches were selected to represent some of the few available contributions in the emerging field of 
DDABM. After careful screening, we considered them offer valuable insights as they describe the data 

sources used for ABM extraction and the data extraction approaches. In the following section, we offer a 
narrative summary of the key findings, and our insights derived from this analysis. 

4 MAIN FINDINGS OF THE STUDY 

Our review of approaches for extracting data-driven ABM components and their data requirements revealed 
several patterns and insights. These findings reflect the current state of DDABM and have important 
implications for developing DTs for MASs using data-driven ABMs. In this section, we present our key 

observations and discuss the potential of data-driven ABMs as core models for DTs of MASs. 

4.1 General Observations 

Our analysis revealed that while the interest in DDABM is growing, the field remains relatively new with 
relatively few studies compared to other established modeling approaches. We observed considerable 
variability in the reviewed literature, with some studies clearly describing data sources and methods, while 
others lack transparency in their methodologies. A few studies proposed frameworks to develop data-driven 

ABMs for specific domains. For instance, Ravaioli et al. (2023) introduced a framework for simulating 
farmers' land-use decisions. As noted in the background, existing frameworks and studies are highly 
domain- or problem-specific, so data types and methodologies cannot be directly applied to simulations in 
other areas. This emphasizes the need for generalizable, flexible and adaptable methodologies that can 
support DDABM development across diverse domains, presenting both a significant challenge and an 
opportunity for future research in the field of DDABM. 

4.2 Data-Driven Approaches for Derivation of Agent-based Models  

Our review highlights a current predominance of SDDS approaches over DDDS in existing studies, which 
is not unexpected given that DDDS remains a relatively emerging research area. Traditionally, most data-
driven ABM studies using SDDS rely on static datasets (Li et al. 2016), often sourced from databases to 
construct ABMs. However, recent advancements in real-time data availability enable more accurate and 
promising analyses and predictions through simulations (Li et al. 2016).  

 Although often categorized as data-driven, these existing SDDS approaches primarily only map and 
use the data to extract certain ABM components (such as agents’ state), calibrate parameters (Sajjad et al. 
2016), and run simulations. SDDS approaches demonstrate the feasibility of data-informed ABM 
development but remain limited in their ability to calibrate and update the models dynamically. As a result, 
SDDS-produced models are less accurate than DDDS, as they rely on static data mapping without 
continuous adaptation and refinement. 

 In contrast, DDDS approaches integrate real-time data streams, enabling ongoing model refinement. 
This enables the identification of data changes and continuous adjustment of both simulation outcomes and 
model parameters (Niloofar et al. 2023). For instance, in a simulation study of traveling and charging 
behavior of electronic taxis (ETs), Zhang and Tan (2024) extracted ETs agents from data. These agents 
make decisions based on the real-time environment (which is the real-time state of charging stations nearby) 
and interact with other agents. This approach produces a more accurate simulation results, better aligning 

with actual driver habits and real-world behaviors, and represent an innovation over existing static data-
driven ABMs’ study.  
 While DDDS remains underutilized in data-driven ABMs, its emerging applications signify a critical 
shift in modeling ABMs. This approach represents greater potential for advancing modeling and simulation 
techniques, particularly in supporting the growing need for the adaptive and responsive DTs of multi-agent 
systems across multiple domains. The opportunity associated with incorporating DDDS for ABMs in the 

context of supporting DTs for MASs will be further explored in Section 4.4. 
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4.3 Data Requirements and Corresponding Components in Data-driven Agent-based Models 

Data-driven ABMs require extensive, high-quality data to extract accurate models of agents’ behaviors, 
environmental conditions and interaction patterns. Our review reveals distinct patterns in data requirements 

across different types of ABMs. These requirements can be categorized based on the nature of the system 
being modeled and the agents’ behaviors. Although reviewed studies do not specifically mention distinct 
data types, we classify them based on their data sources and extraction methods. We identify patterns in 
how data is obtained and used. For example, we classify behavioral survey as micro-quantitative because 
it is quantitative data at the individual-level. This approach allows us to better categorize and analyze 
various data requirements and map them to the corresponding ABM components. 

 In human-related data-driven ABMs, both micro- and macro-level data are critical for extracting and 
modeling human agents. Micro-level data includes detailed individual data, such as demographic data or 
government census (e.g., gender, age, income), essential for simulating individual agents’ behavior. In 
contrast, macro-level data describes broader system trends, such as overall population statistics, which are 
essential for understanding group behaviors and the emergence of collective dynamics within a population. 
 These data types can be both empirical quantitative and empirical qualitative. Empirical quantitative 

data are collected through surveys (Yang and van Dam 2022), whereas empirical qualitative data are 
typically gathered via interviews, as demonstrated by Bae et al. (2024) and Ravaioli et al. (2023). These 
data types are crucial for extracting agents’ characteristics, properties, and behaviors. 
 In studies related to transportation (considering human behavior) (Bae et al. 2024), disaster 
management (Lee et al. 2021), sociology (Sajjad et al. 2016; Rosés et al. 2021), epidemiology (Hunter et 
al. 2018), urban planning (Yang and van Dam 2022), and business (customer behavior) (Bell and 

Mgbemena 2018), both micro-level and macro-level data of individuals and populations are integrated. 
Micro-level data enables agents to make autonomous decisions, while macro-level data captures the 
collective outcomes of these individual decisions, shaping the overall system dynamics.  
 To inform environment design (components, characteristics, structure) in ABMs, spatial data is 
commonly used (8 out of 9 studies). Since environment in ABMs often involve spatial dimensions, GIS 
data representing geographical locations is frequently applied to model environmental structures, such as 

the layout of a city, street network or land use zones. These data types are classified as quantitative-micro 
as they contain agent-level information and are empirically collected from GIS databases. For instance, as 
demonstrated by Rosés et al. (2021) in a study simulating crime patterns in an urban environment, 
environmental components are extracted from spatial data such as GIS layers, public transport stops, and 
school locations, likely sourced from government databases.  

As noted earlier, spatial data and temporal data are interconnected, with some GIS data containing both 

time and location information. Even though this is not always explicitly stated, ABM components can be 
extracted from these data types through spatial and temporal analysis. Of course, not limited to extracting 
environmental components, spatial and temporal data are also used to extract components of agents, 
depending on the nature of the system. An example can be seen in the study by Zhang and Tan (2024), 
where GIS data is used to extract both agents' components and environmental components, as well as 
interaction rules. An example of temporal data can also be seen in the same study, where charging event 

logs of taxis are used to extract and model agent behavior over time. 
When it comes to extracting interactions (agent-agent, agent-environment, topology), some literature 

does not disclose the extraction methods or data sources, while others mention machine learning, 
probabilistic (rule-based) methods, hybrid models, and decision trees. There is no clear pattern in terms of 
the data types used for extracting interaction rules. The data types mainly include quantitative, spatial, and 
temporal data, with quantitative and spatial being the most common. The use of these data types does not 

appear to be strongly tied to the specific extraction methods employed, as both probabilistic and machine 
learning methods are applied across various data types.  
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4.3.1 Mapping Data to ABM Components: Potential Practical Guidance for DDABM Development 

Based on our synthesis, we propose preliminary practical guidance to assist DDABM modelers in choosing 
suitable data types for key ABM components, as shown in Table 3. This mapping helps identify what data 

is typically used to extract each component.  
 Furthermore, we recommend incorporating dynamic real-time data when possible, following the DDDS 
approach. It helps improve the model’s accuracy and enables continuous refinement, which static data alone 
cannot support. When real-time data is unavailable, combining micro-level and macro-level static data can 
provide a more complete view of agent behavior and support more effective modellings, especially for 
capturing both individual decisions and aggregate trends. We also recommend extracting data from both 

quantitative and qualitative (especially knowledge from experts or experience from real users) sources, 
when possible, as these data types can complement each other and improve the accuracy of ABMs. 

Table 3: Recommended data types for mapping ABM Components. 

Component Relevant Data Type 

Agents Quantitative data (e.g., surveys); Qualitative data (e.g., interviews) for decision rules and contextual 

behaviors; Temporal data (e.g., activity log) to extract agent behavior over time. 

Environment Spatial data (e.g. GPS data), especially important for modeling agent movement. 

Interaction Rules Qualitative data (e.g., expert input); Micro-level quantitative data (e.g., activity logs) 

Spatial data for agent-environment interactions. 

4.4 Challenges and Opportunities for Data-driven ABMs 

We identified a lack of structured approaches for data-driven extraction of ABMs in existing studies. 
Notably, many studies do not consistently document how data is integrated or how ABM components are 
derived from data. For example, none of the reviewed studies explicitly describe input data properties, 

granularity, or data types, nor do they detail methods for extracting all ABM components. This gap limits 
transparency and hinders both replicability and the extension of existing work. While the ODD (Overview, 
Design concepts, Details) Protocol by Grimm et al. (2020) provides a standard framework for describing 
ABMs, it currently does not capture detailed information on data integration or components derivation. To 
address this gap and better support DDABM, we propose extending the ODD Protocol to include the 
elements such as data sources and characteristics, as well as model (components) derivation approaches. 

This extension can improve the transparency and replicability of DDABM studies.    
 Furthermore, while SDDS approaches still dominate current data-driven ABM studies, the shift toward 
DDDS presents a valuable opportunity for improving model accuracy and adaptability. By incorporating 
real-time data, DDDS allows agent behaviors to evolve in response to changing conditions, making 
simulations more aligned with real-world complexity. This is especially important when we adopt ABMs 
as underlying core models of DTs for MASs, where continuous refinement and adjustments are needed to 

reflect the real-world complexities of agent interactions, environmental changes, and decision-making 
processes. 

5  SUMMARY AND OUTLOOK 

This study provides an overview of the emerging field of Data-Driven Agent-Based Modeling (DDABM), 
focusing on the data requirements for deriving Agent-Based Models (ABMs) from real-world data. 
DDABM offers a novel approach to model development by integrating dynamic and static data sources to 

represent agents, their interactions, and environmental components. Our findings reveal that while most 
studies primarily use static data, there is a shift toward dynamic data-driven approaches, which hold 
potential for more adaptive and accurate models. However, challenges remain, the lack of standardized 
frameworks and structured approaches for data-driven ABMs hinders reproducibility and transparency. 
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This study emphasizes the need for clearer mappings between data types and ABM components, as well as 
the utilization of dynamic data sources for dynamic model refinement. 
 The future of DDABM lies in developing flexible methodologies applicable across various domains, 

moving beyond problem-specific approaches. Shifting from static Data-Driven Simulations (SDDS) to 
Dynamic Data-Driven Simulations (DDDS) offers significant promise, especially when using data-driven 
ABMs as the core models of Digital Twins (DTs) for Multi-Agent Systems (MASs), where real-time data 
updates are crucial for accurate, responsive simulations and continuous model refinements. 
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