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ABSTRACT

Digital Twins (DTs) play an increasingly important role in connecting physical objects to their digital
counterparts, with simulation playing a key role in deriving valuable insights. Despite their potential, DT
implementation remains complex and adoption in industrial operations is limited. This paper investigates
the challenges of DT implementation in simulation-based industrial applications through systematically
reviewing 124 publications from 2021 to 2024. The findings reveal that while nearly half of the publications
tested prototypes, most are limited to laboratory settings and lack critical features such as cybersecurity
or real-time capabilities. Discrete Event Simulation and numerical simulation emerge as the dominantly
utilized simulation techniques in DTs. From the analysis, 33 challenges are identified and the classification
of them into nine dimensions is proposed. Finally, further research opportunities are outlined.

1 INTRODUCTION

Digital Twins (DTs) have gained significant attention in both research and industry due to their ability to
digitally represent real-world physical objects. By leveraging sensor data and other sources, DTs enable
monitoring, analysis, and optimization of physical systems. Simulation plays a central role in DTs by
utilizing models to provide valuable insights to the physical objects (Onggo and Currie 2024).

Despite their growing popularity, especially within the scientific community, the adoption of DTs in
operational business settings within producing industries remains limited (Tao et al., 2024). This highlights
a gap between scientific DT frameworks and their practical implementation, as real-world deployment is
often hindered by challenges that complicate the translation of concepts into functional systems.

The implementation of DTs has been reviewed in several prior studies. While some reviews lack formal
systematical methodologies, recent comprehensive analyses have provided valuable insights. For instance,
Tao et al. (2024) examined challenges associated with DTs in industrial applications, while Taylor et al.
(2023) focused specifically on simulation-related challenges within DTs. There are also several formal
SLRs that have previously addressed challenges related to the implementation of DTs in industry. However,
some of these reviews were conducted several years ago and did not account for newer developments.
Moreover, other reviews take broader perspectives that extend beyond implementation challenges, including
the study of Semeraro et al. (2021), who examine various aspects of DT technology without delving deeply
into the practical difficulties associated with their implementation. Similarly, studies like Botín-Sanabria
et al. (2022) provide general overviews of DTs but are not limited to industrial applications. Additionally,
there are domain-specific reviews that concentrate on particular industries or applications, for instance, by
Errandonea et al. (2020) who focused on maintenance applications.

Despite these contributions, there remains a limited focus on challenges specific to simulation-based
industrial applications within DTs. Given the increasing reliance on simulation for industrial operations,
addressing these challenges is essential to advance both research and practical adoption. This paper
aims to fill this gap by systematically reviewing literature at the intersection of DTs, simulation, and
industrial applications with regard to associated implementation challenges. Additionally, it investigates the
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current stages of research regarding DT development, ranging from purely conceptual studies to prototypes.
Furthermore, this paper examines the use of simulation techniques in DTs to offer guidance to the simulation
community on key areas of focus. To achieve these objectives, three research questions (RQs) are examined.
Among them, RQ1 serves as the primary RQ, while RQ2 and RQ3 function as secondary RQs:

• RQ1: What are the key challenges in DT implementation for simulation-based industrial applica-
tions?

• RQ2: What is the distribution of research across different stages of DT implementation for
simulation-based industrial applications?

• RQ3: Which simulation techniques are used in DTs in industrial applications?

This paper is organized as follows. Section 2 provides an introduction to DTs and distinguishes them
from related concepts while introducing simulation techniques. Section 3 details a systematic literature
review (SLR) conducted to identify reported challenges. These challenges are further explained in Section
4 and a classification for them in dimensions is proposed. The findings and implications are discussed in
Section 5, followed by conclusions and future research opportunities presented in Section 6.

2 DIGITAL TWINS FOR SIMULATION-BASED INDUSTRIAL APPLICATIONS

2.1 Digital Twins in Industrial Applications

According to Matta and Lugaresi (2024), one of the most significant definitions of DTs is provided by
Grieves and Vickers (2017), who describe DTs as virtual representations of physical objects in the real
world with a bi-directional flow of data between the two. DTs can be distinguished from related concepts
by examining the directionality of data flow. For instance, an unidirectional flow of data from the physical
object to its digital counterpart is referred to as a Digital Shadow (Kritzinger et al. 2018).

Interest in DTs for the industrial domain is increasingly widespread and their utilization is promising.
However, significant challenges must be addressed to enhance their maturity and enable large-scale adoption
in industry (Tao et al. 2024). Although the basic understanding of DTs is relatively straightforward,
implementing them as fully functional systems is a complex undertaking. This complexity arises from the
need to integrate multiple tasks, services, and features into a cohesive framework. Key components include
data collection and pre-processing from sensors and other sources, efficient storage and management of
these data, their application in simulations and models, as well as advanced analytics to extract actionable
insights. These processes must be executed reliably, securely, and often at real time to meet the demanding
requirements of industrial applications.

Some authors argue that simulation is a mandatory component of DTs (Negri et al. 2017). However,
this view is not universally accepted and is either absent or not explicitly emphasized in other definitions,
such as the one provided by Grieves and Vickers (2017). Regardless of whether simulation is deemed
mandatory, it undeniably plays a significant role in DTs and continues to be a key focus for further research.

2.2 Simulation in Digital Twins

Simulation is a well-established computational method for numerically analyzing models, with widespread
applications across various industrial domains (Law 2015). Law (2015) categorizes simulation techniques
into several types, including the two major approaches Discrete Event Simulation (DES) and continuous
simulation, as well as further specialized techniques such as agent-based simulation, System Dynamics, and
Monte Carlo Simulation (MCS). Moreover, numerical simulation (NS) plays a significant role by leveraging
mathematical models to study physical systems, such as finite element analysis for structural evaluations
and robotics trajectory planning (Allaire 2007).

Simulation has long been an essential method for analyzing and understanding complex problems prior
to the emergence of DTs. Traditionally, simulation models were not designed to accommodate frequent
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updates to input data or dynamic changes in the states of real systems (Onggo and Currie 2024). Furthermore,
while its primary application within the system lifecycle was historically focused on planning, simulation
is now increasingly being applied during the operational phase when integrated into DTs (Taylor et al.
2023). Adapting simulation for DTs has long been recognized as an important research priority (Onggo
et al. 2018) that has already proven to be valuable across various applications. For an introduction to DTs
and their alignment with simulation, readers are encouraged to refer to Matta and Lugaresi (2024).

3 SYSTEMATIC LITERATURE REVIEW

To address RQ1, RQ2, and RQ3, a SLR is conducted following the guidelines outlined by Kitchenham
and Charters (2007). The review protocol specifies searches in the digital libraries Scopus, IEEE Xplore,
and ACM Digital Library. The scope is limited to conference papers and journal articles written in English
that have undergone peer review to ensure quality. Other SLRs are excluded to prevent redundancy and
ensure that this study contributes novel insights rather than reiterating findings from existing reviews.

The domain of the review is restricted to applications within producing industries, including internal
logistics. Non-producing industries as well as logistics related to supply chains or package delivery are
excluded. Furthermore, only studies adhering to the definition of DTs specified in Section 2.1 are considered
for further analysis. Additionally, only studies that either explicitly utilize simulation or demonstrated a
clear connection between DTs and simulation are included. The used search string is: "digital twin*" AND
"simulation*" AND (“industr*” OR “manufactur*” OR “production” OR “logistic*”) AND NOT ("review"
OR "literature*"). To focus on recent developments in DT implementation, only research published between
2021 and 2024 is included.

Given the substantial number of publications identified through these criteria, the SLR focuses on the
50 most-cited papers per year per digital library with at least two citations. Due to insufficient results
from ACM Digital Library under these conditions, a total of 556 publications are selected instead of the
intended 600 publications. After removing duplicates and filtering for English-language conference papers
and journal articles, 240 publications remain eligible for further screening. These remaining papers are
evaluated based on their domain relevance, use of simulation, and adherence to the defined concept of DTs.
This process resulted in a final selection of 124 publications deemed relevant for inclusion in this SLR.
While relaxing filtration criteria would have broadened the scope of the examined literature body, focusing
on recent high-quality research maintains a representative overview to reflect key challenges and trends.

In response to RQ1, challenges are identified when authors explicitly refer to them anywhere in their
publication as challenges or implicitly described them as problems, limitations, open research questions,
or other expressions indicative of unresolved issues. To ensure methodological rigor and avoid double-
counting, challenges are only considered when they clearly represent the original perspective of the authors
of the respective publication. References to challenges that are cited from other publications are excluded.
A total of 33 distinct challenges are identified across all reviewed works. These challenges are proposed
to be classified into nine dimensions. Table 1 presents an overview of these challenges along with their
frequency across publications and their assigned dimensions. Figure 1 illustrates the share of publications
mentioning at least one challenge within each dimension, while Figure 2 highlights the share of mentions
for the ten most frequently cited challenges across all reviewed works. Further details regarding these
dimensions and challenges are provided in Section 4.

To address RQ2, the publications are categorized based on the following stages of research regarding
DT implementation:

• Concept: No implementation of a DT.
• Emulation: DT implemented, but physical object is computationally emulated.
• Data Use-Case: DT implemented, but data are previously recorded at a physical object.
• Prototype: DT implemented and actually connected to a physical object.
• Operations: Fully implemented DT used in ongoing industrial operations.
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Table 1: Proposed classification dimensions and the identified challenges. Numbers in parentheses represent
the number of publications mentioning the dimension or challenge.

Dimension Challenges
Architecture (56) Implementation Guidelines (21), Interfaces (20), Standardization (19),

Adaptability (14), Hierarchy and Collaboration (11), Autonomy (7),
Context-Awareness (5), Maintainability (2)

Technical Infrastructure (52) Real-Time Capabilities (42), Cybersecurity (18)
Modeling (44) Problem Modeling (39), Automated Modeling(7)

Data Infrastructure (39) Data Collection (22), Data Integration (16), Data Storage (11),
Data Quality (9), Data Management (6)

Quality Assurance (16) Verification and Validation (11), Trustworthiness (4), Reliability (2)
Practicality (15) Capabilities (4), Reporting (4), Definition (3), Understanding (3),

Objectives (2), Collaboration (1)
Knowledge Utilization (13) Knowledge Extraction (13), Knowledge Transfer (6),

Knowledge Representation (3)
Tools (12) Implementation Tools (7), Simulation Tools (6)

Finance (11) Investment Costs (10), Business Models (2)
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Figure 1: Share of publications citing at least one
challenge from a dimension.
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Figure 2: Share of publications citing one of the ten
most cited challenges.

Papers that discussed DT implementation without proposing a concept or implementing a DT are excluded
in the examination for RQ2. The findings are visualized in Figure 3 and discussed in Section 5.

For RQ3, the simulation techniques utilized or proposed within the reviewed publications were analyzed
and recorded. These techniques are classified as described in Section 2.2. However, as shown in Figure
4, only DES, MCS, NS, and their combination (hybrid models) are reported in the analyzed publications.
The implications of these findings are discussed in Section 5.

4 PROPOSED CLASSIFICATION: DIMENSIONS AND CHALLENGES

This section provides concise descriptions of the proposed classification dimensions and their associated
challenges, highlighting key findings from the SLR as summarized in Table 1.
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Prototype: 48 (46.2%)

Data Case-Study: 22 (21.2%)

Emulation: 21 (20.2%)

Concept: 13 (12.5%)

Figure 3: Stages of research in publications.

DES: 39 (41.5%)

NS: 31 (33.0%)
DES + NS: 22 (23.4%)

MCS: 1 (1.1%)
DES + MCS: 1 (1.1%)

Figure 4: Simulation techniques in publications.

4.1 Architecture

The architecture dimension addresses challenges related to the internal structural design of DTs and their
interoperability with other systems.

Implementation Guidelines: The lack of clear guidelines and blueprints is recognized as a major barrier to
DT implementation. Glatt et al. (2021) emphasize that guidelines should be tested in industrial applications
rather than relying solely on theoretical concepts. Limited guidance exists for selecting specific technologies
(Jeong et al. 2022), integrating DTs into existing systems Rojek et al. (2021), integrating DTs into extended
reality applications (Yang et al. 2022), or implementing simulation models within DTs (Santos et al. 2022).

Interfaces: The lack of interfaces is cited as a challenge at multiple levels, including between DTs and
sensors, between modules within the DT such as a simulation tool interacting with data storage (Turner
and Garn 2022), and between DTs and legacy systems such as enterprise resource planning (Bellavista
et al. 2023). The lack of human-machine interfaces is also reported, including those needed to enable
DTs to participate in the industrial metaverse (Cui et al. 2023). Interface challenges often relate closely
to standardization issues.

Standardization: Insufficient standardization in the DT domain is widely reported as a barrier to further
development, including DT components, data collection, and simulation utilization. The development of
reference architectures has been proposed, e.g., by Hakiri et al. (2024), who emphasize their importance for
interoperability and compatibility with other DTs and systems. Some authors suggest that existing standards,
such as communication protocols, should be leveraged more extensively in current DT implementations.

Adaptability: Aligning DTs with constantly changing real objects is challenging. This includes updating
simulation models within DTs to reflect changes accurately (D’Urso et al. 2024) and the flexible utilization
of hardware and software resources. Autonomous adaptability without human intervention has been called
for by Castañé et al. (2023), with context-awareness repeatedly cited as an enabler for achieving adaptability.

Hierarchy and Collaboration: Organizational concepts for collaboration among multiple DTs or between
DTs and other systems are insufficiently researched, also within industrial Internet of Things networks.
For example, concepts for production systems with multiple unit-level DTs and a superordinate DT to
orchestrate them should be worked on (Zhang et al. 2024).

Autonomy: Developing autonomous DTs is essential to minimize human interaction in tasks such as
monitoring, modeling, or adaptations. Autonomy allows decision-makers to focus on higher-level objectives
while delegating operational work to DTs (Bellavista et al. 2023).

Context-Awareness: Context-awareness enables situational adaptability in complex scenarios and enhances
results generated by DTs. It is also identified as a crucial enabler for autonomy since it allows flexible
handling strategies without manual intervention (Bellavista et al. 2023).

Maintainability: Long-term usability requires designing DTs with maintainability in mind. This includes
ensuring that software can be updated seamlessly over time without compromising functionality or reliability
(Paasche and Groppe 2022).
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4.2 Technical Infrastructure

The technical infrastructure dimension focuses on challenges related to ensuring the functionality, security,
and efficiency of DTs in industrial applications.

Real-Time Capabilities: Ensuring real-time capabilities is the most frequently stated challenge for DTs.
Issues that hinder real-time performance can arise across various components, including latency in distributed
or cloud computing environments (González-Herbón et al. 2024), Internet of Things networks despite
advancements like 5G technologies (Hakiri et al. 2024), applying verification and validation (V&V)
techniques (Martínez-Gutiérrez et al. 2021), data storage and access inefficiencies (Suhail et al. 2022), data
analytics limitations (Friederich et al. 2022), and cybersecurity measures affecting system responsiveness
(de Azambuja et al. 2024). Long simulation times and mathematical optimization tasks are also challenging
to execute in real time due to computational demands, as noted by several authors. Furthermore, high
numbers of scenarios and simulation runs also make real-time calculations difficult (Psarommatis 2021).

Cybersecurity: Cybersecurity is a widely discussed challenge in the analyzed literature, especially when DTs
operate within systems of interconnected DTs, collaborate with offsite counterparts, or rely on grid or cloud
technologies (Martínez-Gutiérrez et al. 2021). Alcaraz and Lopez (2022) highlight the critical importance
of cybersecurity for DTs in automated manufacturing to prevent the disruption of entire production lines
or when handling sensitive data to prevent exposing confidential data.

4.3 Modeling

The modeling dimension focuses on creating and managing accurate models for DTs, encompassing
simulation, optimization, and data models for various industrial applications.

Problem Modeling: Problem-specific modeling in DTs is reported as an ongoing challenge. This mainly
concerns the simulation, optimization, and data models used. Beyond common challenges like deciding
what to model and determining the appropriate level of detail, there are unique challenges specific to DTs,
e.g., how to model the physical object along its lifecycle (Pang et al. 2021). High-fidelity models of
complex processes, including modeling human interaction, remain difficult to achieve (Cui et al. 2023).
Real-time performance requirements further exacerbate these challenges.

Automated Modeling: Due to dynamic environments such as reconfigurable manufacturing systems,
structural changes of models should be automated and the level of detail should be adjusted according to the
current context (Lugaresi and Matta 2021). Semi-automatic modeling has also been suggested as beneficial
in certain scenarios (Friederich et al. 2022). Beyond model structures, automating scenario generation for
existing models is proposed as another area requiring attention (Jeong et al. 2022).

4.4 Data Infrastructure

The dimension of data infrastructure encompasses all aspects with regard to data in DTs.

Data Collection: Collecting heterogeneous and sufficient data in industrial applications is reported to be
time-consuming and costly. Preventing redundant or unnecessary data collection is an important challenge
(Jia et al. 2023), as is ensuring timely availability of data for DT processing (Santos et al. 2022). Advances
in sensor technology are needed to improve data collection efficiency (Tavares et al. 2024).

Data Integration: Integrating data from heterogeneous sources, such as sensors, digital systems, and
market data, is described as a significant challenge. Differences in data formats, update rates, and other
inconsistencies exacerbate this issue (Castañé et al. 2023). Multi-modal data types, such as images, audio,
logs, documents, and time series, add further complexity to integration efforts (Friederich et al. 2022).
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Data Storage: The extensive volume of collected data presents challenges for storage. Beyond managing
sheer size, the data must be stored quickly while remaining efficiently accessible to avoid slowing down
other DT processes (González-Herbón et al. 2024).

Data Quality: High-quality datasets are essential for DT functionality but face practical challenges. Sensor
data are often prone to noise caused by environmental factors (Chakraborty et al. 2021). Ensuring appropriate
preprocessing methods that balance time constraints with quality requirements remains a challenge.

Data Management: Collaborative data management across different partners is a challenge but is often
hindered by privacy constraints that limit sharing between companies (Mortlock et al. 2022). Effective data
governance frameworks for DTs remain underdeveloped and require further attention (Ren et al. 2023).

4.5 Quality Assurance

The quality assurance dimension focuses on ensuring that DTs function as intended, meet required standards,
and deliver reliable outputs in industrial applications.

Verification and Validation: Cleophas et al. (2022) highlight a general lack of V&V techniques in the
domain of DTs, which poses significant challenges for ensuring their accuracy. Specific issues include
validating data and models used within DTs, as noted by Friederich et al. (2022), as well as introducing
methods to validate the outputs generated by DTs (Suhail et al. 2023). A well-executed V&V process not
only improves the accuracy of DTs but also fosters trustworthiness and reliability (D’Urso et al. 2024).

Trustworthiness: Sasikumar et al. (2023) emphasize that enhancing the trustworthiness of DTs is vital for
increasing their acceptance within companies and among customers of DT-related products. Trustworthiness
begins at the data level, requiring high-quality inputs (Suhail et al. 2022), and extends to all models utilized
within DT systems to ensure accurate representation and functionality.

Reliability: Building reliable DTs is a challenge that depends on consistently utilizing high-quality data,
ensuring real-time responsiveness, and delivering dependable results (Donato et al. 2024).

4.6 Practicality

The practicality dimension addresses practical challenges in DT implementation, focusing on functional
capabilities, communication, understanding, and collaboration within real-world contexts.

Capabilities: Expanding the use of artificial intelligence and machine learning algorithms within DTs is
proposed to enhance their capabilities (Liu et al. 2021). Additionally, integrating smart contracts into DT
systems remains an open challenge (Suhail et al. 2022).

Reporting: Rojek et al. (2021) highlight the need for better coordination and communication within the
scientific community regarding DT research. Glatt et al. (2021) criticize the lack of reporting on DTs that
are actively used in industry operations. Additionally, investigating the discrepancy between companies’
awareness of DTs and their actual adoption levels remains an open challenge (Hakiri et al. 2024).

Definition: The existence of numerous definitions and interpretations of DTs is identified as a significant
roadblock to progress (Cleophas et al. 2022). These inconsistencies can lead to misconceptions that hinder
effective implementation and understanding.

Understanding: DTs rely on a combination of heterogeneous technologies and methods, making it
challenging to understand each component thoroughly (Pang et al. 2021). Skill gaps among engineers
and stakeholders further exacerbate this issue, as noted by de Azambuja et al. (2024). Training personnel
to use complex DT systems poses additional challenges, particularly when they lack proficiency in IT
technologies (Cleophas et al. 2022).
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Objectives: The objectives of DT implementations are reported as vague or insufficiently defined, which
can hinder their adoption and effectiveness (Chakraborty et al. 2021). To address this, Cleophas et al.
(2022) suggest more transparent communication of the unique selling points of DTs to stakeholders.

Collaboration: Competitive thinking among companies often prevents collaboration, which can hinder
constructive advancements in DT development and implementation (Mortlock et al. 2022).

4.7 Knowledge Utilization

The knowledge utilization dimension addresses challenges related to creating, organizing, sharing, and
maintaining knowledge within DT systems to ensure efficient decision-making and continuous improvement.

Knowledge Extraction: Extracting valuable knowledge embedded in the data and models within DTs
poses notable challenges. Integrating machine learning techniques for enhanced knowledge extraction has
been suggested as a potential solution (Leng et al. 2021), alongside advanced knowledge mining methods
(Li et al. 2022). Furthermore, while problems such as machine failures are often detectable, identifying
their root causes remains difficult.

Knowledge Transfer: Leveraging knowledge of existing DTs to create new ones or adopting this knowledge
across systems is reported as an open challenge (Cleophas et al. 2022). Additionally, transferring knowledge
across domains and throughout different lifecycle stages remains a hurdle (Zheng et al. 2024).

Knowledge Representation: Visualizing extracted knowledge effectively is an ongoing challenge. When
humans are involved in utilizing DT-generated insights, ensuring that the presentation is explainable and
comprehensible becomes especially critical to support decision-making processes (Castañé et al. 2023).

4.8 Tools

The tools dimension addresses challenges related to the availability and suitability of tools for implementing
DTs, including simulation tools.

Implementation Tools: A lack of tools for DT implementation is widely reported in the literature (Tao
et al. 2024). Even when tools are available, their functionalities often fail to meet all requirements (Glatt
et al. 2021). Generic solutions frequently lack sufficient personalization options that can be implemented
with minimal effort (Castañé et al. 2023).

Simulation Tools: It is reported that simulation tools can face interoperability issues within DT systems or
when interacting with other simulation tools (Michael et al. 2022). Additionally, many available simulation
tools struggle to incorporate real-time input data from physical objects, which limits their effectiveness in
dynamic industrial environments (Turner and Garn 2022).

4.9 Finance

The finance dimension focuses on challenges related to the financial aspects of DT implementation, including
its costs and opportunities to monetize DTs.

Investment Costs: Implementing DTs can demand significant financial investments, driven by costs for,
e.g., industrial-grade sensors, hardware for high performance computing, and enabling technologies such
as product lifecycle management or enterprise resource planning systems. Utilizing simulation to generate
data that would otherwise be difficult or costly to obtain remains an ongoing challenge.

Business Models: Developing new DT-based business models is an open challenge. They are essential for
fostering broader adoption of DTs and fully exploiting their financial potential (Hakiri et al. 2024).
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5 DISCUSSION OF FINDINGS

In the following, selected challenges, the stages of research, and the utilized simulation techniques are
discussed and limitations of this study are pointed out.

The most frequently mentioned challenge according to the SLR is identified as the real-time capabilities
of DTs. The authors of this paper share this view and see real-time capabilities as the most challenging aspect
in DT implementation. The interlinking of many, often complex processes results in high computational
resource requirements. Depending on the required time tolerance for results, current hardware and software
technologies often fall short of enabling DTs with an extensive range of functions, requiring prioritization of
functions based on time constraints. Addressing this challenge will require advancements in computational
performance and optimization of software tailored for real-time applications.

Missing implementation guidelines are a frequently cited challenge, although novel guidelines are
widely proposed within the reviewed literature. Their effectiveness remains unclear due to varying system
complexities and domain-specific requirements. This suggests either existing guidelines fail to meet practical
needs or DT implementations require customized approaches that standardization cannot easily address.

There are some challenges that are underrepresented in current literature but deserve greater attention
according to the authors’ perspective. Reliability has only been reported twice as a challenge, however,
ensuring consistent functionality is essential for widespread adoption in industrial contexts where downtime
or system failures can result in significant financial losses or safety risks. Additionally, there are challenges
absent from the reviewed literature but equally critical. For instance, an unclear return of investment
may cause industrial companies to hesitate in adopting DTs without clear evidence demonstrating cost-
effectiveness relative to traditional approaches or alternative technologies.

The analyzed publications proposing DTs mostly go beyond conceptual stages, with 88% introducing
actual implementations as shown in Figure 3. Research that is either using an emulation for the physical
object or a data case-study focus more on the digital representation of DTs and consider the challenges in
establishing a working bi-directional data flow less detailed. Nearly half of the publications that propose a DT
have tested it with a prototype, which shows that research is already well advanced. However, these prototypes
predominantly focus on limited functionalities, operate within controlled laboratory environments, and often
omit critical aspects such as cybersecurity. Furthermore, many prototypes lack proper implementation of
data linkage between the virtual representation and the physical object. This reduces them to digital shadows
rather than fully functioning DTs. Prototypes were mostly developed for single DTs, whereas collaborative
DTs remain at less advanced stages. Strikingly, none of the analyzed publications tested their DTs in real
industrial operations. This fact underscores their insufficient maturity level for practical application and
hampers the ability to thoroughly investigate implementation challenges within industrial settings. Some
publications of the reviewed literature already identified this concern as a challenge.

Figure 4 shows DES as the most common simulation technique for DTs, appearing in 66% of publications.
It is primarily used for planning and scheduling tasks on tactical or operational horizons as well as pathfinding
for robots. Interestingly, DES is often referred to generically as simulation. NS follows at 56%, primarily
applied for finite element analysis or complex robot trajectory planning. Combining DES and NS appears
promising and has been implemented in nearly a quarter of reviewed studies, where DES serves as a
framework and NS addresses subcomponents. Given that DTs are usually employed to analyze the physical
processes of real-world machines within a time-logical context, the authors consider the integration of
DES and NS a logical progression. This approach could gain increased attention in the future, particularly
regarding aspects such as (standardized) interfaces between the specific models, streamlined integration
into simulation software, and synchronization mechanisms.

Several implications can be derived for simulation itself. Producing trustworthy and reliable simulation
results requires enhancing simulation model robustness to account for input parameters that may be less
controlled or lower quality compared to other simulation studies where inputs are handpicked. Additionally,
simulations must often meet stringent real-time requirements imposed by DTs, which is particularly
challenging when dealing with complex models or if there is an extensive number of scenarios to analyze.
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The chosen SLR methodology has limitations, including publication bias favoring positive results over
challenges and search criteria that skew toward technical reports on DT implementations rather than studies
exploring broader issues like financial or organizational challenges. Additionally, most identified challenges
arise from research in academic contexts rather than real-world industrial applications.

6 CONCLUSION AND OUTLOOK

Despite significant interest and extensive research efforts, the implementation of DTs for industrial appli-
cations continues to present substantial challenges. Through a SLR, this paper has identified 33 distinct
challenges and proposed their classification into nine dimensions, whereas the challenges may overlap and
are not necessarily mutually exclusive within or across dimensions. Among these challenges, ensuring
real-time capabilities emerges as the most critical challenge, which is particularly problematic for complex
DTs that must seamlessly integrate processes such as data collection, preprocessing, model analysis, and
knowledge generation. These tasks must be performed while simultaneously meeting requirements for
trustworthiness, reliability, and cybersecurity, while each of them represents a challenge in its own.

Although research has produced numerous prototypes of DTs, they often remain limited in terms of func-
tionality. Furthermore, these prototypes are predominantly tested within controlled laboratory environments
rather than being applied in real-world industrial operations. None of the analyzed publications reported
on DTs being used in everyday industrial settings, highlighting a notable gap between research-focused
prototype development and widespread adoption by industrial companies. This discrepancy underscores the
need for further exploration into why DTs have not yet achieved broader implementation outside academia.

Simulation plays a pivotal role within DT workflows but is largely restricted to DES, NS, or a combination
of both. Enhancing these simulation techniques and their associated tools to better align with DT workflows
presents an ongoing opportunity for advancement within the simulation community.

Future efforts should prioritize testing DTs in operational industrial environments with reporting on
outcomes and challenges. To bridge the gap between prototype development and real-world application,
direct engagement with industrial companies is essential. Companies that have successfully implemented DTs
or those that faced difficulties or failed attempts should be interviewed explicitly about their experiences and
the challenges they encountered during deployment, which would provide valuable guidance for researchers
and practitioners seeking to overcome challenges to widespread adoption of DTs in industrial applications.
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