Proceedings of the 2025 Winter Simulation Conference
E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

USING THE TOOL COMMAND LANGUAGE FOR A FLIGHT SIMULATION FLIGHT
DYNAMICS MODEL

Frank Morlang!, and Steffen Strassburger?

Private Person, Querumer Strasse 20A, Braunschweig, GERMANY
Dept. Information Technology in Production and
Logistics, [lmenau University of Technology, [lmenau, GERMANY

ABSTRACT

This paper introduces a methodology for simulating flight dynamics utilizing the Tool Command Language
(Tcl). Tcl, created by John Ousterhout, was conceived as an embeddable scripting language for an
experimental Computer Aided Design (CAD) system. Tcl, a mature and maturing language recognized for
its simplicity, versatility, and extensibility, is a compelling contender for the integration of flight dynamics
functionalities. The work presents an extension method utilizing Tcl's adaptability for a novel type of flight
simulation programming. Initial test findings demonstrate performance appropriate for the creation of
human-in-the-loop real-time flight simulations. The possibility for efficient and precise modeling of future
complicated distributed simulation elements is discussed, and recommendations regarding subsequent
development priorities are drawn.

1 INTRODUCTION

Tcl was created by Dr. John Ousterhout in the late 1980s at the University of California at Berkeley (Flynt
2012). He and his team were involved in work related to enhancing simulations with macro languages.
After the realization of several project specific solutions that were incompatible for other projects, they
decided to develop an interpreter language that could be easily extended with new functionalities and usable
with any project. This reveals that Tcl has its roots in the simulation domain. With Tcl, existing project
libraries can be turned into new commands within Tcl itself. Such a set then represents a language for the
domain specific application to be created. With its ease of integration with C and C++ and its compatibility
with further programming languages, Tcl is the ideal choice for a fundament a flight simulation scripting
language can be built on.

The non-linear equations of flight mechanics serve as the foundation for modeling flight dynamics
(Stengel 2022). Consideration is given to the external forces and moments for gravity, propulsion, and
aerodynamics. The coefficients of aecrodynamic force and moment are parametrized as nonlinear functions
of the following: dynamic pressure, aircraft slats/flaps configuration, angular velocities, control surface
deflections, and flying circumstances (Mach number (M) or Angle of Attack (AoA). These are computed
with the help of look-up tables that are built at regular locations throughout the whole flight domain. The
use of quaternions for aircraft orientation representation is a key component that insures the prevention of
large data rates and singularities comparable to the more popular Euler angle representation of orientation
(Cooke et al. 1992).

Look-up tables replace intensive runtime computations with simpler data retrieval and row/column
indexing operations. Both, the processing burden and the execution times are improved as a result of this.
To summarize the benefits of employing table look-up, the following are some of the advantages:

979-8-3315-8726-0/25/$31.00 ©2025 IEEE 390

Morlang, and Strassburger

e The process of retrieving a table value is far more efficient than carrying out complex calculations.
When real-time simulations are taken into consideration, this acceleration can be of great
significance.

e Complex computations are abstracted away into a direct data retrieval procedure, which results in
areduction in memory usage. This reduction in the necessity for calculation repetitions also benefits
the CPU load. The abstraction makes the software codebase easier to understand.

e Modification and expansion need of the simulation model can easily be fulfilled by changed or
added table entries.

Quaternions, which Sir William Rowan Hamilton discovered in 1843 while looking for a generalization
of complex numbers, offer a useful way to update orientations (Shoemake 1985). They are particularly
useful in three-dimensional computer graphics, robotics, and physics, as they provide a way to represent
rotations in three-dimensional space without suffering from the gimbal lock problem that can occur with
Euler angles. A quaternion is more concise in comparison to a rotation matrix (Jia 2013), provides smoother
interpolation, and requires less computational resources (Perdana 2025).

The fact that no available flight dynamics model extension for Tcl currently exists founded the
motivation for an own development. Further usage is designated to future programming tasks in the area of
human-in-the-loop real-time flight simulations, especially with a focus on distributed simulation, where
loosely coupled approaches based on Tcl are subject of current development work (Morlang and
Strassburger 2024) integrating the commercial flight simulation software “X-Plane” (Laminar Research
2025a) in a Web Live, Virtual and Constructive (WebLVC) / High Level Architecture (HLA) environment.
X-Plane derives its flight dynamics model from an aircraft’s geometry wireframe using a process called
“blade element theory” (Laminar Research 2025b). A Tcl based table look-up data driven simulation
solution perfectly fits in as an addition to the X-Plane component. The objective of this paper is to assess
to what extent a pure Tcl code flight dynamics extension can fulfill real-time simulation requirements and
to identify the computation acceleration potential of fragments developed in C.

The other sections of this paper are structured as follows. Section 2 gives an overview about related
work and exposes the addressed gap. Section 3 describes the derivation of the requirements for the rate at
which the model has to recalculate the aircraft's dynamics. Section 4 presents implementation details of a
first flight dynamics Tcl extension version describing exported methods as well as the realization of an
additional C accelerated complement. Performance results are presented and discussed in section 5. Section
6 closes with a conclusion containing an outlook to next steps.

2 RELATED WORK AND ADDRESSED GAP

Extensions to Tcl are modules that extend Tcl’s core functionalities. Their architecture is described in
Welch and Thomas (2000). In general, one can distinguish between two types of them:

e Extensions that are written in Tcl itself. They are a pragmatic way to enhance Tcl by domain
specific commands when high performance of computationally intensive needs is not of utmost
importance.

e Extensions that are written in C or C++ that cover tasks where high-performance processing is
requested.

Extensions form an essential character of the Tcl programming language, where an easy syntax with a
small command set can be significantly enhanced to tailored solutions, thus representing the special
adaptability and flexibility of this programming language. One important feature of extensions is their
ability to be used as components for the development of other extensions. The following gives an overview
about some of Tcl’s relevant extensions.

391

Morlang, and Strassburger

Tcl is in most cases referred as Tcl/Tk. This reveals Tcl’s elemental extension from the very beginning
named Tk (Toolkit) (Ousterhout 1991). Tk is a graphical user interface framework extension for Tcl
providing various widgets and their associated event bindings.

An important collection of Tcl extensions is called Tcllib and can be regarded as a kind of reference
source for extensions covering over 400 packages in over 100 modules (Kupries 2015). The intention of
Tcllib is to gather often needed functions from a broad variety of domains in one sink to be regarded and
used by developers as one source to rely on with respect to stability and availability.

One of the most widely deployed database engines called SQLite has its roots as an extension to Tcl
(Gaftney et al. 2022). It is the only SQL database engine specifically designed to work with Tcl (Hipp
2009). One of SQLite’s features is its server lessness, a full-featured SQL implementation where a complete
database is stored in a single disk file.

Developing Tcl extensions in C or C++ can benefit from a special extension itself, called CriTcl
(Landers and Wippler 2002). Originally developed as a package which embedded C fragments in Tcl code
with the need of C compilation at runtime, today its features allow to compile the C code once and then
distribute it as an extension without the need of compilation at runtime (Kupries 2016).

A mathematical framework extension called Odielib performs 2d and 3d graphics related math
operations in a C accelerated way (Woods 2017). Vectors and matrices optimized for a 4x4 affine
transformation are the internal fundamental representation of the extension’s functions. Among other math
domains Odielib supports quaternions.

Rocket Engine (Morlang 2022) and Atmosim (Morlang 2023) are two flight simulation related
extensions developed in pure Tcl code. The Rocket Engine extension arose from the need for a transition
from a spacecraft thrustless flight dynamics model to a rocket-propelled one in order to perform thrustless
descent/approach trajectory analyses as well as rocket-propelled ascent phase investigations. The Atmosim
extension has been realized to facilitate the development of an atmosphere HLA federate application in Tcl.

The use of scripting languages in the field of six degrees of freedom (6DOF) flight dynamics covers
several target programming languages. For instance, the Python Flight Mechanics Engine (AeroPython
Team 2016) provides an Application Programming Interface (API) with several packages to model
aircraft’s flight physics. The Aerospace Toolbox (The MathWorks, Inc. 2025) delivers aerospace math
related functions for the MATLAB scripting language. McFlight (Ferreira da Silva 2018) is a collection of
F-16 Fighting Falcon aircraft model scripts for the high-level, numerically oriented programming language
Scilab.

JSBSim (Berndt 2004) is an open-source flight dynamics model. Its usage potential covers two use
cases. On the one hand, it can be used in an end-user-friendly way as a standalone application; on the other
hand, it can act as a library to be fused in larger simulation frameworks, like its integration into the
FlightGear (Perry 2004) open-source flight simulator as the default flight physics engine. In standalone
mode, aircraft specifics must be configured in Extensible Markup Language (XML) input files. For
integration purposes, it has to be used as a C++ software library with the associated complexity of
dependencies on other libraries, linking and compilation.

This work addresses the gap of an available flight dynamics model extension to bring flight physics to
the Tcl world on pure scripting level to be combined with other Tcl extensions for facing the challenge of
larger distributed simulation needs.

3 METHOD

The approach for the realization of a flight dynamics model extension for Tcl is shown in Figure 1. At first,
the equations of motions are implemented in pure Tcl. Secondly, if the performance is not sufficient, parts
are rewritten in C and used as CriTcl packages (Kupries 2016) inside the extension to replace the pure Tcl
counterparts until the model update rate fulfills the requirement. Update rate refers to the frequency at which
a flight dynamics model updates its calculations to predict the motion of an aircraft. What is this requirement
or in other words: what does “>= X Hz ?” (Figure 1) mean?

392

Morlang, and Strassburger

Implementation of the
equations of motions in

pure Tcl
RE-CHECK
Improve performance
by rewriting
Model update rate NO performance

bottlenecks in C and

>=XHz? build a CriTcl package

to be used in the
extension

Figure 1: Method of the extension development.

An answer to this question can be derived from Table 1 which gives an overview of some flight
simulation related work and the addressed flight dynamics model update rates. Especially Eklund and
Korenberg (2000) refer to 60 Hz as “the industry standard”. Against this background, we take a flight
dynamics model update of 60 Hz as the core requirement in our approach (Figure 1).

Table 1: Flight dynamics model update rates in literature.

Reference Flight Dynamics Model
Update Rate

Allerton (2010) 50 Hz

Cooke et al. (1992) 54/57 Hz (mentioning of every

17.6/18.8 ms in the reference)
Eklund and Korenberg (2000) 60 Hz

European Aviation Safety 60 Hz

Agency (2018)

Litt et al. (2022) 60 Hz

Marshall et al. (1995) 31.25/33/40/62.5 Hz

Meng et al. (2008) 60 Hz

Perry (2004) 60 Hz (mentioning of in 1/60th
of a second in the reference)

Primatesta et al. (2023) 50/60 Hz

Willis (2021) 30 Hz

4 IMPLEMENTATION

The extension bases on the Tcl object system TclOO (Fellows 2010) and uses math::calculus (Markus
2004), a sub-module of Tcllib (Kupries 2015) which implements, among other algorithms, the integration
of a function over an interval. Exported methods, that can be invoked from outside the object’s context,

393

Morlang, and Strassburger

start with a lower-case letter, whereas private methods start with an upper-case letter. Private methods can
only be used from another method in the class. So far, we implemented the following exported methods:

e computeAirspeed
o This method computes the speed of the aircraft’s center of gravity in component form of
the linear velocities defined in the aircraft body axes.
e computeAlpha
o This method computes the aircraft’s angle of attack with respect to the aircraft body axes.
o computeAlphaWingIncidence
o This method just adds the wing incidence to alpha. This is done to consider that the wing
can be offset referring to the aircraft axes. In addition, there can be a twist along the wing
reducing the actual angle of attack of the wing.
e computeAlphaDot
o This method computes the time derivative of the aircraft’s angle of attack.
e computeBeta
o This method computes the sideslip angle.
e computeBetaDot
o o This method computes the time derivative of the sideslip angle.
e computeLift
o This method computes the lift generated by an airfoil.
e computeDrag
o This method computes the drag generated by an airfoil.
e computeSideForce
o This method computes the side force. When viewed from above and the fuselage of the
aircraft is not aligned with the direction of flight, there will be an incident angle with the
wind. As a consequence, the fuselage generates a force in the direction along the wing.
e Computation of the body frame forces
o These are computed from the aerodynamic and propulsive terms.
= computeBodyFrameForceFx
= computeBodyFrameForceFy
= computeBodyFrameForceFz
e U,V,Z relevance (U is the velocity in the forward direction along the aircraft fuselage, V is the
velocity along the starboard wing direction and Z refers to the velocity along the direction
perpendicular to the underside of the aircraft fuselage.)
o Computation of the body frame accelerations
= These are derived from the body frame forces.
e computeUDot
e computeVDot
e computeZDot
o Computation of the body frame aerodynamic velocities
= These are integrated from the body frame accelerations.
o computeUaero
e computeVaero
o computeZaero

All these methods are bundled in a TclOO class named fdmModel in a file named fdmTcl.tcl. To use
the extension, one has to source the file with “source fdmTcl.tc]” and create an object of the class
fdmModel, e.g. with “set appobj [f{dmModel new]”. After that, the methods can be invoked in an ensemble
command form of OBJECT METHODNAME args..., e.g. “set airspeed [$appobj computeAirspeed $u $v
$z]”.

394

Morlang, and Strassburger

In addition to these methods, we implemented a table-look realization in Tcl based on math::interpolate
(Markus and Kenny 2004) and Euler angles to Quaternions conversion. Converting Euler angles to
quaternions and back is a common practice in flight simulation. On the one hand, the conversion to
quaternions avoids gimbal lock and is associated with an improved numerical stability in large rotation or
high frequency update situations; on the other hand, the conversion back to Euler angles is often needed for
simplified aircraft orientation visualization of flight dynamics accompanying components (e.g. image
generator). To get a first idea about the C acceleration potential, we developed an additional C accelerated
(Figure 1) Euler angles to Quaternions conversion counterpart as CriTcl package inside the Tcl extension.
This was realized with CriTcl’s critcl::cproc functionality which defines a C function and sets up the
corresponding Tcl command (Landers and Wippler 2002). With that, the CriTcl package mode was used to
generate a package using the C part as a shared library, invokable as an added command inside the Tcl
extension.

5 RESULTS

5.1 Performance

First processing performance results refer to an experimental setup of a Windows 11 Enterprise OS machine
with Intel® Core™ i7-8650U CPU at 1.9 GHz and 32 GB RAM running Magicsplat Tcl/Tk 8.6.16 for
Windows (Nadkarni 2025). The tests refer to a data-driven approach of a generic aircraft case assuming the
existence and availability of proper tables and performance data (e.g. lift and drag coefficients representing
airfoil specifics) for the aircraft under consideration. Figure 2 to Figure 5 show the processing performance
of the implemented exported methods of the developed flight dynamics model Tcl extension. Methods
neither containing numerical integration nor table look-up are consolidated in Figure 2. Their processing
performance never exceeded 120 microseconds (Figure 2). The computation methods of the body frame
aerodynamic velocities are presented in Figure 3. These contain numerical integration from the body frame
accelerations and remained below 1000 microseconds (Figure 3). Targeting a flight dynamics model update
rate of 60 Hz, we have chosen 20 integration steps, because this means 1200 integrations per second, where
even a sampling frequency of 200 Hz can be considered acceptable (Bara et al. 2019). Two interpolating
table look-up pure Tcl code implementations, differing in a doubled row count, are gathered in Figure 4.
Outliers of their processing performance never surpassed 400 microseconds (Figure 4). To get an
impression of the C acceleration potential we implemented two Euler angles to Quaternions conversions,
one in pure Tcl and one with C acceleration code. We observed a boost factor of 10 (Figure 5).

Processing performance
120

W computeAirspeed

100 - B computeAlpha
computeAlphaWinglncidence
computeAlphaDot

80 H computeBeta

H computeBetaDot

W computelift
60

B computeDrag

t / microseconds

B computeSideForce
40 3 * W computeBodyFrameForceFx

t J .t . B computeBodyFrameForceFy

W computeBodyFrameForceFz

:
20 :E !1;‘E

H computeUDot

computeVDot

i
ii . ____;_lil‘_i i _i_ ™ computeZDot

Figure 2: Processing performance of implemented methods.

395

t / microseconds

t / microseconds

400

350

300

250

200

150

100

50

Morlang, and Strassburger

Processing performance body frame velocities
no. of integration steps = 20

1000
900 - -
800
700 . ;
600 : - :
: : H B computeUAero
500 H
. B computeVAero
400 B computeZAero
300
200 —— ——
— — ——
§ 1
100
0
n = 10000
Figure 3: Processing performance body frame velocities.
Processing performance table look-up
N B Table with 5 rows, 3 columns
H Table with 10 rows, 3 columns
* ¥
:

n = 10000

Figure 4: Processing performance table look-up.

396

Morlang, and Strassburger

Euler angles to quaternions
60

50

B
Q

Tl
uC

t / microseconds
w
=3

N
(=]

10 - —

n = 10000

Figure 5: Processing performance Euler angles to quaternions.

The whole process of updating one step of a flight dynamics model can be summarized as computations
of the following values (Allerton 2009):

angles of attack and sideslip
coefficients of aecrodynamic forces
aerodynamic moments in pitch, roll and yaw
body lift, drag and side force

engine forces and moments

gear forces and moments

body frame forces

body frame accelerations

body frame aerodynamic velocities
wind components

turbulence components

earth velocities

latitude and longitude rates

aircraft position

body rates in stability axes

body frame moments in stability axes
body frame moments in the body frame
body frame angular accelerations
body rates

quaternions

direction cosine matrix

Euler angles

397

Morlang, and Strassburger

These calculations cover three computation types, table-lookup, numerical integration as well as simple
ones containing only additive, trigonometric and multiplication terms. Table 2 gives estimations about the
processing times for one flight dynamics model calculation step based on the maximum outlier and average
values of Figure 2 to Figure 5.

Table 2: Processing time estimations based on the maximum and average values.

Computation
Type

No.

Processing Time (maximum)

Processing Time (average)

Simple 48

(48 * 120) microseconds = 5760
microseconds

(48 * 5) microseconds = 240
microseconds

Table Look-Up 48

(48 * 400) microseconds = 19200
microseconds

(48 * 50) microseconds = 2400
microseconds

Integration 13 | (13 * 1000) microseconds = 13000 (13 * 200) microseconds = 2600
microseconds microseconds
Sum 37960 microseconds 5240 microseconds

A 60 Hz flight dynamics model rate requests an update every 16666 microseconds. The processing time
estimations (Table 2) reveal that the pure Tcl code approach is not capable of fulfilling hard real-time
conditions, where the 16666 microseconds deadline must always be met, but that soft real-time needs can
be fulfilled. Hard real-time means that no deadline failures are allowed (Jensen 1994), whereas soft real-
time permits limit misses (Stangeland 2015).

5.2 Accuracy

Against the background of a lack of real test flight data, we have chosen a simulated X-Plane flight
simulator aircraft of the company X-Aerodynamics (X-Aerodynamics 2019a) as reference for accuracy
testing. X-plane has a high ranking in its physical fidelity (Craighead et al. 2007). The company X-
Aerodynamics is known to provide high-fidelity flight dynamics for own developments as well as for other
companies offering X-Plane flight simulator aircraft (X-Aerodynamics 2019b). For an accuracy test we
compared the lift during a 49 seconds level flight scenario (Figure 6) of the Tcl flight dynamics model with
the lift of a simulated Partenavia P68B aircraft (X-Aerodynamics 2019¢) in X-Plane. The deviation between
the two lift curves (Figure 6) ranges between 0.06% and 5.20%. This translates to an accuracy between
99.94% and 94.80% and lies above the 92.00% rated as a high-fidelity dynamic model by Do et al. (2023).

Lift vs. time for a level flight at
9700 ftmsl altitude of a Partenavia P68B aircraft

20000

15000

10000

Lift / N

5000

0
1 3 5 7 9111315171921 23 2527 29 31 33 35 37 39 41 43 45 47 49

time /s

=== X-Plane Tcl flight dynamics model

Figure 6: Lift comparison to X-Plane flight simulator reference.

398

Morlang, and Strassburger

6 CONCLUSION

This paper has identified the gap of a flight dynamics model extension package for the Tool Command
Language (Tcl). We have shown that a pure Tcl code extension development approach can meet the needs
for a 60 Hz soft real-time flight dynamics model without being forced to accelerate on C code level (Figure
1), but that a hard-real-time request cannot be fulfilled with a standard Windows 11 hard-/software setup in
combination with code based on pure Tcl. Typical calculation methods can benefit from a C accelerated
performance boost by a factor of ten. This shows the potential of solving the hard-real-time request / pure
Tcl bottleneck by replacing all exported script level methods of the extension by C accelerated counterparts
(Figure 1). A lift comparison scenario revealed a lift accuracy of high-fidelity level. Future work will focus
on the implementation of these C accelerated extension methods as well as optimization for the extension’s
usage in the context of distributed flight simulation development based on HLA. A future release of the
extension as part of the Tcllib (Kupries 2015) collection in combination with its conditions for use is
planned.

REFERENCES

AeroPython Team. 2016. PyFME Python Flight Mechanics Engine. https://pyfme.readthedocs.io/en/latest/, accessed 5™ June.

Allerton, D.J. 2009. Principles of Flight Simulation. Chichester: John Wiley & Sons.

Allerton, D.J. 2010. “The Impact of Flight Simulation in Aerospace”. The Aeronautical Journal 114(1162):747-756.

Bara, F., P. Capone, R. Monstein, S. Godio, and G. Guglieri. 2019. “Implementation of a Comprehensive Mathematical Model for
Tilt-rotor Real-time Flight Simulation”. In Proceedings of the 45th European Rotorcraft Forum, September 177-20%, Warsaw,
Poland, 880-892.

Berndt, J.S. 2004. “JSBSim: An Open Source Flight Dynamics Model in C+”. In Proceedings of the AIAA Modeling and Simulation
Technologies Conference and Exhibit, August 16M-19", Providence, USA, 1-27.

Cooke, J. M., M.J. Zyda, D.R. Pratt, and R.B. McGhee. 1992. “NPSNET: Flight Simulation Dynamic Modeling Using
Quaternions”. In Presence: Teleoperators & Virtual Environments, 1(4), 404-420. Monterey: Dudley Knox Library / Naval
Postgraduate School.

Craighead, J., R. Murphy, J. Burke, and B. Goldiez. 2007. “A Survey of Commercial & Open Source Unmanned Vehicle
Simulators”. In Proceedings of the 2007 IEE International Conference on Robotics and Automation, April 10"-14" Rome,
Italy, 852-857.

Do, M. H., C.E. Lin, and Y.C. Lay. 2023. “Validation of the Flight Dynamics Engine of the X-Plane Simulator in Comparison with
the Real Flight Data of the Quadrotor UAV Using CIFER”. Drones 7(9):548.

Eklund, J. M. and M.J. Korenberg. 2000. “Simulation of Aircraft Pilot Flight Controls Using Nonlinear System Identification”.
Simulation 75(2):72-81.

European Aviation Safety Agency. 2018. “Certification Specifications for Aeroplane Flight Simulation Training Devices”. CS-
FSTD(A).

Fellows, D. 2010. Adventures in TclOO. https://www.tclcommunityassociation.org/wub/proceedings/Proceedings-
2010/DonalFellows/Adventures-in-TclOO.pdf, accessed 26™ March 2025.

Ferreira da Silva, A. 2018. McFlight. https:/github.com/fsandre/mcflight, accessed 5™ June.

Flynt, C. 2012. Tcl/Tk: A Developer's Guide. Amsterdam: Elsevier.

Gaffney, K. P., M. Prammer, L. Brasfield, D.R. Hipp, D. Kennedy, and J.M. Patel. 2022. “SQLite: Past, Present, and Future”. In
Proceedings of the VLDB Endowment, 15(12).

Hipp, D.R. 2009. SQLite - The World's Most Popular TCL Extension.
http://www.tclcommunityassociation.org/wub/proceedings/Proceedings-2009/proceedings/sqlitetcl/tc12009-sqlite.pdf,
accessed 17" March 2025.

Jensen, E.D. 1994. “Eliminating the Hard/Soft Real-time Dichotomy”. Embedded Systems Programming 7(10):28-35.

Jia, Y. B. 2013. Quaternions and Rotations. https://graphics.stanford.edu/courses/cs348a-17-winter/Papers/quaternion.pdf,
accessed 19 June 2025.

Kupries, A. 2015. Plumbing the Kitchen Sink — The Tcl Standard Library.
https://www.tcl-lang.org/community/tcl2015/assets/talk8/Tcllib.pdf, accessed 18" March 2025.

Kupries, A. 2016. C Runtime In Tcl. https://www.tcl-lang.org/community/tcl2016/assets/talk35/critcl-paper.pdf, accessed 17
March 2025.

Laminar Research. 2025a. XPlane12. https://www.x-plane.com/, accessed 3 April.

Laminar Research. 2025b. How X-Plane Works. https://www.x-plane.com/desktop/how-x-plane-works/, accessed 3™ April.

Landers, S., J.C. Wippler. 2002. CriTcl - Beyond Stubs and Compilers.
http://www.tcl-lang.org/community/tc12002/archive/Tcl2002papers/wippler-critcl/critcl.pdf, accessed 17" March 2025.

399

https://pyfme.readthedocs.io/en/latest/
https://www.tclcommunityassociation.org/wub/proceedings/Proceedings-2010/DonalFellows/Adventures-in-TclOO.pdf
https://www.tclcommunityassociation.org/wub/proceedings/Proceedings-2010/DonalFellows/Adventures-in-TclOO.pdf
https://github.com/fsandre/mcflight
http://www.tclcommunityassociation.org/wub/proceedings/Proceedings-2009/proceedings/sqlitetcl/tcl2009-sqlite.pdf
https://graphics.stanford.edu/courses/cs348a-17-winter/Papers/quaternion.pdf
https://www.tcl-lang.org/community/tcl2015/assets/talk8/Tcllib.pdf
https://www.tcl-lang.org/community/tcl2016/assets/talk35/critcl-paper.pdf
https://www.x-plane.com/
https://www.x-plane.com/desktop/how-x-plane-works/
http://www.tcl-lang.org/community/tcl2002/archive/Tcl2002papers/wippler-critcl/critcl.pdf

Morlang, and Strassburger

Litt, J.S., T.S. Sowers, H. Buescher, and R. Jansen. 2022. “Implementation Approach for an Electrified Aircraft Concept Vehicle
in a Research Flight Simulator”. In AIAA SCITECH 2022 Forum, p. 2306.

Markus, A. 2004. math::calculus - Integration and Ordinary Differential Equations. https://core.tcl-
lang.org/tcllib/doc/trunk/embedded/md/tcllib/files/modules/math/calculus.md, accessed 26™ March 2025.

Markus, A. and K.B. Kenny. 2004. math::interpolate - Interpolation Routines. https://core.tcl-
lang.org/tcllib/doc/trunk/embedded/md/tcllib/files/modules/math/interpolate.md, accessed 27 March 2025.

Marshall, S.R., V.I. Chung, and D. Martinez. 1995. Transport Delays Associated with the NASA Langley Flight Simulation
Facility. https://ntrs.nasa.gov/api/citations/19950023033/downloads/19950023033.pdf, accessed 25" March 2025.

Meng, K.W., M.C. Hung, D.L. Yang, and Y.C. Chung. 2008. “Implementation of an Intelligent HLA-Compliant Application
Layer Gateway for Real-Time Flight Simulation”. In Proceedings of the 8" International Conference on Intelligent Systems
Design and Applications, November 26M-28™ Kaohsiung, Taiwan, 421-426.

Morlang, F. 2022. “Rocket Engine—A Rocket Engine Propulsion Package In The Tool Command Language (Tcl)”. Webology
19(3): 1665—1673.

Morlang, F. 2023. “Atmosim: An Atmosphere Simulation Package in the Tool Command Language (Tcl)”. Tuijin Jishu/Journal
of Propulsion Technology 44(4):43-52.

Morlang, F. and S. Strassburger. 2024. “The Space Liner Federation — Distributed Space Vehicle Simulation Based on Loose
Coupling”. In Proceedings of the 2024 IEEE Aerospace Conference, March 2"-9" Big Sky, USA, 1-7.

Nadkarni, A.P. 2025. Magicsplat Tcl/Tk for Windows.
https://www.magicsplat.com/tcl-installer/index.html, accessed 27" March 2025.

Ousterhout, J.K. 1991. “An X11 Toolkit Based on the Tcl Language”. In Proceedings of the Winter 1991 USENIX Conference,
January 21%-25™, Dallas, USA, 105-116.

Perdana, M. R. 2025. Quaternion-Based Representation of Aircraft Rotation in 3D Navigation Systems Using X-Plane 12
Simulation. https://www.researchgate.net/publication/388451912 Quaternion-

Based Representation of Aircraft Rotation in 3D Navigation Systems Using X-Plane 12 Simulation, accessed 19™
June 2025.

Perry, A.R. 2004. The FlightGear Flight Simulator.
https://www.usenix.org/legacy/events/usenix04/tech/sigs/full papers/perry/perry.pdf, accessed 25% March 2025.

Primatesta, S., F. Barra, F. Godio, S. Guglieri, and P. Capone. 2023. “Implementation of a Comprehensive Real-time Flight
Simulator for XV-15 Tilt-rotor Aircraft”. In AIAA SCITECH 2023 Forum, p. 0336.

Shoemake, K. 1985. “Animating Rotation with Quaternion Curves”. In Proceedings of the 12" annual conference on Computer
graphics and interactive techniques, July 22"-26%, San Francisco, USA, 245-254.

Stangeland, N. 2015. “Alternatives to Classic Real Time - A Literature Study”. Master's thesis, Department of Engineering
Cybernetics, Norwegian University of Science and Technology, Trondheim.

Stengel, R.F. 2022. Flight Dynamics. Princeton: Princeton University Press.

The MathWorks, Inc. 2025. Aerospace Toolbox. https://www.mathworks.com/products/aerospace-toolbox.html, accessed 5™ June.

Welch, B., M. Thomas. 2000. The Tcl Extension Architecture.
https://www.usenix.org/legacy/publications/library/proceedings/tcl2k/full _papers/welchextension/welchextension.pdf,
accessed 18" March 2025.

Willis, C.A. 2021. Two Published Flight Dynamics Models Rewritten in Rust and Structures as an ECS.
https://scholar.afit.edu/cgi/viewcontent.cgi?article=59 14&context=ctd, accessed 25™ March 2025

Woods, D.W. 2017. Odielib: A C Accelerated Math Library for Tcl.
https://www.tcl-lang.org/community/tcl2017/assets/talk96/Paper.pdf, accessed 17" March 2025.

X-Aerodynamics. 2019a. X-Aerodynamics - About X-Aerodynamics. https:/www.x-aerodynamics.com/about-x-aero, accessed
17% June 2025.

X-Aerodynamics. 2019b. X-Aerodynamics - X-Aero Projects. https://www.x-acrodynamics.com/portfolio, accessed 17™ June
2025.

X-Aerodynamics. 2019¢. X-Aerodynamics - X-Aero Products - Partenavia P68B Aircraft. https://www.x-
aerodynamics.com/copy-of-portfolio, accessed 17™ June 2025.

400

https://core.tcl-lang.org/tcllib/doc/trunk/embedded/md/tcllib/files/modules/math/calculus.md
https://core.tcl-lang.org/tcllib/doc/trunk/embedded/md/tcllib/files/modules/math/calculus.md
https://core.tcl-lang.org/tcllib/doc/trunk/embedded/md/tcllib/files/modules/math/interpolate.md
https://core.tcl-lang.org/tcllib/doc/trunk/embedded/md/tcllib/files/modules/math/interpolate.md
https://ntrs.nasa.gov/api/citations/19950023033/downloads/19950023033.pdf
https://www.magicsplat.com/tcl-installer/index.html
https://www.researchgate.net/publication/388451912_Quaternion-Based_Representation_of_Aircraft_Rotation_in_3D_Navigation_Systems_Using_X-Plane_12_Simulation
https://www.researchgate.net/publication/388451912_Quaternion-Based_Representation_of_Aircraft_Rotation_in_3D_Navigation_Systems_Using_X-Plane_12_Simulation
https://www.usenix.org/legacy/events/usenix04/tech/sigs/full_papers/perry/perry.pdf
https://www.mathworks.com/products/aerospace-toolbox.html
https://www.usenix.org/legacy/publications/library/proceedings/tcl2k/full_papers/welchextension/welchextension.pdf
https://scholar.afit.edu/cgi/viewcontent.cgi?article=5914&context=etd
https://www.tcl-lang.org/community/tcl2017/assets/talk96/Paper.pdf
https://www.x-aerodynamics.com/about-x-aero
https://www.x-aerodynamics.com/portfolio
https://www.x-aerodynamics.com/copy-of-portfolio
https://www.x-aerodynamics.com/copy-of-portfolio

Morlang, and Strassburger
AUTHOR BIOGRAPHIES

FRANK MORLANG is a researcher in the area of real-time simulation. He earned his Diploma Degree in Materials Science at
Technical University of Darmstadt, Germany. His research interests include air traffic management and flight simulation and the
traffic integration of future suborbital winged passenger transport vehicles in normal air traffic. His private e-mail address is
frank.morlang@freenet.de.

STEFFEN STRASSBURGER is a professor at the Ilmenau University of Technology and head of the Group for Information
Technology in Production and Logistics. Previously he was head of the "Virtual Development”" department at the Fraunhofer
Institute in Magdeburg, Germany and a researcher at the Daimler Chrysler Research Center in Ulm, Germany. He holds a Doctoral
and a Diploma degree in Computer Science from the University of Magdeburg, Germany. He has been involved with HLA-based
distributed simulation since 1997. His further research interests include automatic simulation model generation and general
interoperability topics within the digital factory and Industry 4.0 context. His email address is steffen.strassburger@tu-ilmenau.de.

401

mailto:frank.morlang@freenet.de
mailto:steffen.strassburger@tu-ilmenau.de

	032-con147s3-file1

