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ABSTRACT 

This paper introduces a methodology for simulating flight dynamics utilizing the Tool Command Language 
(Tcl). Tcl, created by John Ousterhout, was conceived as an embeddable scripting language for an 
experimental Computer Aided Design (CAD) system. Tcl, a mature and maturing language recognized for 
its simplicity, versatility, and extensibility, is a compelling contender for the integration of flight dynamics 
functionalities. The work presents an extension method utilizing Tcl's adaptability for a novel type of flight 

simulation programming. Initial test findings demonstrate performance appropriate for the creation of 
human-in-the-loop real-time flight simulations. The possibility for efficient and precise modeling of future 
complicated distributed simulation elements is discussed, and recommendations regarding subsequent 
development priorities are drawn. 

1 INTRODUCTION 

Tcl was created by Dr. John Ousterhout in the late 1980s at the University of California at Berkeley (Flynt 

2012). He and his team were involved in work related to enhancing simulations with macro languages. 
After the realization of several project specific solutions that were incompatible for other projects, they 
decided to develop an interpreter language that could be easily extended with new functionalities and usable 
with any project. This reveals that Tcl has its roots in the simulation domain. With Tcl, existing project 
libraries can be turned into new commands within Tcl itself. Such a set then represents a language for the 
domain specific application to be created. With its ease of integration with C and C++ and its compatibility 

with further programming languages, Tcl is the ideal choice for a fundament a flight simulation scripting 
language can be built on. 

The non-linear equations of flight mechanics serve as the foundation for modeling flight dynamics 
(Stengel 2022). Consideration is given to the external forces and moments for gravity, propulsion, and 
aerodynamics. The coefficients of aerodynamic force and moment are parametrized as nonlinear functions 
of the following: dynamic pressure, aircraft slats/flaps configuration, angular velocities, control surface 

deflections, and flying circumstances (Mach number (M) or Angle of Attack (AoA). These are computed 
with the help of look-up tables that are built at regular locations throughout the whole flight domain. The 
use of quaternions for aircraft orientation representation is a key component that insures the prevention of 
large data rates and singularities comparable to the more popular Euler angle representation of orientation 
(Cooke et al. 1992). 

Look-up tables replace intensive runtime computations with simpler data retrieval and row/column 

indexing operations. Both, the processing burden and the execution times are improved as a result of this. 
To summarize the benefits of employing table look-up, the following are some of the advantages: 
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• The process of retrieving a table value is far more efficient than carrying out complex calculations. 
When real-time simulations are taken into consideration, this acceleration can be of great 
significance. 

• Complex computations are abstracted away into a direct data retrieval procedure, which results in 
a reduction in memory usage. This reduction in the necessity for calculation repetitions also benefits 
the CPU load. The abstraction makes the software codebase easier to understand. 

• Modification and expansion need of the simulation model can easily be fulfilled by changed or 
added table entries. 

 

Quaternions, which Sir William Rowan Hamilton discovered in 1843 while looking for a generalization 
of complex numbers, offer a useful way to update orientations (Shoemake 1985). They are particularly 
useful in three-dimensional computer graphics, robotics, and physics, as they provide a way to represent 
rotations in three-dimensional space without suffering from the gimbal lock problem that can occur with 
Euler angles. A quaternion is more concise in comparison to a rotation matrix (Jia 2013), provides smoother 
interpolation, and requires less computational resources (Perdana 2025). 

The fact that no available flight dynamics model extension for Tcl currently exists founded the 
motivation for an own development. Further usage is designated to future programming tasks in the area of 
human-in-the-loop real-time flight simulations, especially with a focus on distributed simulation, where 
loosely coupled approaches based on Tcl are subject of current development work (Morlang and 
Strassburger 2024) integrating the commercial flight simulation software “X-Plane” (Laminar Research 
2025a) in a Web Live, Virtual and Constructive (WebLVC) / High Level Architecture (HLA) environment. 

X-Plane derives its flight dynamics model from an aircraft’s geometry wireframe using a process called 
“blade element theory” (Laminar Research 2025b).  A Tcl based table look-up data driven simulation 
solution perfectly fits in as an addition to the X-Plane component. The objective of this paper is to assess 
to what extent a pure Tcl code flight dynamics extension can fulfill real-time simulation requirements and 
to identify the computation acceleration potential of fragments developed in C. 

The other sections of this paper are structured as follows. Section 2 gives an overview about related 

work and exposes the addressed gap. Section 3 describes the derivation of the requirements for the rate at 
which the model has to recalculate the aircraft's dynamics. Section 4 presents implementation details of a 
first flight dynamics Tcl extension version describing exported methods as well as the realization of an 
additional C accelerated complement. Performance results are presented and discussed in section 5. Section 
6 closes with a conclusion containing an outlook to next steps. 

2 RELATED WORK AND ADDRESSED GAP 

Extensions to Tcl are modules that extend Tcl’s core functionalities. Their architecture is described in 
Welch and Thomas (2000). In general, one can distinguish between two types of them: 

 
• Extensions that are written in Tcl itself. They are a pragmatic way to enhance Tcl by domain 

specific commands when high performance of computationally intensive needs is not of utmost 
importance. 

• Extensions that are written in C or C++ that cover tasks where high-performance processing is 
requested. 

 
 Extensions form an essential character of the Tcl programming language, where an easy syntax with a 
small command set can be significantly enhanced to tailored solutions, thus representing the special 
adaptability and flexibility of this programming language. One important feature of extensions is their 

ability to be used as components for the development of other extensions. The following gives an overview 
about some of Tcl’s relevant extensions. 
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Tcl is in most cases referred as Tcl/Tk. This reveals Tcl’s elemental extension from the very beginning 
named Tk (Toolkit) (Ousterhout 1991). Tk is a graphical user interface framework extension for Tcl 
providing various widgets and their associated event bindings. 

An important collection of Tcl extensions is called Tcllib and can be regarded as a kind of reference 
source for extensions covering over 400 packages in over 100 modules (Kupries 2015). The intention of 
Tcllib is to gather often needed functions from a broad variety of domains in one sink to be regarded and 
used by developers as one source to rely on with respect to stability and availability. 

One of the most widely deployed database engines called SQLite has its roots as an extension to Tcl 
(Gaffney et al. 2022). It is the only SQL database engine specifically designed to work with Tcl (Hipp 

2009). One of SQLite’s features is its server lessness, a full-featured SQL implementation where a complete 
database is stored in a single disk file. 

Developing Tcl extensions in C or C++ can benefit from a special extension itself, called CriTcl 
(Landers and Wippler 2002). Originally developed as a package which embedded C fragments in Tcl code 
with the need of C compilation at runtime, today its features allow to compile the C code once and then 
distribute it as an extension without the need of compilation at runtime (Kupries 2016). 

A mathematical framework extension called Odielib performs 2d and 3d graphics related math 
operations in a C accelerated way (Woods 2017). Vectors and matrices optimized for a 4x4 affine 
transformation are the internal fundamental representation of the extension’s functions. Among other math 
domains Odielib supports quaternions. 

Rocket Engine (Morlang 2022) and Atmosim (Morlang 2023) are two flight simulation related 
extensions developed in pure Tcl code. The Rocket Engine extension arose from the need for a transition 

from a spacecraft thrustless flight dynamics model to a rocket-propelled one in order to perform thrustless 
descent/approach trajectory analyses as well as rocket-propelled ascent phase investigations. The Atmosim 
extension has been realized to facilitate the development of an atmosphere HLA federate application in Tcl. 

The use of scripting languages in the field of six degrees of freedom (6DOF) flight dynamics covers 
several target programming languages. For instance, the Python Flight Mechanics Engine (AeroPython 
Team 2016) provides an Application Programming Interface (API) with several packages to model 

aircraft’s flight physics. The Aerospace Toolbox (The MathWorks, Inc. 2025) delivers aerospace math 
related functions for the MATLAB scripting language. McFlight (Ferreira da Silva 2018) is a collection of 
F-16 Fighting Falcon aircraft model scripts for the high-level, numerically oriented programming language 
Scilab. 

JSBSim (Berndt 2004) is an open-source flight dynamics model. Its usage potential covers two use 
cases. On the one hand, it can be used in an end-user-friendly way as a standalone application; on the other 

hand, it can act as a library to be fused in larger simulation frameworks, like its integration into the 
FlightGear (Perry 2004) open-source flight simulator as the default flight physics engine. In standalone 
mode, aircraft specifics must be configured in Extensible Markup Language (XML) input files. For 
integration purposes, it has to be used as a C++ software library with the associated complexity of 
dependencies on other libraries, linking and compilation. 

This work addresses the gap of an available flight dynamics model extension to bring flight physics to 

the Tcl world on pure scripting level to be combined with other Tcl extensions for facing the challenge of 
larger distributed simulation needs. 

3 METHOD 

The approach for the realization of a flight dynamics model extension for Tcl is shown in Figure 1. At first, 
the equations of motions are implemented in pure Tcl. Secondly, if the performance is not sufficient, parts 
are rewritten in C and used as CriTcl packages (Kupries 2016) inside the extension to replace the pure Tcl 

counterparts until the model update rate fulfills the requirement. Update rate refers to the frequency at which 
a flight dynamics model updates its calculations to predict the motion of an aircraft. What is this requirement 
or in other words: what does “>= X Hz ?” (Figure 1) mean? 
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An answer to this question can be derived from Table 1 which gives an overview of some flight 

simulation related work and the addressed flight dynamics model update rates. Especially Eklund and 
Korenberg (2000) refer to 60 Hz as “the industry standard”. Against this background, we take a flight 
dynamics model update of 60 Hz as the core requirement in our approach (Figure 1). 

Table 1: Flight dynamics model update rates in literature. 

Reference Flight Dynamics Model 

Update Rate 

Allerton (2010) 50 Hz 

Cooke et al. (1992) 54/57 Hz (mentioning of every 
17.6/18.8 ms in the reference) 

Eklund and Korenberg (2000) 60 Hz 

European Aviation Safety 
Agency (2018) 

60 Hz 

Litt et al. (2022) 60 Hz 

Marshall et al. (1995) 31.25/33/40/62.5 Hz 

Meng et al. (2008) 60 Hz 

Perry (2004) 60 Hz (mentioning of in 1/60th 
of a second in the reference) 

Primatesta et al. (2023) 50/60 Hz 

Willis (2021) 30 Hz 

4 IMPLEMENTATION 

The extension bases on the Tcl object system TclOO (Fellows 2010) and uses math::calculus (Markus 

2004), a sub-module of Tcllib (Kupries 2015) which implements, among other algorithms, the integration 
of a function over an interval. Exported methods, that can be invoked from outside the object’s context, 

Figure 1: Method of the extension development. 
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start with a lower-case letter, whereas private methods start with an upper-case letter. Private methods can 
only be used from another method in the class. So far, we implemented the following exported methods: 
 

• computeAirspeed 
o This method computes the speed of the aircraft’s center of gravity in component form of 

the linear velocities defined in the aircraft body axes. 
• computeAlpha 

o This method computes the aircraft’s angle of attack with respect to the aircraft body axes. 
• computeAlphaWingIncidence 

o This method just adds the wing incidence to alpha. This is done to consider that the wing 
can be offset referring to the aircraft axes. In addition, there can be a twist along the wing 
reducing the actual angle of attack of the wing. 

• computeAlphaDot 
o This method computes the time derivative of the aircraft’s angle of attack. 

• computeBeta 

o This method computes the sideslip angle. 
• computeBetaDot 

o o This method computes the time derivative of the sideslip angle. 
• computeLift 

o This method computes the lift generated by an airfoil. 
• computeDrag 

o This method computes the drag generated by an airfoil. 
• computeSideForce 

o This method computes the side force. When viewed from above and the fuselage of the 
aircraft is not aligned with the direction of flight, there will be an incident angle with the 
wind. As a consequence, the fuselage generates a force in the direction along the wing. 

• Computation of the body frame forces 

o These are computed from the aerodynamic and propulsive terms. 
▪ computeBodyFrameForceFx 
▪ computeBodyFrameForceFy 
▪ computeBodyFrameForceFz 

• U,V,Z relevance (U is the velocity in the forward direction along the aircraft fuselage, V is the 
velocity along the starboard wing direction and Z refers to the velocity along the direction 

perpendicular to the underside of the aircraft fuselage.) 
o Computation of the body frame accelerations 

▪ These are derived from the body frame forces. 
• computeUDot 
• computeVDot 
• computeZDot 

o Computation of the body frame aerodynamic velocities 
▪ These are integrated from the body frame accelerations. 

• computeUAero 
• computeVAero  
• computeZAero 

  

 All these methods are bundled in a TclOO class named fdmModel in a file named fdmTcl.tcl. To use 
the extension, one has to source the file with “source fdmTcl.tcl” and create an object of the class 
fdmModel, e.g. with “set appobj [fdmModel new]”. After that, the methods can be invoked in an ensemble 
command form of OBJECT METHODNAME args…, e.g. “set airspeed [$appobj computeAirspeed $u $v 
$z]”. 
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In addition to these methods, we implemented a table-look realization in Tcl based on math::interpolate 
(Markus and Kenny 2004) and Euler angles to Quaternions conversion. Converting Euler angles to 
quaternions and back is a common practice in flight simulation. On the one hand, the conversion to 

quaternions avoids gimbal lock and is associated with an improved numerical stability in large rotation or 
high frequency update situations; on the other hand, the conversion back to Euler angles is often needed for 
simplified aircraft orientation visualization of flight dynamics accompanying components (e.g. image 
generator). To get a first idea about the C acceleration potential, we developed an additional C accelerated 
(Figure 1) Euler angles to Quaternions conversion counterpart as CriTcl package inside the Tcl extension. 
This was realized with CriTcl’s critcl::cproc functionality which defines a C function and sets up the 

corresponding Tcl command (Landers and Wippler 2002). With that, the CriTcl package mode was used to 
generate a package using the C part as a shared library, invokable as an added command inside the Tcl 
extension. 

5 RESULTS 

5.1 Performance 

First processing performance results refer to an experimental setup of a Windows 11 Enterprise OS machine 

with Intel® Core™ i7-8650U CPU at 1.9 GHz and 32 GB RAM running Magicsplat Tcl/Tk 8.6.16 for 
Windows (Nadkarni 2025). The tests refer to a data-driven approach of a generic aircraft case assuming the 
existence and availability of proper tables and performance data (e.g. lift and drag coefficients representing 
airfoil specifics) for the aircraft under consideration. Figure 2 to Figure 5 show the processing performance 
of the implemented exported methods of the developed flight dynamics model Tcl extension. Methods 
neither containing numerical integration nor table look-up are consolidated in Figure 2. Their processing 

performance never exceeded 120 microseconds (Figure 2). The computation methods of the body frame 
aerodynamic velocities are presented in Figure 3. These contain numerical integration from the body frame 
accelerations and remained below 1000 microseconds (Figure 3). Targeting a flight dynamics model update 
rate of 60 Hz, we have chosen 20 integration steps, because this means 1200 integrations per second, where 
even a sampling frequency of 200 Hz can be considered acceptable (Bara et al. 2019). Two interpolating 
table look-up pure Tcl code implementations, differing in a doubled row count, are gathered in Figure 4. 

Outliers of their processing performance never surpassed 400 microseconds (Figure 4). To get an 
impression of the C acceleration potential we implemented two Euler angles to Quaternions conversions, 
one in pure Tcl and one with C acceleration code. We observed a boost factor of 10 (Figure 5). 
  
 

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

Figure 2: Processing performance of implemented methods. 
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Figure 3: Processing performance body frame velocities. 

Figure 4: Processing performance table look-up. 
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 The whole process of updating one step of a flight dynamics model can be summarized as computations 
of the following values (Allerton 2009): 

 
• angles of attack and sideslip 
• coefficients of aerodynamic forces 
• aerodynamic moments in pitch, roll and yaw 
• body lift, drag and side force 
• engine forces and moments 

• gear forces and moments 
• body frame forces 
• body frame accelerations 
• body frame aerodynamic velocities 
• wind components 
• turbulence components 

• earth velocities 
• latitude and longitude rates 
• aircraft position 
• body rates in stability axes 
• body frame moments in stability axes 
• body frame moments in the body frame 

• body frame angular accelerations 
• body rates 
• quaternions 
• direction cosine matrix 
• Euler angles 

Figure 5: Processing performance Euler angles to quaternions. 
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 These calculations cover three computation types, table-lookup, numerical integration as well as simple 
ones containing only additive, trigonometric and multiplication terms. Table 2 gives estimations about the 

processing times for one flight dynamics model calculation step based on the maximum outlier and average 
values of Figure 2 to Figure 5. 

Table 2: Processing time estimations based on the maximum and average values. 

Computation 

Type 
No. Processing Time (maximum) Processing Time (average) 

Simple 48 (48 * 120) microseconds =  5760 
microseconds 

(48 * 5) microseconds =  240 
microseconds 

Table Look-Up 48 (48 * 400) microseconds = 19200 
microseconds 

(48 * 50) microseconds = 2400 
microseconds 

Integration 13 (13 * 1000) microseconds = 13000 
microseconds 

(13 * 200) microseconds =  2600 
microseconds 

Sum 37960 microseconds 5240 microseconds 

 
 A 60 Hz flight dynamics model rate requests an update every 16666 microseconds. The processing time 
estimations (Table 2) reveal that the pure Tcl code approach is not capable of fulfilling hard real-time 
conditions, where the 16666 microseconds deadline must always be met, but that soft real-time needs can 
be fulfilled. Hard real-time means that no deadline failures are allowed (Jensen 1994), whereas soft real-
time permits limit misses (Stangeland 2015). 

5.2 Accuracy 

Against the background of a lack of real test flight data, we have chosen a simulated X-Plane flight 
simulator aircraft of the company X-Aerodynamics (X-Aerodynamics 2019a) as reference for accuracy 
testing. X-plane has a high ranking in its physical fidelity (Craighead et al. 2007). The company X-
Aerodynamics is known to provide high-fidelity flight dynamics for own developments as well as for other 
companies offering X-Plane flight simulator aircraft (X-Aerodynamics 2019b). For an accuracy test we 

compared the lift during a 49 seconds level flight scenario (Figure 6) of the Tcl flight dynamics model with 
the lift of a simulated Partenavia P68B aircraft (X-Aerodynamics 2019c) in X-Plane. The deviation between 
the two lift curves (Figure 6) ranges between 0.06% and 5.20%. This translates to an accuracy between 
99.94% and 94.80% and lies above the 92.00% rated as a high-fidelity dynamic model by Do et al. (2023). 

 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 

Figure 6: Lift comparison to X-Plane flight simulator reference. 
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6 CONCLUSION 

This paper has identified the gap of a flight dynamics model extension package for the Tool Command 
Language (Tcl). We have shown that a pure Tcl code extension development approach can meet the needs 

for a 60 Hz soft real-time flight dynamics model without being forced to accelerate on C code level (Figure 
1), but that a hard-real-time request cannot be fulfilled with a standard Windows 11 hard-/software setup in 
combination with code based on pure Tcl. Typical calculation methods can benefit from a C accelerated 
performance boost by a factor of ten. This shows the potential of solving the hard-real-time request / pure 
Tcl bottleneck by replacing all exported script level methods of the extension by C accelerated counterparts 
(Figure 1). A lift comparison scenario revealed a lift accuracy of high-fidelity level. Future work will focus 

on the implementation of these C accelerated extension methods as well as optimization for the extension’s 
usage in the context of distributed flight simulation development based on HLA. A future release of the 
extension as part of the Tcllib (Kupries 2015) collection in combination with its conditions for use is 
planned. 
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