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ABSTRACT

This paper investigates the sample efficient exploration policy for asynchronous Q-learning from the
perspective of uncertainty quantification. Although algorithms like e-greedy can balance exploration and
exploitation, their performances heavily depend on hyperparameter selection, and a systematic approach
to designing exploration policies remains an open question. Inspired by contextual Ranking and Selection
problems, we focus on optimizing the probability of correctly selecting optimal actions (PCS) rather
than merely estimating Q-values accurately. We establish a novel central limit theorem for asynchronous
Q-iterations, enabling the development of two strategies: (1) an optimization-based policy that seeks an
optimal computing budget allocation and (2) a parameter-based policy that selects from a parametrized
family of policies. Specifically, we propose minimizing an asymptotic proxy of Q-value uncertainty
with regularization. Experimental results on benchmark problems, including River Swim and Machine
Replacement, demonstrate that the proposed policies can effectively identify sample-efficient exploration
strategies.

1 INTRODUCTION

Reinforcement learning (RL) has advanced significantly by integrating deep learning techniques, achieving
remarkable success in large-scale sequential decision-making problems. Similar to deep learning models,
RL relies heavily on high-quality training data, making data collection a crucial factor, particularly for
online algorithms such as deep Q-learning (DQN, Mnih et al. 2015), soft actor-critic (SAC, Haarnoja et al.
2018), and twin delayed deep deterministic policy gradient (TD3, Fujimoto et al. 2018). In real-world
applications, data collection is often expensive and time-consuming, creating challenges for RL deployment.
Despite its importance, online data collection strategies in RL remain underexplored.

For off-policy algorithms such as Q-learning, the exploration policy plays a critical role in data collection.
Traditional approaches, such as the €-greedy and Boltzmann exploration policies for discrete action spaces
or Gaussian action noise for continuous spaces, help balance exploration and exploitation (see, Sutton 2018;
Szepesvdéri 2022). However, these methods often require hyperparameter tuning, which is problem-specific
and non-trivial. Their applications are largely confined in practice due to the unknown nature of the optimal
hyperparameter tailored for specific problems (Auer et al. 2002). When the hyperparameters are not
properly chosen, they may fail to ensure adequate exploration in complex environments. In a River Swim
problem (Strehl and Littman 2008; Osband et al. 2013), we empirically demonstrate that greedy-guided
policies, which predominantly sample the best-estimated action while rarely exploring suboptimal ones, can
fail to visit the entire state space within a reasonable simulation budget, leading to poor Q-value estimates.

In this paper, we aim to improve data efficiency in RL by proposing a systematic approach to designing
exploration policies. Our focus is on asynchronous Q-learning, where only the Q-value of the current
state-action pair is updated at each step. This means that the exploration policy not only governs state-action
transitions but also influences the frequency of Q-value updates, further underscoring the importance of
exploration design.
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We establish a novel central limit theorem (CLT) for asynchronous Q-learning. In the framework
of temporal difference (TD) learning, Q-learning can be viewed as a Robbins-Monro type stochastic
approximation method (Robbins and Monro 1951) for fixed-point finding problems. Although CLTs have
previously been developed for similar algorithms, existing results typically require either global twice
differentiability of the mean field (e.g., Fort 2015; Borkar et al. 2024) or rely on mathematically intractable
moments of the temporal difference errors (e.g., Hu et al. 2024). Our contribution lies in addressing the
non-smooth characteristics of the Q-learning mean field and deriving a closed-form expression for the
asymptotic variance of the estimated Q-values. We also note that asynchronous reinforcement learning
algorithms can naturally support parallelism to improve exploration through diverse starting points (Mnih
2016). At the same time, the design of exploration strategies for each parallel agent remains a nuanced
issue that may benefit from further investigation.

We frame the problem of designing sample-efficient exploration policies through the theoretical lens of
contextual Ranking and Selection (CR&S, Shi et al. 2023; Du et al. 2024; Li et al. 2024). The objective
in CR&S is to maximize the probability of correctly selecting the best alternative rather than precisely
estimating the mean performance of all alternatives. Analogously, we model online data collection as
a best-action identification problem, recognizing that it requires significantly more samples to achieve a
certain level of statistical accuracy in Q-values than to reach a good level of PCS. This insight motivates our
approach of maximizing the probability of correctly identifying the optimal action a*(s) when it comes to
RL, where a*(s) represents a maximizer of the action value given a state s and will shortly be introduced.

Inspired by the Ranking and Selection literature, which links the rate of decay of the probability of
incorrect selection (PCS) to a signal-to-noise ratio (Chen 1995; Glynn and Juneja 2004), we propose an
exploration policy similar to Zhu et al. (2023), that minimizes the relative asymptotic uncertainty of Q-value
differences between the best and suboptimal actions. This asymptotic uncertainty is a proxy for PCS, guiding
more effective action exploration. Unlike standard CR&S problems, where both states and actions can be
freely sampled, exploration in Q-learning is constrained by state transitions dictated by the environment.
As a result, the finite-sample behavior of Q-value estimates can differ significantly from their asymptotic
behavior. This stands in sharp contrast to the behavior of independent and identically distributed (i.i.d.)
sample averages, where such discrepancies are typically much smaller and better understood. To address
this, we introduce a regularization term to the signal-to-noise index, penalizing cases where state-action
pairs receive insufficient samples.

Leveraging this regularized index, we develop two exploration strategies: (1) an optimization-based
policy that searches for an optimal computing budget allocation within a general policy space and (2) a
parameter-based policy that searches among a finite set of parametrized policies, such as the family of
e-greedy policies. The proposed methods are fully adaptive and require no prior knowledge of the problem
instances. Our experimental results demonstrate that the proposed adaptive methods perform at least as
well as, if not better than, conventional strategies with post hoc optimal hyperparameters, highlighting their
promise for practical applications.

The remainder of this paper is structured as follows. Section 2 reviews the asynchronous Q-learning
algorithm and presents our novel central limit theorem. Section 3 introduces our proposed exploration
policies. Section 4 evaluates these policies through experiments on the River Swim and Machine Replacement
problems. Section 5 concludes with future research directions.

2 ASYNCHRONOUS Q-LEARNING

Consider a discounted infinite-horizon Markov decision process (MDP) defined by the tuple (.7, <7, R, P,y),
where .’ and .o/ are state space and action space, respectively, R : . x & — R is the mean reward function,
P is the transition probability, and y € (0, 1) is the discount factor. Let S := |.#| and A := |</|. The total
number of state-action pairs is denoted as D = |.¥ x .o/ | = SA. Define r(s,a) as the random reward received
after taking action a in state s, and thus the mean is E[r(s,a)] = R(s,a) and the variance is further denoted
by 02(s,a). For the transition probability P: .7 x o/ — A(%), each tow Py, := (P 4(-)) represents
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the probability vector over the next states given (s,a). Here A(”) denotes the family of probability
measures over .. For simplicity, we label states and actions in numerical order and organize matrix entries
lexicographically. That is, the ((s —1)A+a— 1)-th row or column corresponds to the (s,a) pair.

We assume a stationary exploration policy 7, where 7(als) denotes the probability of taking action a
in state s. For such a stationary policy 7, the projection matrix IT* € RS*P is defined as:

m(|1)"
" = diag{z(-|)",...,x(-|$)"} =
m(:|$)"

Then, the probability transition matrices for state-action pairs and state sequences are given by:
P":=PII" c RP*P, and P, :=IT"Pc RS,

We will use matrices in bold symbols as probability measures and integral operators interchangeably when
no confusion arises.

At each step ¢ > 1, the agent observes the current environment state s;, selects an action a, ~ 7(-|s;),
and receives a reward r;(s;,a,), which is an independent sample of r(s;,a;). The next state is then sampled
as i1 ~ P, 4,(+). We assume that r,(s;,a;) and s,4 are independent of each other conditional on (s;,a;).
The asynchronous Q-learning algorithm updates the Q-value using the rule:

0/5:0) = 0150+ 0 1{(5.0) = 50)} (o) + 15 015010 = Q11 50 )

where o € [0, 1] is the step size. With this updating formula, only the Q-value corresponding to the current
state-action pair is updated at each step. For simplicity, we consider a widely applied polynomial step size
0y = kP /(t+k)P for some fixed k >0and 1/2<p <1.

2.1 Asymptotic variance based on Borkar-Meyn theorem

We establish a central limit theorem (CLT) for Q; by modeling Q-learning as a stochastic approximation
recursion Q11 = O; + Q11 f(Q;,Dr41), where @, is a Markov chain with stationary distribution p. This
recursion aims to find the root of the problem Eq,~y[f(-,®;)] = 0. For Q-learning, the Markov chain is
D, = (8¢, a, 1, 5141), with stationary distribution (i (s;, ar, B, s;11) = A(s¢,a; ) P(r: € Bls;,a;) Py, o, (5:41) for any
Borel set B, where A (s;,a,) = i(s;,a,,R,.#) denotes the stationary distribution of (s;,a,), and f : R — RP
is given by f;4(Q,®;) = 1{(s,a) = (s,a;) } (r, + maxye oy Q(s141,a") — O(se,ar)).

Under the following assumption, we ensure the ergodicity of the Markov chain (s;,q,), guaranteeing
the stationary distribution u is well-defined.

Assumption 1 The Markov chain (s;,a,) induced by P" under policy 7(als) is aperiodic and irreducible.

Assumption 1 implies that A (s,a) exists, is unique, and strictly positive for all (s,a). Given this, the Q-
learning recursion converges almost surely to Q* (Borkar and Meyn 2000), the solution to E,~y [f (-, ®;)] =0,
which coincides with the optimal action-value function associated with the optimal action policy a*(s) :=
argmax Q*(s,a).

We establish a novel CLT for the normalized Q-values (Q; — Q*)//0; using an ordinary differential
equation technique following Borkar et al. (2024), which establishes a CLT for stochastic approximation
recursions by assuming the global smoothness of f. Some notations are necessary before introducing the
asymptotic variance. Let f:RP — RP be given by f(Q) := Eq,~u[f(Q,®:)]. The vector-valued function
f is also known as the mean flow of the recursion, representing the mean update of Q; in the long run.
Moreover, let A := J f(Q*) denote the Jacobian matrix of f, which reflects the marginal contribution of the
estimation of Q-table to the mean flow. The following assumption is made to ensure the existence of A.

Assumption 2 For any state s € ., argmax,c s Q*(s,a) is unique.
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Assumption 2 is commonly used in the analysis of Q-learning. Then, we have the following lemma
that ensures the local differentiability of f.

Lemma 1 Under Assumption 2, A is well-defined and is equal to A(yP® —1I), where A is a diagonal
matrix with the (s,a)-th entry being A(s,a).

Proof.  Fix a positive constant € < Q*(s,a(s)) — MaXye o\ {a+(s)} @ (5), Vs € . The constant € exists
due to Assumption 1. For (s,a) € . x &/ given, if ||Q — Q*||« < €, then it follows immediately that
max,eq O(s,a) = Q(s,a*(s)) =: V(s). For such Q, it follows by the definition of f;, that,

fva(Q) =Eo,~u [1{(s,a) = (sy,a1) } (r1(se,a1) + YO (s141,a" (5141)) — O(s1, )]
= E(y.a)-2 [1{(5,0) = (50,0)} (R(s5,0) +PPraV — Q(s.a)]
= ),(s,a) (R(S, Cl) + '}/Ps,av - Q(S7a)) )

where the second equality follows from the iterated law of expectations. Then, for any (s',d') € ¥ x &, it
follows from the definition of V that aQ 7 fs a(Q)=A(s,a)(YPso(s)1{d =a*(s')} —1{(s,a) = (s,d")}) =

As,a)(PPT,(s',a') = 1{(s,a) = (s',d)}). H

Now, define f(Q,®) := f(Q, D) — f(Q) as a noise by which the update of Q-table deviates from the
mean flow, and define §1(Q) := f(Q,Dr41) — E [f(Q,CID,H)‘CIDt]. And denote

Yo =Egnp [Czﬂ(Q*)CzH(Q*)T}

as the stationary variance of ;1. The Borkar-Meyn theorem (Borkar et al. 2024) characterizes the
asymptotic variance of (Q, — Q*)/,/0 as the solution to the Lyapunov equation

1 1 T
|:2OCI+A:| ZQ—l-EQ [ (XI+A:| +EC:O’ (D)

for some constant o. However, their analysis for general stochastic approximation involves decomposing
f as the sum of a martingale difference sequence and a residual term, utilizing a Poisson equation, and
consequently, ¢ cannot be characterized in closed form. Moreover, they require f to be globally twice
continuously differentiable. For the special case of Q-learning, there are still two gaps to fill. We first take
advantage of the martingale property of the Q-learning mean flow to circumvent the necessity of solving
the Poisson equation and thus provide a closed-form characterization of X,. We then extend the analysis

to Q-learning by working with the local smoothness of f.
Theorem 1 (CLT) Under Assumptions 1 and 2, and suppose one of the following two cases is true:

(i) 5 <p<1, k>0 arbitrary, and a = 0;
i) p=1,0<1/k<2(1—7y)ming,A(s,a), and o0 = 1/k.

Then, we have
0 -0
VO

where Lo is given in (1), X is a diagonal matrix with the (s,a)-th entry being A(s,a)c%(s,a) +
Y2 A(s,a) (PMV*2 — (PyqV*)?), where V* € RS is given by V*(s) = Q*(s,a*(s)).

In these two cases, the step sizes are large enough, either because the decaying speed of ¢ is sublinear
or the scaling constant & is large, so that the TD noise dominates the asymptotic behavior of Q;. Theorem
1 characterizes X in the Lyapunov equation (1) as the sum of the variance of the random reward and that
of the next-step value function. It allows us to analyze the impact of exploration policies on the uncertainty
in Q; through the stationary distribution A.

== N(0,Xp),
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3 EXPLORATION POLICIES

We formulate the problem of data collection for online Q-learning as a best-action identification problem.
Given a fixed sampling budget 7', we aim to maximize the average probability of correctly selecting the
best action a*(s) over each state s after exhausting 7' samples, which we denote as PCS. Formally, it is
defined as: .
PCS = S Z P (Or(s,a*(s)) > Or(s,a), Vae o\{a"(s)}).
ses

Leveraging asymptotic normality, we approximate Q7 (s,a”) — Q7 (s,a) using a surrogate normal distribution.
Following Glynn and Juneja (2004), we have

—O:T]og(] —PCS) ;::min—i Z logP, (\/@(QT(S,G*G)) - QT(S7a)) < 0)

L e\ )
. 1 * * *
~min——— Y logPx(Z(5.0) S VEr(Q'(5.0)~ Q' (s,a"(5))

ac/\(a* ()}

o T
?el,lgaedn\l{lg*(s)}Z (s,0),

where Z(s,a) is a centered normal variable with variance

6'2(s,a) = ZQ((Sva*(S))7 (s,a*(s))) _ZZQ«S’a*(S))v (Sva)) +ZQ(<s7a)7 (s,a)),

and h(s,a) = (Q*(s,a*(s)) — Q*(s,a))* /6%(s,a). Intuitively, h(s,a) takes the form of a signal-to-noise
ratio and quantifies the relative uncertainty when comparing two Q-values. In the literature of CR&S, the
signal-to-noise ratio has been widely applied to measure the efficiency of exploration policies (Shi et al.
2023; Li et al. 2024).

However, Q-learning often exhibits overestimation bias, which can affect estimating the signal-to-noise
ratio. Szepesviri (1997) provides a polynomial bound for the bias, to be specific, |Qr(s,a) — Q*(s,a)| <
B/T™inA(s,a)/maxA(s.a)-(1=7) for some constant B and any pair (s,a). In other words, the bias of Q-values
decays slowly when the exploration policy is imbalanced. Since A(s,a) involves the unknown true Q-values,
the estimation of the signal-to-noise ratio may be unreliable if certain state-action pairs are insufficiently
explored. To mitigate this issue, we introduce a regularization term:

maxA(s,a)

minA(s,a)’

<2
ISNR-REG :=max max log G(s.a)

2 e ) B @ G -0 o T

where £ > 0 is a hyperparameter. The first term penalizes high variance, while the second term discourages
extreme imbalance in exploration. Empirically speaking, the choice & = 1 works fairly well for small
scale problems. While for larger scale problems, letting & be inversely proportional to the problem size
allows for more sampling effort allocated to certain important (s,a) pairs and thus delivers good empirical
performance.

This index is a regularized quantification of uncertainty in the differences of Q-values for a finite
budget. The following sections introduce two sequential exploration policies based on this index.

3.1 An optimal computing budget allocation for asynchronous Q-learning

The optimal allocation can be calculated by solving an optimization problem that maximizes the proposed
index. Similar to Zhu et al. (2023), we consider an optimization problem with objective

min ISNR-REG )
A>0,X9
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subject to constraints

1 * 1 *
EoclJrA(yP’r —1)} Lo+2Xp [2a1+ (PP —1)'A| +X; =0, 3)
Y A(s.d)= Y A(S,d)Pyu(s), Vse.Z, 4)
aed ses
ded
Y A(sd)=1. )
ses
\ ded

The second and third constraints ensure that A remains a valid stationary distribution, while the first
constraint links A to the asymptotic variance of Q-values. Given A, the Lyapunov equation uniquely
determines X, ensuring the feasibility of the optimization.

Proposition 1 Given A > 0 fixed, assuming either one of the two cases in Theorem 1 is true, then (3) admits
a unique solution. Moreover, if X is symmetric and (semi-)positive definite, then the unique solution Xg
is symmetric and (semi-)positive definite as well.

Proposition 1 guarantees that the solution Xy exists and is a valid variance matrix without posing
additional constraints requiring that ¥ is symmetric and positive definite, which facilitates the optimization.
In fact, Proposition 1 holds true when P, 7* and X, are replaced by valid estimates. Hence, we propose
an optimal computing budget allocation type exploration policy for asynchronous Q-learning based on the
above optimization problem.

Algorithm 1 describes the implementation details of this exploration policy. For every Ty steps where
Ty is a positive integer, we update the exploration policy by solving an empirical version of (2) to have an
updated approximation for A. Then, the exploration policy follows m(als) = A(s,a)/ Y e A(s,a).

Algorithm 1 Optimization-based Exploration Policy

1: Input: Budget T, interval Ty. Estimation parameter p,k, o satisfying assumptions in Theorem 1.
Hyperparameter ny = 1, Ry =0, 0'3 >0,&>0.

2: Inmitialize: timestep ¢t = 0; the state s € .%’; random Q-table Q; V(s,a) € . x &7, counts of samples
N(s,a) = 0, reward mean estimate R(s,a) = Ry, and reward variance estimate 62(s,a) = 6¢/no;
Vs,s' € 7 a € o, transition kernel estimate P, ,(s') = 1/S.

3: while r < T do

4 Vse€.7, V(s) < maxyey Q(s,a), a « argmax ., O(s,a).

5. Yo =diag(...,6%(s,a),...), £r = diag(PV? — (PV)?).

6:  if ¢ is divisible by Ty then
7

8

9

Solve optimization problem (2) for A, with P replaced by P, 7* by 4, X, by A(ic + yzir).
V(s,a) € .S x o, w(als) < A(s,a)/ Lacy A(s,a).
: end if

10:  Sample a ~ 7(+|s) and take action a, observe reward r and next state s’

11:  Update Q-table and update count by N(s,a) < N(s,a) + 1.

122 Update the mean and variance of reward by R < [R(s,a) * (N(s,a) — 1 +ng) +r]/(N(s,a) + no),

62(s,a) < [(6%(s,a) + R*(s,a)) * (N(s,a) — 1 +ng) +r*]/(N(s,a) +no) — R?, and R(s,a) < R.

13: V5 € .7, update transition kernel P, ,(s') < [Py (s") % (N(s,a) — 1 +ngo) + 1(s' = §)]/(N(s,a) +no)

14:  Update s < ', t <t + 1.

15: end while
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3.2 Parameter-based exploration policy selection

Solving the optimization problem can be computationally expensive because it involves a high-dimensional
quadratic optimization problem. Optimizing A requires solving not only the Lyapunov function but also the
derivative of the solution with respect to A. Meanwhile, we note that solving the Lyapunov equation alone
for the asymptotic variance can be very efficient. Therefore, we propose a parameter-based policy that
selects among a predefined set of exploration policies by evaluating their effectiveness using the ISNR-REG
index.

We first introduce an efficient approach in solving the Lyapunov equation. We will re-arrange the
matrices defined above indexed by (s,a) pairs for simplicity by letting rows (or columns) indexed by (s,a)
with a # a*(s) rank first and be followed by the remaining rows (or columns) indexed by (s,a*(s)). In

"= [R{IR]] o
each matrix from the left and multiply R" = R~! on the right. Then A, X¢ and X can be represented by
block matrices

—Aj YA Py } T {211 Z12] T 0
RAR = ., RXoR' = . RX,R" = |~ :
0 YA P — Ay ¢ o Ix ¢ 0 Zgz

other words, we will multiply a permutation matrix R = |- e(TSVa) e ‘e(Tl,a*(l)) . ~e&a*(5))}

where A = diag{...,A(s,a),... }4zq+(s) is a diagonal matrix in RP=9xD=5) ' A, = diag{A(1,a*(1)),...,
A(S,a*(S))} € RS, and P; = R|P, P, = R,P. Then, the Lyapunov equation is reduced to

o a
(51—1\1)211 +Z11(51—/\1) = Zlgl —YAIPIZ), — YEP] Ay, (6)
a o
(EI—Al)le—i-le(zl—H/PzTAz—/\2) = —YAP X2, (N
o o
(14 VA2 = A2) oy - Ea (S 1+ 7P] Ay — M) = 5. ®)

The first equation can be solved efficiently by

1
Z =
! (a—Amuﬂ—AmLﬁ

where o denote element-wise product, i.e., (a;;) o (b;;) := (a;;bi;)i;. In practice, we only have to solve the
second and the third equations numerically, since X1 has an explicit characterization. This reduces the
number of variables to be solved numerically from D? to 2DS —S*. Assume %1+ yAoP, — Ay =VDV ™!
where D is a diagonal matrix and V is of full-rank. It follows from equation (8) that

> © (Zfl — YAIPIZ], — YZ1oP[ Ay), )
ij

DV 'S (VY 4V Sy ) D=V gL (v T, (10)

and it turns out that

Y=V v,

1
oV IES, (v T
Di+Dj ij

Equation (7) can be solved similarly by

Ip= [(a/Z_A1<i,i)+Dj>ij

Let {7, : 1 <m < M} be a set of base policies where M > 1. We estimate their performance and select
the best one sequentially. Specifically, we replace line 7 in Algorithm 1 by Algorithm 2. This method
allows efficient adaptation to different problem settings while avoiding direct optimization of A.

1

O(—’)/Alplzzz(v_l)T) VT. (11)
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Algorithm 2 Selection of Parameterized Exploration Policy
I: for 1 <m <M do
2:  Estimate stationary distribution A,, := diag(x,,) using policy 7, by solving x,, = X, PTI™
3 Solve iQ by (10), (11), and (9) in order, using plug-in estimations.
4. Calculate ISNR-REG,, using plug-in estimations, with A replaced by A,, and ¥ replaced by iQ.
5
6

: end for
: return optimal parameterized policy 7, where m* := argminISNR-REG,,,.

4 SYNTHETIC EXPERIMENTS

In this section, we evaluate the proposed exploration policies through experiments on two benchmark
problems: the River Swim problem and the Machine Replacement problem. Our objective is to assess
the effectiveness of our policies in improving sample efficiency and enhancing the PCS. We compare our
methods against standard exploration strategies including €-greedy, Boltzmann exploration, and the Upper
Confidence Bound algorithm, which are denoted by ‘Egreedy’, ‘Boltzmann’, and ‘UCB’, respectively. We
also carry out an ablation study to illustrate the effect of the proposed exploration policy.

4.1 River Swim Problem

The river swim problem is a widely used benchmark in RL. The environment consists of a finite, discrete
set of states [S] = {1,2,...,S}, arranged in a linear topology. There are two possible actions: to swim
upstream (rightward) or downstream (leftward). The challenge in this problem lies in the fact that the
optimal policy requires persistent exploration to reach and assess the state at the rightmost end.

Ateach step, when the agent selects the upstream action in state s; € [S], ittransitions to s,y = (s, +1) V.S
with a small probability p,, or remains in the same state with probability 1 — p, — 8, or transitions to
the downstream state with a small probability 8. Conversely, choosing the downstream action, the agent
transitions to s;+1 = (s, — 1) A 1 with probability 1. We consider scenarios with § =15 or S = 30 states.
The upstream transition probability p, is set to 0.4, while the small probability & is set to 0.1. Rewards
are distributed sparsely across the state space: a small reward of (1) = 1 is given at the leftmost state 1,
and a significantly larger reward of r(S) = 10 is assigned to the rightmost state S. All intermediate states
{2,...,8—1} yield zero rewards.

Intuitively, the optimal policy is to choose the upstream action when the current state is close to
the upmost state and to choose the downstream action when the state is small. Therefore, this problem
underlines sufficient exploration for an efficient policy. In fact, greedy-like algorithms that spend most
samples on the optimal action tend to stick to one side of the river and may fail to learn the best action in
the upstream states that are never visited, which necessitates adopting a farsighted exploration policy.

We test our optimization-based algorithm 1 denoted as ‘Sequential’ against standard policies, and
compare the parameter-based algorithm 2 with the underlying base policies. We call Matlab built-in
optimizer, which is based on the interior point method, to solve approximated (2) in Algorithm 1. The
first time the optimizer is called, we randomize the starting point of the algorithm to search for a global
optimal solution. After that, we use the optimal solution output from the most recent run as a starting
point to enhance the computational efficiency. We also include an ‘Oracle’ agent which knows the true
parameters and thus an optimal solution to the optimization problem (2) is available. Throughout the River
Swim problem, we use constant & = 1 for the regularization term.

For the benchmark policies, in addition to ‘Egreedy’, ‘Boltzmann’, and ‘UCB’, we also test a heuristic
algorithm, which explores the upstream action randomly with a fixed probability across all states, which
we denote as ‘Random’. Hyperparameters of these benchmarks are indicated in the legend and are picked
manually after the experiments to maximize the ultimate PCS. In other words, these hyperparameters
are ex-post optimal but are unknown beforehand. In this experiment, we initialize the Q-table randomly.
Specially, each Q-value is independently and identically distributed following U (]0,40]).
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Figure 1: The average probability of correct selection based on 100 macro-replications. Left: a small
instance with 15 states. Right: a larger instance with 30 states.
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Figure 2: The average probability of correct selection in states based on 100 macro-replications. This
instance includes 30 states.

The left panel in Figure 1 presents the PCS for the small instance with § = 15 states. Our results indicate
that traditional greedy-like algorithms tend to get trapped in low-reward states and fail to learn the optimal
actions eventually in most states with insufficient exploration. The random policy with hyperparameter 0.75
achieves higher PCS than the proposed methods. However, it requires fine-tuned parameters to perform
well, which is unknown in practice. A slightly smaller hyperparameter such as 0.7 does not deliver such a
large PCS. In contrast, our optimization-based exploration policy sequentially adjusts exploration, leading
to improved PCS. Surprisingly, the sequential algorithm based on plug-in estimations of the Q-table and
the transition kernel performs almost as well as the Oracle one, implying its robustness.

The right panel in Figure 1 tests algorithm 2 using ‘random’ as a base policy. We consider a larger
instance with S = 30 states. The optimal base policy is with hyperparameter 0.75. We observe that a
slightly perturbed hyperparameter, e.g., 0.7, can lead to poor performances and even a decreasing PCS
curve. Nevertheless, the proposed parameter-based approach selects effective policies without requiring
extensive hyperparameter tuning, demonstrating comparable performance to the best-tuned baselines.
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Ablation study. To better understand the impact of different components in our proposed policies,
we conduct an ablation study. We compare three variants: (1) a version without regularization in index
ISNR-REG, (2) a version that only includes the regularization term, and (3) the full version of our approach.
Equivalent, we set & = 0,00,1 for these variants, and they are denoted as ‘oracle-no-reg’, ‘oracle-only-
reg’, ‘oracle’, respectively, in Figure 2. The results reveal that removing the regularization term leads to
suboptimal exploration, as certain state-action pairs remain under-sampled. Conversely, using only the
regularization term without the signal-to-noise ratio objective improves exploration balance but fails to
efficiently prioritize valuable state-action pairs. The full version of our method achieves the highest PCS,
confirming the effectiveness of our regularization strategy in combination with the signal-to-noise ratio.

4.2 Machine Replacement Problem

The Machine Replacement problem models a maintenance decision process where an agent must decide
whether to continue using a machine or replace it to minimize long-term costs (Lake and Muhlemann 1979).
It balances immediate replacement costs against the cost of holding an old machine at the risk of system
failures. Suppose k machines are running in an infinite-period discrete-time system. In period t =1,2,...,
each machine i < k has a status s;; € [n] indicating its durability, where n is the number of possible statuses.
The state of the entire system and the state space are denoted by s; = (s1.1,52,...,84) and ./ = [n]*,
respectively. In each period ¢, the machine operator takes action a;; € {0,1} for each i <k such that it
is equal to 1 when machine i is replaced. Therefore, the action is denoted by a; = (a;1,a:2,...,a;) and
the action space is ./ = {0, 1}*. If a machine is replaced, its status will be reset to n in the next period.
Otherwise, the status decrease by the level of its wear and tear.

The machine replacement problem can be viewed as a variant of the multi-item inventory problem
with a fixed order-up-to level and without backlogs. We consider a general parallel machine replacement
problem with multiple machines where the holding cost and the replacement cost of each machine are
contingent on the status of other machines (Childress and Durango-Cohen 2005). The holding cost of a
set of worn machines with state s, is

H(s;) = 1{1121'1£kst’i =0}-0.05- 1Iélilélksz,ia

and the replacement cost is
02+Y a;, Jai=1,
O(a;) = { + L1 i az i
0, 0.W.

The holding cost is the out-of-stock cost, which equals to 1 when any machine can not longer work, minus
the salvage value, which is assumed to be linear in the smallest durability of machines. The replacement
cost consists of a fixed cost and a variable cost. The reward function is R(s,a) = —H(s) — O(a).

We model the transition of states as compound Poisson distributions, similar to multi-item inventory
problems in Federgruen et al. (1984), to capture the correlation of statuses of machines. Consider k tasks
and each task 7 < k features a set M;, which contains all machines that participate in task 7. In each

period 7, task T causes wear and tear to participating machines at level amounting to D¢, L P(A;), where
P(A;) denotes a Poisson distribution with expectation A;. The status of machine i follows the dynamic
Si+1,i = (80— Lr<x 1{i € Mz }D¢,;) V0. That is, the new status either equals to the old status minus the
sum of wear-and-tear levels or to 0 if the former quantity is less than 0. In this experiment, for 7 =1, we
let My = [k] and A; = 1 /k. For 2 <t <k, we let M; = {1,7} and A; = 1/k. Unlike the threshold policy
for single-machine replacement problems or the (s,S) inventory policy, the optimal policy can be highly
non-trivial.

Figure 3 illustrates the performance of algorithm 2 on two instances of the problem with different base
policies. The first instance uses k = 2,n = 3, and thus the size the state space is n* =9. Since there are
no known structured exploration policies tailored for this problem, we consider e-greedy algorithms as
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Figure 3: The average probability of correct selection in states based on 100 macro-replications. Left: 2
machines and 3 statuses for each machine. The base policies are e-greedy policies. Right: 3 machines and
5 statuses for each machine. The base policies are Boltzmann exploration policies.

base policies. The candidate hyperparameters range from 0.2 to 0.5, where hyperparameter 0.5 performs
the best. As shown in the left panel, the parameter-based policy works almost as well as the optimal base
policy. In the second experiment, we set k = 3,n = 5. The size of the state space is nf = 125. We use
Boltzmann exploration as base policies which balances the exploration of suboptimal actions in a more
sophisticated way than €-greedy. The proposed policy is superior to base policies, implying that it can
not only select a satisfying hyperparameter for the base policy, but also surpass base policies due to the
flexibility of switching between policies adaptively.

5 CONCLUSION

We investigated sample-efficient exploration policies for asynchronous Q-learning, drawing insights from
CR&S problems. By establishing a novel central limit theorem for asynchronous Q-iterations, we developed
and analyzed two exploration strategies: an optimization-based policy and a parameter-based policy.
Prioritizing PCS over precise Q-value estimation, our approach enhances data efficiency in reinforcement
learning. This work lays the groundwork for further exploration. Future research may extend our methods
to more general Q-learning algorithms, such as double Q-learning and adaptive step-size approaches.
Additionally, applying these strategies to deep Q-learning presents an intriguing direction.
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