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ABSTRACT

The complexity of modern semiconductor fabrication (FAB) systems makes it difficult to implement
integrated simulation systems that combine production and logistics simulators. As a result, these simulators
have traditionally been developed independently. However, in actual FAB operations, information exchange
between Real-Time Schedulers (RTS) and Real-Time Dispatchers (RTD) coordinates production activities.
To address this issue, we propose a coupled RTS–RTD simulation framework that integrates production
and logistics simulators into a unified environment. In addition, we introduce a dynamic decision-making
rule that enables flexible responses when logistical constraints prevent execution of the original production
schedule. Simulation experiments were conducted using the SMT2020 and SMAT2022 datasets. The results
show that selectively following RTD decisions, instead of strictly adhering to RTS-generated schedules,
can significantly improve production efficiency in FAB operations.

1 INTRODUCTION

The advancement of the Fourth Industrial Revolution has led to a surge in semiconductor demand. In
particular, with the development of AI and IoT industries, the demand for semiconductors has further
increased to support large-scale computing and data processing (Gartner. 2025). In response, global
companies are prioritizing R&D expansion and production capabilities, while governments are positioning
the semiconductor industry as a key national sector. With competition among companies, FABs are becoming
larger and more complex. The complexity of modern FABs now precludes effective problem-solving through
conventional intuitive or simplistic approaches (Sun and Rose 2015; Sun et al. 2016).

The semiconductor chip manufacturing process consists of hundreds of processing steps and is highly
complex due to factors such as re-entrant flow, lot prioritization, and queue time constraints (Kopp et al.
2020a). As a result, it takes approximately two to three months for a single wafer to pass through a FAB and
be completed as a semiconductor chip. This prolonged production cycle presents significant challenges in
production management, leading to financial losses for manufacturers due to factors such as overproduction
and delivery delays. Consequently, numerous studies have been conducted on operational optimization for
semiconductor production systems to enhance efficiency and mitigate these issues.

For practical optimization of production systems, it is necessary to adopt an approach that incorporates
both production scheduling and logistics. El Khayat et al. (2006) proposed both a mathematical programming
model and a constraint programming approach for integrating material handling and scheduling in a job
shop environment. While their work provides valuable insights into the integration of these two domains,
the proposed models were validated only in small-scale scenarios involving fewer than ten machines and
five vehicles, which limits their scalability and generalizability to large, real-world systems. Liang et al.
(2022) proposed a Mixed-Integer Linear Programming (MILP) model that integrates material handling and
production scheduling. Although their approach extends the mathematical rigor of prior studies, it relies
on simplifying assumptions such as constant transportation times between workstations and a relatively
static setting with fewer than ten Automated Guided Vehicles (AGVs). These assumptions limit the
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Figure 1: Framework of semiconductor manufacturing operation system.

model’s ability to represent the dynamic and uncertain nature of large-scale manufacturing systems. These
mathematical optimization-based approaches offer theoretical rigor and precise solutions, but they fall short
in fully capturing the scale, dynamics, and complexity of real-world FABs. As a result, simulation-based
approaches have been widely explored for their flexibility in modeling complex systems with diverse
variables and resource interactions.

Simulations for analyzing production systems incorporate both production scheduling and logistics.
However, despite advances in computing power, the complexity of large-scale semiconductor manufacturing
hinders the development of integrated simulations. As a result, simulations for FABs have been studied
independently, with Automated Material Handling System (AMHS) and production scheduling each adopting
distinct approaches to achieve their respective objectives (Sakr et al. 2023). Several studies have focused
on optimizing Real-Time Schedulers (RTS) for production systems and Real-Time Dispatchers (RTD) for
AMHS. (Gupta and Sivakumar 2002; Ghasemi et al. 2024). These studies have been tested and validated
using independent simulations and have contributed significantly to enhancing the performance of both
systems. As shown in Figure 1, RTS and RTD in large-scale FABs interact closely during the execution
stage. RTS establishes equipment-level work plans, while RTD formulates lot-level work schedules. This
indicates that relying solely on independent systems fails to capture the full complexity of FABs. This
highlights the importance of a simulation environment that simultaneously integrates RTS and RTD.

In this paper, we propose a coupled simulation framework that integrates RTS and RTD simulators.
We develop a unified simulation system by enabling data exchange between RTD and RTS and conduct
simulations that reflect the real-world conditions of FABs. Additionally, we introduce a dynamic decision-
making rule that enables the system to adopt RTD when RTS results are infeasible due to logistical
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constraints. This framework enables a representation of the modern FAB complexity and provides practical
insights for manufacturers. The contributions of this study are summarized as follows:

• We develop a coupled simulation framework for RTS and RTD.
• We establish a dynamic decision-making rule considering logistical constraints.
• We provide a realistic representation of semiconductor FAB operations and support their optimization.

The rest of this paper is structured as follows: Section 2 presents the dataset for the FAB simulator
and provides an overview of the two FAB simulators used for RTS and RTD. Section 3 details the method
for coupling RTS and RTD simulators. Section 4 introduces the dynamic decision-making rule for RTD.
Section 5 provides the experimental setup and outcomes. Finally, Section 6 concludes the paper and
discusses the directions for future research.

2 FAB SIMULATOR

Two simulators are utilized to replicate the FAB environment. One focuses on scheduling, while the other
handles dispatching and AMHS. To perform a realistic FAB simulation, it is necessary to utilize a dataset
that reflects the actual FAB. For this purpose, we use the Semiconductor Manufacturing Testbed 2020
dataset (SMT2020) (Kopp et al. 2020b). SMT2020 is a dataset that reflects the high complexity and large
scale required in modern FABs and consists of four distinct datasets. Table 1 presents a summary of each
dataset within SMT2020. In this study, the fourth dataset is utilized, which represents the highest level of
complexity.

Table 1: Comparison of SMT2020 datasets.

Dataset Plan Type # of Products Due Date Engineering Lot
1 MTS 2 products Not Required Not Contained
2 MTO 10 products Required Not Contained
3 MTS 2 products Not Required Contained
4 MTO 10 products Required Contained

However, SMT2020 does not include AMHS details. To simulate RTD, a dataset that includes AMHS
within the same environment is required. In this regard, we utilize the Semiconductor Manufacturing with
AMHS Testbed dataset (SMAT2022), developed by Lee et al. (2022). It extends the SMT2020 model by
incorporating an AMHS system. The dataset is designed to simulate Overhead Hoist Transport (OHT),
which transports lots along a dedicated rail. Additionally, it includes track buffers and stockers for lot
storage. Table 2 presents the configuration of SMAT2022, while Figure 2 illustrates its OHT rail layout.

Table 2: Configuration of SMAT 2022.

Group Feature

Layout
Spine Configuration
3 Interbays
40 Intrabays

AMHS
500 OHTs
734 ZCUs

Buffers
18,000 STB / UTBs
40 Stockers
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Figure 2: OHT rail layout of SMAT2022.

2.1 Simulator for Real-Time Scheduler

In this paper, we adopt MOZART (VMS Solutions 2025), simulation software for machine scheduling.
MOZART is a comprehensive solution that includes methodologies, development tools, and libraries that
aim to model real-world manufacturing environments. By utilizing virtual models, MOZART supports the
effective construction and operation of production planning and scheduling systems. MOZART consists
of various software modules designed for specific systems. In this study, we utilize MOZART LSE
Studio, which provides a Discrete Event System Specification (DEVS) based what-if analysis environment
(Concepcion and Zeigler 1988).

2.2 Simulator for Real-Time Dispatcher

In addition to MOZART, we employ the PINOKIO Simulator (CARLO 2025), for the RTD simulator.
PINOKIO is a general-purpose solution based on DEVS for what-if simulations, similar to LSE Studio.
It optimizes production system operations by verifying layouts, enhancing logistics, and refining planning
through simulation. PINOKIO provides a high degree of modeling flexibility a flexible environment that
developers can easily customize. Additionally, it supports custom modeling for lower-level control systems
such as Manufacturing Execution System (MES), Material Control System (MCS), and OHT Control
System (OCS). It also enables custom modeling of vehicles and equipment that operate under these control
systems. Figure 3 presents the UI of PINOKIO, which supports the customization of both logical and
geometric models. This capability to model production systems with distinct characteristics, such as those
found in semiconductor manufacturing, led to the decision to adopt this software for our study.

3 COUPLING METHODOLOGY FOR RTD AND RTS SIMULATORS

Generally, different programs are developed for different purposes, and differences in data formats, platforms,
and framework compatibility make integration challenging. However, when programs are designed for the
same target system, they inherently share common elements, even if their data formats and definitions differ.
In particular, LSE Studio and PINOKIO are both simulators for production systems. Their respective datasets,
SMT2020 and SMAT2022, represent the same system, suggesting the presence of shared components. This
section describes the development of an interface for communication between the two simulators, data
exchange, and the operational mechanism of the final framework.
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Figure 3: PINOKIO Simulator.

3.1 Communication System for Independent Simulators

One of the major challenges in integrating two simulators is the potential discrepancy in their simulation
time. Even when simulating the same system, differences in how each simulator manages time can lead
to inconsistencies in object states. This, in turn, affects the overall reliability of the simulation results. To
address this issue, this study implements an interface between the simulators using Transmission Control
Protocol (TCP). TCP is a protocol that ensures the sequential transmission of data packets and provides
reliable data transfer, thereby maintaining consistency in simulation states and enabling synchronized
communication between the simulators (Postel 1981). Figure 4 illustrates the implemented communication
system, designed based on the data flow of a semiconductor manufacturing system, where RTS transmits
the scheduling results to RTD for execution. In this system, RTS recurrently transmits scheduling results
to RTD for execution until the simulation ends. A server socket is developed in LSE Studio, while a client
socket is implemented in PINOKIO, ensuring consistency with the data flow of the FABs. We use the
ZeroMQ (ZMQ) library for communication and Google Protocol Buffers for data serialization (Hintjens
2013; Currier 2022).

In addition to communication, maintaining the same level of abstraction in the simulation models is
crucial for successful integration. Differences in the level of abstraction can lead to discrepancies between
models due to variations in data interpretation. To prevent this issue, the models of each simulator have to
be designed to operate at the same level of abstraction. For example, if the production scheduler generates
a schedule considering the preventive maintenance (PM) plan of specific equipment, the logistics simulator
must also reflect this PM schedule in its operations. In other words, when the production scheduler
incorporates equipment maintenance into process scheduling, the logistics simulator should adhere to the
same maintenance schedule to adjust material flow and transportation accordingly. To achieve this, we
designed simulation models for both the production scheduler and logistics simulator to operate at the same
level of abstraction, minimizing inconsistencies. This setup enables a more accurate representation of a
real semiconductor FAB.

3.2 Data Exchange Between RTS and RTD

Through the communication system, two simulators periodically exchange data to achieve their respective
objectives. This enables dynamic integration between the production schedule and logistics information
within the FAB. The RTD simulator captures a snapshot of the system at a specific simulation time and
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Figure 4: Communication system for independent simulators.

transmits it to the RTS simulator. As shown in Table 3, this data includes information such as Work In
Process (WIP), PM schedules for equipment, transport time, and simulation configuration parameters.

The WIP information is essential for scheduling, as it provides details on all lots currently in process.
This includes the lot identifier (Lot ID), the identifier of the equipment currently processing each lot
(Equipment ID), and the timestamp of the most recent state update. The PM information of equipment is
utilized to determine its availability. PM is generally categorized into two types: time-based and wafer-
count-based maintenance. Time-based maintenance refers to periodic inspections that are performed after a
predefined time interval since the last maintenance. In contrast, wafer-count-based maintenance is initiated
when the number of wafers processed by the equipment exceeds a certain threshold. The data includes
the maintenance type, status data depending on the type, the equipment identifier, and the Mean Time
to Repair (MTTR) required for equipment recovery. The Transport time reflects the material flow within
the FAB and provides OHT transfer times between all pairs of bays. As shown in Figure 5, the transfer
distance is defined as 1 for intra-bay transfer and 2 for inter-bay transfer. A typical production scheduler
treats transport time as a constant or as values derived from a probability distribution. In contrast, this
study utilizes data collected from an RTD simulator to enable more realistic scheduling. The simulation
configuration includes the start time and the duration of the snapshot.

The RTD simulator transfers FAB snapshot data to the RTS simulator via the communication system,
and the RTS simulator performs scheduling based on this information. Table 4 presents the scheduling
results generated by the RTS simulator, which are subsequently returned to the RTD simulator and applied
to simulation execution. By iteratively performing this process between the RTS and RTD simulators,
scheduling mismatches caused by FAB variability can be minimized. Finally, we developed a coupled
simulation framework that integrates RTS and RTD, which enables high-fidelity modeling of actual FAB
operations.
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Table 3: Description of snapshot data components.

Data Category Details

WIP

Equipment ID
Lot ID
Lot State
Lot Priority
Lot Due Date
Last State Change Time
Product ID
Current Step ID
Wafer Quantity

EQP PM

Equipment ID
Wafer Count for PM
Last PM Started Time
PM Type
MTTR

Transport Time
From Bay ID
Destination Bay ID
Transfer Time

Simulation Configuration
Simulation Period
Simulation Start Time

Figure 5: Definition of bay distance.

4 DYNAMIC DECISION MAKING RULE FOR RTD

In this study, we propose a dynamic decision-making method to improve production efficiency in FABs
by utilizing the previously introduced coupled simulation framework. The method dynamically balances
reliance between RTS and RTD, according to their respective roles. The RTS generates schedules to
optimize overall production operations, but it has limitations in accounting for logistical congestion. As a
result, two types of production losses may occur.
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Table 4: Description of schedule data components.

Data Category Details

Production Schedule

Equipment Group ID
Equipment ID
Lot ID
Lot Due Date
Lot Priority
Wafer Quantity
Current Step ID
Arrival Time to Next Equipment
Job Start Time for Next Equipment
Job End Time for Next Equipment

First, if a lot arrives at a machine that is still processing the previous job, the lot must wait. This may
violate the queue-time constraint, which ultimately leads to a production loss (Klemmt and Mönch 2012).
Second, when the arrival of the next lot is delayed, the machine may become idle, thereby decreasing
equipment utilization. In such cases, the RTD should reevaluate the schedule rather than adhering to it
without consideration of the current context. If the expected production loss exceeds the potential benefit of
following the original schedule, it is more reasonable for the RTD to make independent dispatch decisions.

The proposed method is based on the expected arrival time of the lot Ta and the expected idle time of
the equipment Te. As shown in Equation 1, Ta can be calculated by adding the bay-to-bay transfer time
Tmove to the dispatch time Td .

Ta = Td +Tmove (1)

As shown in Equation 2, Te is obtained by summing the remaining processing time Tremain and the
processing times of the reserved lots Treserved , starting from Td .

Te = Td +Tremain +∑Treserved (2)

Finally, Equation 3 is used to calculate the loss value L, which accounts for both possible cases of
production inefficiency. Figure 6 illustrates how the loss is predicted at the dispatch time. If the resulting
L exceeds a predefined threshold r, it is considered more efficient to follow the RTD decision rather than
the schedule generated by the RTS. In this study, simulations are conducted by gradually varying the value
of r in order to determine an appropriate threshold.

L = max(0,Te −Ta)+max(0,Ta −Te) (3)

5 EXPERIMENTAL SETUP AND RESULTS

For the experiments, SMT2020 is modeled using LSE Studio, while SMAT2022 is implemented in the
PINOKIO simulator. As summarized in Table 5, we conducted a one-year simulation warm-up period to
reflect realistic FAB operations, ensuring that FAB reached a stable state with sufficient ongoing production
activity.

During simulation, the RTD simulator was set to make decisions every simulated hour. The RTS
simulator generated new schedules for a two-day period at a time. As shown in Table 6, the operating
ratios of each system during the simulation were similar. The execution times of each system during the
simulation were similar. The measured times include not only computation but also data serialization and
transmission. Specifically, it took an average of 17.4 seconds for the MOZART RTS and an average of 17.6
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Figure 6: Loss prediction process at dispatch time..

seconds for the PINOKIO RTD simulator. These simulations were performed on a system equipped with
an running Windows 10, equipped with an Intel Core i7-14700K CPU, 32 GB of RAM, and an NVIDIA
GeForce RTX 4060 Ti GPU.

Table 5: Experimantal setup.

Parameter Value
Schedule Generation Interval 1 Hour

Schedule Horizon 2 Days
Warm-up Period 1 Year

Total Simulation Time 90 Days
Threshold r 0, 5, 10, 15, 20, 25, 30, ∞

Table 6: System execution time during simulation.

Simulation Type Elapsed Time
PINOKIO Sim. 17619ms

MOZART LSE Studio 17470ms

The total simulation period for each experiment was set to three months. To evaluate production
efficiency under different thresholds, three performance indices were measured; 1) Throughput, 2) On-time
delivery rate, and 3) Equipment utilization. The threshold r was varied across eight levels, starting from 0
and increasing in increments of 5 minutes, up to a theoretical maximum (r = ∞) that corresponds to fully
following the RTS schedule.

Table 7 and Figure 7 present the performance indices for the experimental results. The throughput
peaked when the threshold r was set to 5 minutes and showed a decreasing trend as r increased. In particular,
when r approached ∞, meaning that RTD fully adhere to the RTS schedule, throughput dropped by over
50%, indicating a significant performance degradation. Similarly, the on-time delivery rate peaked when r
was set to 5 minutes. Equipment utilization remained relatively stable across the entire range of thresholds,
but showed a noticeable decline when r was set to ∞. These results indicate that applying RTD decisions
selectively may improve FAB production efficiency.

6 CONCLUSION

This study proposes a methodology for constructing a coupled simulator that integrates RTS and RTD
in large-scale semiconductor FABs. The proposed approach enables a simulation environment that more
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Table 7: Experimantal result.

r Schedule Execution Rate Throughput On Time Delivery Rate Utilization
0 min 0% 3566 93.49% 75.58%
5 min 16.85% 3691 95.82% 75.52%

10 min 30.98% 3607 94.76% 75.49%
15 min 39.68% 3570 92.68% 75.53%
20 min 46.96% 3567 91.82% 75.39%
25 min 52.72% 3588 94.37% 75.55%
30 min 56.30% 3569 93.31% 75.42%

∞ 100% 1161 0% 41.27%

Figure 7: Graph of experimental results.

accurately reflects real-world operations. In particular, it addresses the absence of an integrated production
and logistics simulation system that can capture the complexity of modern FABs, which are defined by large
scale and dynamic behavior, even under limited computational resources. To achieve this, a communication
interface was developed to enable synchronization between the RTS and RTD simulators, resulting in a
unified simulation framework. Furthermore, a dynamic operational rule was proposed to coordinate RTS
and RTD activities in a way that maximizes production efficiency.

The experiments were conducted using the SMT2020 and SMAT2022 dataset, and performance was
evaluated based on key indicators including throughput, on-time delivery rate, and equipment utilization.
The experimental results indicate that selectively applying RTD decisions can enhance FAB production
efficiency. Moreover, the proposed method offers a practical solution for improving FAB operations without
requiring substantial modifications to existing RTS–RTD systems.

However, since the threshold values were explored empirically and not optimized, future research
will focus on developing adaptive threshold adjustment techniques. In addition, the proposed framework
will be validated in real FAB environments beyond the SMAT testbed to further demonstrate its practical
effectiveness.
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