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ABSTRACT

Efficient crowd control in public spaces is critical for mitigating threats and ensuring public safety,
especially in scenarios where live testing environments are limited. It is important to study crowd behavior
following disruptions and strategically allocate law enforcement resources to minimize the impact on civilian
populations to improve security systems and public safety. This paper proposes an extended social force
model to simulate crowd evacuation behaviors in response to security threats, incorporating the influence
and coordination of law enforcement personnel. This research examines evacuation strategies that balance
public safety and operational efficiency by extending social force models to account for dynamic law
enforcement interventions. The proposed model is validated through physics-based simulations, offering
insights into effective and scalable solutions for crowd control at public events. The proposed hybrid
simulation model explores the utility of integrating agent-based and physics-based approaches to enhance
community resilience through improved planning and resource allocation.

1 INTRODUCTION

Recent increases in threats to the public have drawn the attention of researchers to model such threats.
Even though these threats are rare, their consequences can be catastrophic, making the development and
validation of control policies a significant challenge. Over the last decade, the number of terrorist attacks
and the number of casualties per attack have been increasing, as shown in Figure 1 (De Cauwer et al.
2023). To effectively prepare for future events, we must accurately model previous attacks and future
threats to modify procedures and minimize the number of casualties. Therefore, developing robust and
relevant models is essential for understanding and mitigating the impact of these threats on public safety.

Simulations can address rare events and can be used to develop control policies. Large crowd models will
be key to demonstrating the reality of the elements, which will directly affect the validity of the simulation
models. Due to these constraints, simulations must be used to validate control policies to minimize damages
from these threats. Correctly modeling crowd evacuation procedures is crucial to understanding the validity
of control policy, and there is currently little research about differentiating law enforcement officers from
normal pedestrians in evacuation modeling. There are many ways to model crowd evacuations, but the
most prevalent one is social force models (SFM) (Helbing and Molnar 1995). SFMs treat each agent as
a physics object, producing and receiving forces that dictate their movement and the movements of those
around them. SFMs offer distinct advantages and insights, making them invaluable tools in the development
of effective evacuation strategies.

This paper addresses the following research question: How can SFM be extended to allow law
enforcement personnel to efficiently control crowds, thereby supporting more effective evacuations? This
research aims to both incorporate law enforcement crowd control strategies by extending the SFM (E-SFM)
and develop a physics-based simulation of crowd evacuation using the E-SFM under evacuation procedures.
Our contributions include the addition of a new force and the generation of existing forces within the
social force model, applying it to the context of college campus attack evacuations. The proposed approach
demonstrates its potential to improve evacuation strategies in such critical scenarios by exploring how law
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(a) Terrorism Incidents Per Decade till 2019 (b) Casualties per Incident in the US from 2000-2021

Figure 1: Trends in terrorism attacks and casualties.

enforcement can control crowd movement and influence evacuation policies. It will also support developing
effective crowd control policies with validation through simulations, providing valuable insights into the
efficacy of different control strategies during evacuations.

2 LITERATURE REVIEW

There are three prevalent categories of crowd simulation models (Yang et al. 2020). The first category is
microscopic models which focus on the details and smaller parts of the simulation, such as pedestrian-to-
pedestrian interaction instead of overall crowd traffic flow. This category includes rule-based (Xiong et al.
2009), force-based, velocity-based (Pettré et al. 2014; Liu et al. 2022), agent-based (Luo et al. 2008), and
vision-based models (Ondřej et al. 2010). The next category of models are macroscopic models. These
include continuum models (Golas et al. 2014), aggregate dynamics (Narain et al. 2009), and potential
field-based models (Xing et al. 2015). Macroscopic models often are not a realistic model due to overlooking
pedestrian interaction. The last major category of crowd simulation models are the mesoscopic models,
including but not limited to dynamic group behavior models (He et al. 2016), interactive group formation
(Zhang et al. 2015), and social psychological crowds (Stokols 1972). While all of these models have their
application for different scenarios, we will use a force-based model called the Social Force Model (Helbing
and Molnar 1995). Using a SFM allows us to modify individual behavior to incorporate different types of
pedestrians in our simulation scene.

Since the initial concept of the SFM was proposed in 1995, many modifications have been made to it
to better represent different situations of crowd dynamics. Some of these modifications include grouping
(Huang et al. 2018), panicking behavior vs normal behavior (Helbing et al. 2002), evacuation procedures
(Wei-Guo et al. 2006; Arteaga et al. 2023), and even considering anxiety levels of the pedestrians during
evacuation situations (Cornes et al. 2021). While the initial concept of the SFM was basic, it is easily
adaptable to any situation where pedestrian dynamics need to be modeled for a computer simulation. Here,
we will cover many different types and functionalities of SFMs to lay the framework for this research. (Wan
et al. 2014) used a modified combined SFM to model the emergency evacuation of a subway station after
a terrorist attack, in this case, a gas attack. Terrorist attack evacuations are very commonly modeled with
SFMs. (Han and Liu 2017) used an SFM to model an attack scenario where the threat is knife-wielding
humans located in the attack zone.

SFMs, with consideration of groups of people within the crowd, have been studied by researchers in an
attempt to model crowd behavior more accurately. Pedestrians in a group will stay together and return to
each other if separated (Kolivand et al. 2021). One article highlights the force that police officers provide
during an attack situation (Lu et al. 2023). This effort brings the utilization of virtual reality (VR) to control
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the behavior of pedestrians and to gain feedback about a person’s affective state across different crowd
densities (Dickinson et al. 2019). To implement such evacuation scenarios, the dynamic environmental
effects should have been well incorporated. Game engines have often been used to create visually realistic
simulation environments (Prasithsangaree et al. 2003; Xin et al. 2024; Zhang et al. 2023). One of the
reasons why the game engine is a popular choice for researchers is due to the program’s customizability
(e.g., from small scale to large scale). For example, small-scale simulations can be built to investigate
human performance on small tasks (Xin et al. 2024), such as adjusting scientific equipment inside of a
laboratory. On the other hand, simulations on a large scale can be constructed with high levels of detail as
well. An example of this is simulating autonomous submarine navigation inside of a 3D ocean environment
(Zhang et al. 2023). High levels of detail in a virtual environment allow for new opportunities in research,
like extracting synthetic data from simulations.

3 MODELING METHODOLOGY

This section introduces the proposed Extended Social Force Model (E-SFM) and demonstrates the validity
of the extension. The extension is the introduction of a bubble force fbf

ik (t) to represent law enforcement
personnel’s control effects in an evacuation simulation as shown in Figure 2. The bubble force extension
is needed because police officers exert a demanding and authoritative presence in a crowd, often causing
pedestrians to move out of the officer’s way during panicking scenarios. This influence can change the
behavior of many pedestrians in a real-life scenario, so it must be modeled correctly. Other extensions we
test are modifications to the repulsive force frf

ik(t) and the physical force fpf
ik (t). First, we will outline the

basic SFM used to compare against our proposed methodology. The basic SFM used will be a combination
of (Helbing and Molnar 1995; Helbing et al. 2002). Firstly, the authors will show the equations used
to define the basic SFM. The following subsection will show equations and coefficients to describe the
E-SFM.

3.1 Social Force Model

Currently, research in the field of SFMs and modified SFMs builds off of the framework proposed by
(Helbing and Molnar 1995). In this section, the authors cover the equations of the SFM before covering
any modifications to it. This review is important to outline due to the fact that some of these equations
will be modified for the extended methodology. The description of basic SFM is mainly from the two
representative work by (Helbing and Molnar 1995; Helbing et al. 2002). This model serves as the baseline
against which the E-SFM is compared. This model considers pedestrian dynamics both in a normal and in
a panicking state, much like they would be before and after the evacuation begins, respectively. The force
equations of the SFM are detailed in Table 1.

3.1.1 Social Force Model Under Normal Conditions

The velocity of pedestrian i ∈ I at time t ∈ T is represented by vi(t)∈R2. Velocity is defined by the change
in position xi(t) ∈ R2 (2D plane), given by dxi(t)

dt = vi(t). After defining the velocity, we can derive the
acceleration equation governing pedestrian i with her own mass mi as follows. Let fi(t) ∈ R2 be the sum

Table 1: Index and force explanations.

Index Explanation Forces Explanation
i ∈ I Pedestrian of interest frf(t) Repulsive Force
j ∈ J Surrounding Pedestrians fbf(t) Bubble Force

k ∈ K Law Enforcement Officer fpf(t) Physical Force
g ∈ G Special Attraction fi(t) Overall Force on Pedestrian i
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of all social forces acting on the pedestrian at any time t. Additionally, let qi(t) represent fluctuations in
the pedestrian’s behavior that capture individual movement variability not represented by the model. The
individual’s acceleration is then represented by:

mi
dvi(t)

dt
= fi(t)+qi(t) (1)

These equations describe how the velocity and acceleration of a pedestrian are influenced by both social
forces and individual behavioral fluctuations.

To create a correct simulation of an evacuation scenario, we must differentiate the behavior of the
pedestrians before and after the evacuation takes place. (Helbing et al. 2002) created two different force
models to define pedestrian dynamics in each situation. The first one we will review is that of the pedestrian
behavior in a normal situation (pre-evacuation). Each pedestrian produces a repulsive force as well as an
attractive force upon other pedestrians. The repulsive force describes the common behavior of pedestrians
maintaining a comfortable distance between others. This force can be represented by frf

ij (t). Equation (2)
represents the repulsive force between pedestrians.

frf
i j(t) = Ai exp

(
ri j −di j

Ri

)
ni j

(
γi +(1+ γi)(

1+ cosϕi j

2
)

)
(2)

where Ai ∈ R+ is the interaction strength and Ri ∈ R+ is the range of the repulsive interactions that
depend on each scenario. The variable ri j = ri + r j is the sum of the radii of the pedestrian that represents
their body size. The distance between two pedestrian’s center of mass is given by di j(t) = ∥xi(t)−x j(t)∥2.
Next, we can use the vector nij to denote the normalized vector that points from pedestrian j to i. The
variable γi is used to model importance of events happening either in front of or behind them. 0 < γi < 1
allows for the events in front of a pedestrian to grasp their attention over things happening behind them.
The angle ϕi j(t), which ranges from 0 to 360◦, represents the angle between the direction of motion
and the direction of the pedestrian exerting the repulsive force. This angle is defined by the equation
cosϕi j(t) = −ni j(t) · ei(t). The vector ni j(t) can be represented as ni j(t) =

[
n1

i j(t),n
2
i j(t)

]
=

xi(t)−x j(t)
di j(t)

,
where ni j(t) is the unit vector pointing from pedestrian j to pedestrian i, ei(t) is the unit vector in the
direction of motion of pedestrian i, xi(t) and x j(t) are the positions of objects i and j, respectively, and
di j(t) is the Euclidean distance between pedestrians i and j. This relationship helps in understanding how
the direction of motion and repulsive forces are aligned in the context of the social force model.

When pedestrians are not in a panicking situation, i.e. normal behavior, they can be influenced by
forces coming from inanimate objects such as windows, lights, stores, etc. The object creating this special
attraction can be indexed as g ∈ G. This type of interaction can be represented by the force fatt

ig (t), where
i and g illustrate the index of the pedestrian and the special attraction objects, respectively. With this type
of interaction, the interaction range Rig is usually larger than with a pedestrian j, but the strength of the
interaction Aig is usually smaller, negative, and time-dependent. Equation (2) is used to define fatt

ig (t), but
with index ig instead of i j, and significantly different coefficient values of Aig and Rig.

The following force equation for fatt
i j (t) ensures that individuals formed in groups will join again even

after being separated. It defines the attraction force between pedestrians i and j: fatt
i j (t) =−Ci jni j(t) Now,

one can present an equation that summarizes all of the social forces that act on pedestrian i. The force fib(t)
represents the force between the pedestrian and a boundary b (typically a wall, fence, building, etc., and
pushing the pedestrian i away). The vector ei(0) represents the initial direction of motion and vi represents

the magnitude of the initial velocity as a scalar: vi(0) =
√

v2
x(0)+ v2

y(0). Lastly, there is a relaxation term
τi that is used to calculate the acceleration term. The summary of forces on pedestrian i is defined in
Equation (3).

fi(t) =
vi(0)ei(0)−vi(t)

τi
+ ∑

j(̸=i)
[frf

i j(t)+ fatt
i j (t)]+ ∑

b∈B
fib(t)+ ∑

g∈G
fatt
ig (t) (3)
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3.1.2 Social Force Model Under Evacuation Conditions

The previous force equations represent pedestrian dynamics in a normal situation. However, we need to
model their behavior differently in an evacuation scenario, since the forces they will enact on one another
will be different and with a different strength. Researchers have detailed a new set of equations to define
pedestrian dynamics when they are in a state of panic, or evacuation (Helbing et al. 2002). This type of
representation will work perfectly to represent our simulated pedestrians during an evacuation. The authors
dropped attractive effects out of the force equation and set the value for γi = 0.

There is not only a social force here that influences pedestrian behavior, but a physical force as well
for when pedestrians come into contact with one another. This happens when ri j ≥ di j, or when the sum
of the radius of two pedestrian’s bodies is larger than the distance between their center of mass, meaning
they have come into contact and produce a physical force fph

i j (t). The variables ri j, di j,and ni j remain the
same as the normal scenario equations. The first part of the force formula p(ri j −di j)ni j is the body force
counteracting body compression. The second part of the formula κ(ri j −di j)∆v jiti j is a sliding friction force
that impedes relative tangential motion. The function Θ(z) ensures that the value is greater than or equal to
0, where the input is equal to the output unless it is less than 0, then Θ(z) = 0. The vector ti j = (−n2

i j,n
1
i j) is

the tangential direction, related to the vector of the object exerting the force ni j = (n1
i j,n

2
i j). The tangential

velocity difference is ∆v ji = (v j − vi) · ti j. p and κ are large constants corresponding to the body force
and the sliding friction force, 1.2× 105 and 2.4× 105, respectively (Helbing et al. 2000). Equation (4)
represents the physical force produced when two bodies make contact.

fph
i j (t) = pΘ(ri j −di j)ni j +κΘ(ri j −di j)∆v jiti j (4)

Interactions with boundaries or walls are treated similarly to that of interactions with other pedestrians.
The formulation is in the same notation where fib represents the force between pedestrian i and boundary
b. Equation (5) defines the force between pedestrians and boundaries.

fib(t) =
(

Ai exp
[

ri −dib

Ri

]
+ pΘ(ri −dib)

)
nib −κΘ(ri −dib)(vT

i · tib)tib (5)

Repulsive forces for boundaries are similar to that of dangerous obstacles but with a much stronger magnitude.
The effects of this interaction are qualitative and depend on the type of boundary (fire, explosion, gas,
etc.) that the pedestrian is encountering. These dangerous boundaries can limit the mobility of pedestrians
depending on their exposure to it. In summary, we can describe the overall force on pedestrian i during an
evacuation/panicking scenario to be as follows. For this behavior, we set γi = 0 in the formula for fr f

i j (t).
Equation (6) shows the overall forces on pedestrian i where the mass of pedestrian i is given by mi.

fi(t) = mi
vi(0)ei(0)−vi(t)

τi
+ ∑

j(̸=i)
frf
i j(t)+ ∑

b∈B
fib(t)+ ∑

j(̸=i)
fph
i j (t) (6)

Figure 2: Illustration of SFM and E-SFM.
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3.2 Extended Social Force Model: E-SFM

For the extension, the authors introduce a new variable and a coefficient to represent the law enforcement
personnel as shown in Figure 2. The variable i defines the pedestrian of focus and j represents the other
surrounding pedestrians of the model. To represent police officers in the formulation, we will use the index
k to denote law enforcement personnel, as some forces will only be produced/modified by law enforcement.
A larger modification made to the SFM that can aid in correctly modeling the crowd influence of law
enforcement personnel is the bubble force fbf

ik ∈ R2. This force is meant to act as a bubble around police
officers in the simulation, causing pedestrians to clear the way for them. This function will be strong
as the distance between pedestrians is small, but will quickly decline as that distance grows. Since the
function value starts high and declines at a faster-than-linear rate, we have chosen to use an exponential
decay function (Istratov and Vyvenko 1999; Steyerl and Malik 1992) to define the bubble force fbf

ik based
on the distance between two people. Linear decay was also tested, but the force either reached out too far
or was too weak when dik was small. Exponential decay was the best choice to model the bubble force as
it can represent the quickly-decaying bubble force around the police officer.

The minimum value for this force will be 0 if dik is great enough, meaning that the law enforcement
personnel k and pedestrian i are too far separated to allow the bubble force to effect the pedestrian. The
maximum value for this function will be the value of the velocity vector, and will cause pedestrian i to
move away from police officer k. More specifically, a pedestrian very close to the police officer will be
pushed directly away from the officer’s direction of motion. The sine function in Equation (7) is used
to correctly model the direction of the force dependent on the relative location between the two agents.
ϕik represents the angle between the direction of motion of pedestrian i and officer k. The characteristic
function χ(sinϕik(t)) then returns 1 if (0◦ < ϕik(t) < 180◦), otherwise, −1, causing the direction of the
resultant force vector to be flipped. This force is only produced by police officers and can be defined as
shown below in Equation (7).

fbf
ik (t) = χ(sinϕik(t))vk(t)exp[−dik − rik] (7)

Equation (6) is modified to create the E-SFM. The extension includes the magnification to the repulsive
force and the introduction of the bubble force. Since police officers will provide a higher magnitude
repulsive force between themselves and other pedestrians frf

i j, the coefficients z > 0 will be applied to this
part. Additionally, the physical interaction force fph

i j will be stronger as they will try to direct those around
them away from danger, so the coefficient w > 0 will be applied to this too. The interactions between
pedestrian i and a boundary fib will remain the same, so no coefficient shall be applied to this part. The
summation of the bubble force is added to the total force equation. The resultant equation is given in
Equation (8).

fi(t) =
vi(0)ei(0)−vi(t)

τi
+ ∑

j(̸=i)
frf
i j(t)+ ∑

b∈B
fib(t)+ ∑

j(̸=i)
fpf
i j (t)+h ∑

k∈K
fbf
ik (t)+ z ∑

k∈K
frf
ik(t)+w ∑

k∈K
fpf
ik (t) (8)

To ensure that the coefficients do not change the original SFM beyond recognition, we will introduce
constraints for the extended part of the model. The coefficient h for fb f

ik (t) will follow a simple rule. There
will only be two values for this coefficient, used to distinguish between two different types of police officers,
which we explain in detail in a later section. The available values are h = 1,2 ∀ k and h = 0 ∀ i, j. As for a
constraint for z, there becomes a point at which the coefficient becomes so large that it is infeasible. This
constraint will be derived from experimental results and will be discussed in a later section. A constraint
for the physical force coefficient w will be discussed in a later section.

Equation (8) has many components due to each pedestrian needing to sum the conventional SFM forces
amongst other pedestrians, in addition to the sum of modified forces produced only by law enforcement
personnel k. To obtain a simplified version of this equation as given in the previous section and from
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(Pelechano and Malkawi 2008), we can write the previous equation as Equation (9).

fi(t) = mi
dvi

dt
= mi

vi(0)ei(0)−vi(t)
τi

+ ∑
j(̸=i)

fi j + ∑
b∈B

fib + ∑
k∈K

(zk frf
ik +hk fbf

ik +wk fpf
ik ) (9)

The forces between the police officers k and other pedestrians (i, j) have been magnified by the previously
mentioned coefficients to increase their crowd presence. The bubble force has also been added to realistically
represent a police officer’s increased influence in a crowd, especially during chaotic times. The forces between
any pedestrians (i, j,k) and boundaries b remain unchanged. Interactions between normal pedestrians (i, j)
remain unchanged as well.

4 IMPLEMENTATION AND VALIDATION

We simulate an evacuation scenario in Mississippi State University (MSU) campus environment during a
career fair event. These types of events typically attract large crowds, gathering around tables and tents. In
this scenario, we assume an attack occurs (represented by an explosion), and law enforcement officers are
responsible for rerouting the crowd to avoid a second potential attack area. Both the original SFM and the
extended SFM are applied to model the evacuation behavior. The extended SFM specifically accounts for
the increased influence of nearby police officers on the crowd. To ensure consistency with the principles
of the SFM, we utilized the 3D game engine Unreal Engine, which is integrated with the NVIDIA PhysX
physics engine (Dickinson et al. 2019) for the simulation as illustrated in Figure 3.

4.1 Simulation Environment

Unreal Engine was selected as the modeling platform due to its versatility in creating customized environments
and its support for numerous open-source plugins. For example, the authors utilized "Cesium Ion,"
which integrates 3D geospatial GIS data, including terrain imagery, atmospheric and sky visuals, and 3D
OpenStreetMap (OSM) buildings. This data serves as the foundation for constructing location-specific
simulation environments. As shown in Figure 4, the simulation environment was developed using Unreal
Engine 4.27, with a closer view of the scenes depicted. In the simulation, the white characters represent
pedestrians, while the black characters represent law enforcement personnel (i.e., police officers).

In our simulation models, the agents will initially act according to the basic SFM. As a "control group,"
this approach will allow us to establish a baseline. For validation, we will explore different parameter levels
for three forces—repulsive, bubble, and physical—to assess the police officers’ influence on evacuations.
The evacuation scenario involves a large group of students gathered in the central area of the campus for
a career fair. During the event, an explosion occurs, causing the students to flee in search of safety. Law

Figure 3: Overview of the simulation model implemented.
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Figure 4: Simulation environments in Unreal Engine.

enforcement officers aim to prevent students from evacuating through the center of the career fair, which
we assume is the most likely location for a second attack due to the high density of tables where employers
and students are concentrated. Four police officers are strategically positioned around the scene to manage
security. This setup allows us to test whether the extended SFM, which incorporates the influence of police
officers, significantly affects the evacuation behavior of nearby students. The model’s effectiveness will be
assessed by counting how many pedestrians the officers successfully prevented from moving through the
center of the career fair after the explosion. Tracking how many individuals pass through the designated
center of the career fair will yield numerical results. This response will test the police officers’ proposed
heightened social forces, enabling them to move more efficiently through the crowd and steer people away
from potential danger based on their strategy.

4.2 Experiment Setup for Validation

The officer k will have the forces frf
ik, fbf

ik , and fpf
ik applied to them, with the coefficients z, H and w to modify

them, respectively. The goal of the police officers is to block an area of danger during an evacuation
procedure. The officers will need to navigate through an evacuating crowd to reach their goal location to
create the blockade. We will use the metric of the number of pedestrians allowed through this area per
evacuation to determine the validity of the model.

To improve the validity of the simulation, we will incorporate two types of police officers (authoritative
and passive) and three types of pedestrians (compliant, indifferent, and disobedient), similar to the modified
SFM simulation in (Zhou et al. 2021). The two types of police officers reflect common police behavior
in the U.S. The authoritative officer will be loud, have a stronger presence in the crowd, and exert more
influence. In contrast, the passive officer will be quieter, have a socially weaker presence, and exert
less influence. Regarding pedestrians, the compliant pedestrians will actively avoid police officers when
spotted, prioritizing police forces over other pedestrians’ forces. The indifferent pedestrians will behave
like average pedestrians, treating both police officers and pedestrians similarly, but still considering the
stronger influence of authoritative officers. Lastly, the disobedient pedestrians, representing individuals
who do not trust police officers, will disregard police forces.

The environmental settings are incorporated into the simulation as follows: authoritative officers
will generate a larger bubble force, while passive officers will have a smaller bubble force. Compliant
pedestrians will place high importance on the police officers, with high coefficients for their fik values.
Indifferent pedestrians will have lower coefficients but will still consider the bubble force when responding.
Disobedient pedestrians will not respond to any fik values and will treat police officers as they would any
other pedestrian, using fi j values. Compliant and disobedient pedestrians each make up 10% of the crowd,
while the remaining 80% are indifferent pedestrians. The distribution between passive and authoritative
police officers is evenly split. After applying the E-SFM to the simulation environment, we analyzed the
crowd behavior, specifically focusing on the number of pedestrians that are allowed to pass through the
area of danger.
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Parameter Selection The parameters z, h, and w were introduced in this study to extend the SFM. Their
conceptual formulation follows the same principles of interpersonal repulsion and the influence described
in (Helbing et al. 2000; Helbing et al. 2002). The parameter ranges were informed by efforts using real
video-stream data as examined in (Johansson et al. 2007). In specific, we first selected initial values by
analogy to the magnitudes and decay distances reported for standard repulsion forces between pedestrians,
then they were further refined through exploratory calibration to ensure that simulated behaviors in Unreal
Engine. For example, initially, a z value of 1 was used to reflect the original SFM behavior. We then tested
z values of 15, 35, 50, 75, and 100. For each z value, 25 data points were collected. Let X̄(z) represent
the number of pedestrians allowed into the danger area, where z corresponds to the modification applied
to the SFM. The average number of pedestrians for each z value is denoted as X̄(z). To test the validity of
the bubble force fbf

ik (t), two types of officers are present in the simulation scene: passive and authoritative.
The coefficient h in Equation 8 denotes the strength of the bubble force and depends on the type of police
officer. A passive officer is assigned an h value of 1, while an authoritative officer is assigned an h value
of 2, doubling their bubble force to reflect their increased presence and authority. Similar to the testing
guidelines for the repulsive force, we will test each configuration 25 times, with a total of 4 police officers.

The random variable XH represents the number of civilians allowed through the danger area by the
police officers after the initial explosion, where H corresponds to the sum of h values in that simulation
run (H = ∑k hk). For example, if there are 2 passive officers and 2 authoritative officers, then H = 6. If all
4 officers are passive, then H = 4. The maximum H value is 8, and the minimum is 1 per police officer
present. The average response across 25 runs for a given H value is represented by X̄H . We tested the
values H = 0,4,5,6,7,8. Lastly, the physical force modification must be tested. To do this, we include
6 different values for w, the coefficient that modifies the physical force of police officers. We tested the
values w = 1,5,10,15,20,25. Unlike the bubble force, the same modification magnitude will apply to all
officers on the scene. The variable Xw will represent the number of pedestrians allowed through the danger
area after the initial explosion, respectively to the value of w. We then run the simulation 25 times for each
value of w. The response variable measures the number of pedestrians allowed through the danger area
after the initial attack. The average response value across 25 simulation runs can be represented by X̄w.

4.3 Extended Social Force Model Results

We first discuss the generalization of repulsive force. The repulsive force generation is illustrated in Figure 5
(left). Figure 5 shows us the average number of pedestrians allowed through the danger area per simulation
run across different values of z, where H and w are held constant with values of 0 and 1, respectively.
The leftmost bar represents the original SFM taken from (Helbing et al. 2002), and the 5 rightmost bars
represent the E-SFM, only with different z values. The error bars on each bar represent a confidence interval
constructed with 95% confidence and a sample size of n = 25. We can observe that the average value of
the E-SFM responses fall outside the original SFM’s confidence interval, indicating that the E-SFM to the
repulsive force drives significant change in the evacuation patterns: The average number of pedestrians

Figure 5: Repulsive force modification confidence intervals (left); Bubble force extension confidence
intervals (middle); Physical force modification confidence (right).
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allowed through the danger zone decreases as z increases. In specific, the bar chart displays X̄1 = 12.72,
X̄15 = 10.12, X̄35 = 6.84, X̄50 = 6.04, X̄75 = 5.2 and X̄100 = 4.6. Stronger repulsive forces between officers
and pedestrians result in fewer collisions, allowing officers to reach the danger zone more quickly and
block more pedestrians from passing through the potentially dangerous area.

Next, we examine the results of the generation of the bubble force fbf
ik (t). As defined earlier, the

variable H represents the sum of the coefficient h from equation 8. Given that there are 4 officers in the
scenario, we tested values of H ranging from 4 to 8 (H = 4,5,6,7,8). Each H value includes 25 data
points, resulting in a total of 150 data points for the bubble force extension. The variables z and w were
held constant at 35 and 1, respectively. It is noted that how the introduction of the bubble force affects the
evacuees’ response in the middle of Figure 5. Each bar also represents the average number of pedestrians
evacuated through the danger zone, with a sample size of 25. The first bar represents a value of H = 0, or
no bubble force present (original SFM). The figure shows that as the bubble force increases, the number
of evacuees passing through the danger zone decreases more rapidly. Indeed, as more bubble force is
applied (representing increased law enforcement control), the number of evacuees entering the danger zone
decreases, highlighting the significance of the officers’ control during evacuation. The bubble force acts as
a stronger influence, quickly pushing pedestrians out of the officer’s path. Unlike the repulsive force, which
affects both the pedestrians and the law enforcement officers, the bubble force only impacts the pedestrians,
leading to a faster reduction in the X̄ value. Pedestrians, at the same time, respond more strongly to the
bubble force than the repulsive force, making larger adjustments to their paths to avoid the officers. As a
result, the officers can move through the crowd more quickly, block the danger zone earlier, and prevent
more pedestrians from passing.

Lastly, we discuss the extension of the physical force. Similar to the repulsive force modification,
this extension involves a coefficient that increases the magnitude of the force when police officers come
into contact with pedestrians. To test this modifier, we used five different values of w, the coefficient for
modifying fph

ik (w): w = 5,10,15,20,25. The right figure in Figure 5 presents a bar chart constructed from
the modification of the physical force coefficient w. The sample size for this control chart is n = 25, as no
sample means exceeding another sample’s confidence interval, meaning no significant change in response
came about from modification of the physical force fph

ik (t). Indeed, as the physical forces increase, the
evacuation pattern does change significantly. The reason that the physical force drives no change is that the
physical force only produces values when two agents collide. As the stronger repulsive force and the newly
introduced bubble force prevent collisions between officers and pedestrians, the physical force remains
inactive in the presence of these forces. Therefore, this figure demonstrates that our E-SFM adheres to the
basic principles of the original model while capturing law enforcement’s control over the crowd.

Figure 6 illustrates the effects of the interaction between variables. These contour plots help identify
which configurations of z, H, and w result in the minimum or maximum response. Red indicates a higher

Figure 6: Contour plots - Repulsive and bubble forces vs response (left); Repulsive and phyiscal forces vs
response (middle); Bubble and phyiscal forces vs response (right)
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response value, while blue indicates a lower response (people evacuating through the danger zone). For
our evacuation scenario, we aim to minimize the response, showing that large repulsive and bubble forces
are required 6 (left). In Figures 6 (middle) and 6 (right), it is evident that the physical force f ph

ik (t) has no
influence on the response variable, while the repulsive force and bubble force are the only two factors that
combine to affect the response.

5 CONCLUSION AND FUTURE WORK

In conclusion, we studied the impact our E-SFM has on evacuation scenarios in a realistic event on the
college campus, by incorporating the repulsive force, the physical force, and the bubble force. We validated
the framework using physics-based simulation in Unreal Engine, incorporating the equations of the E-SFM
to define the behavior of both pedestrians and police officers. The response variable used to evaluate the
effectiveness of the SFM extensions was the number of pedestrians allowed through the "danger zone"
after the initial explosion. Our results showed that the generalizations of the repulsive and bubble forces
significantly influenced the evacuation behavior of law enforcement and pedestrians, while maintaining the
principles of the original SFM.

Future work could extend the model by incorporating high-density interactions in high-risk environments
to better capture extreme behaviors typical of stadium settings or man-made disasters. Moreover, different
types of first responders, such as firefighters, paramedics, or medical personnel, can be considered to shape
crowd dynamics realistically. It will be used to establish triage zones, directing movement, or eliciting
varying levels of trust and compliance. Incorporating these diverse responder roles with role-specific
behavioral rules would improve the model’s practicality for emergency planning and training application.
Another direction the authors are currently pursuing is the application of control using unmanned vehicles
(UVs) and real-time detection data. By applying detection and tracking algorithms collected through UVs,
the proposed SFM parameters can be updated using Bayesian approaches, enabling data-driven control
strategies. The UV simulator developed in this work supports the integration of machine learning and
AI algorithms into UV operations for research purposes. Accordingly, we aim to leverage the proposed
simulated environment and evaluate machine learning and AI algorithms for UVs and crowd controls.
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