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ABSTRACT

One of the primary in-built components of smart, continuous manufacturing lines is the production speed
management system (PSMS). In addition to being overly cautious, the decisions made in these systems
may center on making local adjustments to the manufacturing process, indicating a major drawback of
such systems that prevents them from acting as proper digital twins. This study delves into hybridizing the
continuous and discrete event simulation, DOE, and V-graph methods to redefine PSMS’s internal decision
algorithms and procedures, giving it an aerial perspective of the line and turning it into a stand-alone online
digital twin with decisions at a system level. The proposed approach is applied to a practical case from
the food and beverage industry to validate its effectiveness. Numerical results demonstrated an intelligent,
dynamic balancing of the production line, a substantial increment in productivity, and up to 37.7% better
resiliency against new failure and repair patterns.

1 INTRODUCTION

The rapid development of Industry 4.0 has introduced technological innovations that improve efficiency,
flexibility, and resilience in production systems in all industries. Meanwhile, the concept of digital twins has
developed as a crucial instrument for connecting the physical and virtual environments (Grieves 2014; Attar
et al. 2024a). A digital twin is a real-time virtual depiction of a physical system, enhanced with seamless
integration of sensors’ data, Internet of Things (IoT) devices, and sophisticated analytics (Tao et al. 2018).
In continuous production lines, where uninterrupted flow, high throughput, and little downtime are essential,
digital twins can provide exceptional prospects for optimization, predictive maintenance, failure mitigation,
flow routing, and process management (Uhlemann et al. 2017; Veuger 2024). Simulation methods have
evolved to address the dynamic and interconnected nature of smart factories, where technologies like digital
twins rely on it to replicate and predict system behavior (Rosen et al. 2015). Discrete event simulation (DES),
system dynamics (SD), and agent-based simulation modeling (ABS) are among the techniques employed,
with hybrid approaches gaining traction to handle the complexity of smart manufacturing environments
(Negri et al. 2017).

Özgün and Barlas (2009) investigated the differences between discrete event and continuous simulation
modeling by using a queuing system. They pointed out that continuous simulation is fitted for systems
where continuous processes and feedback significantly affect the behavior of the systems, while DES excels
at systems involving leaner processes and discrete changes. As an example of DES twins for production
lines, Shao et al. (2019) employed this method to optimize the production flow, evaluate throughput, and test
reconfiguration scenarios in a smart manufacturing context. They used Siemens Tecnomatix Plant Simulation
(TPS) to model and analyze a real-world assembly line, integrating it as a digital twin. Applied to an
automotive assembly line, the study demonstrated how the digital twin could mirror real-time operations and
support decision-making. Notable results included a 15% increase in throughput and reduced bottlenecks,
highlighting the practical value of simulation-driven digital twins in enhancing smart line efficiency.
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Pekarcikova et al. (2021) studied a manufacturing firm using Tecnomatix simulation software to optimize
production lines using lean manufacturing. The goal was to improve production line material flow and
identify bottlenecks to increase capacity and efficiency. Jung et al. (2022) implemented the real-time power
monitoring data from garment workers’ sewing machines into a DES — with bottleneck identification and
measuring productivity as their modeling objectives. Their notable results include an 18.8% increase in
accuracy compared to conventional methods, demonstrating the potential of smart factory technologies in
improving garment production efficiency. Even though external simulation-based digital twins were proven
to be applicable in various other complex systems (Attar et al. 2024b), for smart manufacturing lines,
studies have overlooked the potential capacity of internal production speed management systems (PSMS).

The PSMS is a primary integral component of production systems that typically analyzes a limited range
of input data and can make changes in the production line. However, decisions made in these systems are
often overly conservative, primarily concentrating on localized alterations to the manufacturing line. These
factors create a fundamental disadvantage and limitation for management systems, resulting in a performance
significantly inferior to the standards one would anticipate from a digital twin. These PSMSs have the ability
to execute immediate commands in the production line and have real-time access to sensor data. Thus, a
properly customized and tuned decision algorithm can assist in converting them into a stand-alone online
digital twin, a concept that has been neglected in the literature. In algorithm development and tuning, the
design of experiments (DOE) class of methods has become a prominent approach for identifying optimal
parameter choices, especially when computational resources are constrained. Traditional trial-and-error
methods or grid searches often become computationally infeasible as the number of parameters increases,
whereas DOE leverages fractional designs to reduce experimental runs (Box et al. 2005). As an example
from the simulation research area, Attar et al. (2016) utilized DOE to systematically tune simulation
parameters in a novel inventory policy under stochastic conditions. This method successfully reduced lost
sales and inventory expenses by identifying the ideal configurations, demonstrating the efficacy of DOE in
parameter optimization for simulation-based studies.

The literature suggests that DOE still remains underutilized in the smart manufacturing domain,
presenting an opportunity to extend its application to improve operational efficiency and system resilience in
digital twin models for continuous production lines. Still, selecting an appropriate experimental design—such
as full factorial, fractional factorial, or Taguchi methods—requires domain expertise to balance accuracy
and computational cost (Montgomery 2017). On the other hand, identifying different segments of the
system with high potential for developing a bottleneck in complex production lines is crucial for designing
action plans for such processes. One of the available tools for this task is the V-graph, which uses graphical
illustration for identifying these potential segments. Arena et al. (2019) presented a successful application of
this method for improving productivity in the brewing and beverage production industry. In another attempt
for the same industry, recently Veuger (2024) deployed the V-graph approach for continuous production
lines, developing several control charts that could be updated manually to optimize the production flow.

Therefore, this paper aims to utilize a combination of simulation, V-graph, DOE, and optimization
methods to propose a structured framework for redesigning and tuning the internal PSMS algorithms,
which can provide these systems with the necessary features of digital twins in mitigating blockage as
well as handling unexpected failures and prolonged repairs. We also offer a real case study from the food
and beverage industry to better demonstrate the functionality of the proposed approach. With the fluid
flow and processing steps of the beverage industry in mind, our simulation model employs a hybrid of
continuous and discrete event modeling techniques. The rest of the paper is organized as follows: the
proposed methodology is described in the next section. It also includes the implementation of the framework
on a practical case study. Experiment results and numerical resiliency analysis are presented in Section 3.
Finally, some concluding remarks and future research directions are provided in Section 4.
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2 METHODOLOGY

This section presents the proposed framework to mitigate blockage and improve productivity in Industry 4.0
continuous production lines dynamically and efficiently. This approach aims to achieve this improvement
and resiliency by redefining the built-in setup capabilities of the management system, without necessitating
further investments in new machines or production methods. The proposed approach is also committed
to maintaining the existing production sequence in the manufacturing lines. This method comprises five
primary steps that can be summarized as follows: (i) conceptual modeling, (ii) simulation modeling, (iii)
PSMS algorithm definition, (iv) DOE and tuning, and (v) real-system implementation.

The first step of this framework involves recognizing the real system’s process, identifying the primary
events and distributions, and capturing all relevant technical constraints. Just like any other simulation-based
approach, this is the most important step of the framework that forms the foundations of the methodology,
directly affecting the accuracy and applicability of the refinements. Then, the system should be modeled
using a suitable simulation technique (e.g., continuous, discrete event, hybrid) to emulate the process
adequately. In this step, any rules in the system’s existing PSMS setup should be taken into account
to ensure the system passes the validation tests and ultimately guarantee the credibility of the predicted
improvements. In the next step, the built-in algorithms are redefined to achieve a system-level decision
perspective with the overall profitability in mind. Here, we also need to list any amendable parameters for
tuning purposes.

The fourth step of the framework employs DOE and optimization methods to finetune the proposed
algorithm. It is essential to select the appropriate method for designing the experiments to achieve the
defined goal in an acceptable time. This step also includes verifying the estimated optimal performance from
the DOE method by using the simulation model. Eventually, the new algorithm with the tuned parameters
is imported into the real system. In this stage, the tuned PSMS will automatically trigger the required
actions to mitigate blockage and disruption, acting as an internal online digital twin in real time. Thus,
after this step, the simulation model will no longer be needed. In order to demonstrate the applicability of
this framework in the industry, in the following subsections, we apply this approach to a real case study
from the food and beverage industry.

2.1 Conceptual Modeling

The considered case in this paper is a continuous production line for beverage packing in Western Europe
that currently produces drinking water in 500 ml polyethylene terephthalate (PET) plastic bottles. This line
produces the bottles onsite and stores the final products (in pallets) in its warehouses. The line comprises
nine main components that include three sources of material (namely, Beverage supply, Plastic PET preform
supply, and Pallet supply), and six machines (namely, Combi machine, Labeler, Cluster packer, Over packer,
Palletizer, and Stretch wrapper). The production process of this line is graphically illustrated in the flow
chart of Figure 1.

In this process, the first step is to feed the PET preforms and the beverage itself to the Combi machine.
This machine is responsible for two sub-operations: (i) Forming the PET bottles from the reform through
a blow molding technique and preparing them for the filling process, and (ii) Filling the bottles with the
supplied beverage and capping them. The beverage supply subsystem, on the other hand, processes the
beverage, stores a specific amount in temporary tanks, and eventually provides it to the Combi machine
in the required amount. Unlike other parts of this production line, the beverage supply subsystem is, in
nature, a continuous process with all elements connected through pipes, and entities in this portion of the
system experience continuous, gradual events that are mainly constrained by the supported volumetric flow
rate of the pumps, pipes, valves, and other types of equipment. After the Combi machine, the unit of
measurement for the main entity that moves in the system always remains discrete.

The filled bottles are then transferred to the labeling station — from which stage, all transfers in the
line will be done by conveyors. These conveyors are where the system keeps the temporary inventory
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Figure 1: The manufacturing process flow of the production line in the case study.

between the stations, i.e., work in process (WIP). Thus, in this study, the conveyors are seen as intermediary
buffers, each of which has a distinct capacity; i.e., 1250, 750, 750, 500, and 580 product units for buffers
1-5, respectively. The cluster packer machine packs 6 bottles into 1 cluster followed by the over packer
machine, which packs 4 clusters of bottled water into 1 pack. Subsequently, the palletizing station loads
the clusters on a pallet. Based on the data gathered from this production line, there are 13 packs per layer
and 7 layers per pallet; thus, each pallet contains 2184 units of products (i.e., bottled water). Eventually, as
the last stage of production, the stretch wrapper wraps the pallets with stretch film, delivering the finished
goods to the shipping/warehousing stage. The nominal capacity of all machines of this production line is
given in Table 1. To maintain the consistency of the data provided in this table, all speed values (even for
the palletizer, cluster packer, and over packers) are converted to bottle units per hour (UPH).

Table 1: Production rate and maintenance parameters for the main machines of the line.

Machinery Production Rate (UPH) Maintenance

Low Speed Normal Speed High Speed Uptime (%) MTTR* (sec.)

Combi 30000 30000 30000 97.80% 112
Labeler 7200 30000 36000 96.00% 90
Cluster packer 25000 30000 37500 98.00% 74
Over packer 20000 30000 39000 97.40% 80
Palletizer 30000 30000 40500 97.50% 75
Stretch wrapper 30576 30576 43680 98.30% 80
* MTTR: Mean Time to Repair

Table 1 also includes the failure and repair data extracted from the maintenance records of this
manufacturing line. The line can also be supplied with as many pallets as required, and there is no limit
on the hourly supply of preformed PET material input for the system. The beverage supply part of the
system has an output flow between (approx.) 25 to 30 m3/h. Given the current product specification, this
beverage flow could support the production of between 50k and 60k bottles per hour.

2.2 Simulation Modeling

Based on the conceptual model provided in the last subsection, we use a simulation platform to build our
hybrid model. For this study, we chose Siemens TPS, which has long been used for modeling sophisticated
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industrial systems (see, for instance, Pekarcikova et al. 2021; Alfas et al. 2025; Shao et al. 2019). One of
the advantages of this simulation platform for such a study is its ability to handle fluid continuous flow and
discrete events of material seamlessly. The 2D view of the proposed simulation model in TPS is shown
in Figure 2. In this model, two sources and one Fluid source object are used to input the material/fluid
into the system. The inter-arrival time in the two sources (for the preforms and pallets) is set to 0 seconds
to make sure these materials are available as much as required for the production with no restriction. In
the continuous part of the simulation model, we used a tank object to represent the real tank in the system
and a Portioner object that allows for merging the continuous flow with the flow in the discrete part of
the model. Since the volumetric flow rates of these pieces of equipment were almost the same in the real
system, we set the capacity of all of them to 25 m3/h.

The Combi machine is modeled by an assembly station that merges one portion of the liquid with the
PET plastic bottles, outputting a new part object that represents the filled bottle. Similar to the flow chart
in Figure 1, the conveyors are modeled using buffer objects. For each buffer (i.e., conveyor), we have set
the capacity to the values reported in the last section. Furthermore, each buffer has a dedicated method
(e.g., M_Conv1 for Conveyor 1) that is executed at the entrance of every element to the conveyor. These
methods, in fact, contain the logic of the PSMS’s decisions on machine speeds. The existing algorithms
in these parts of the PSMS are given in Figure 3 for a sample conveyor (i).

In order to validate the proposed simulation model, we collect 30 samples of the model (with the
existing PSMS setup), and compare its throughput with the real system. Based on the information provided
by the company, this line is currently producing 200k bottles per shift (8 hours). Our model, on the other
hand, gave us a very close average throughput of 199,239.3 in these samples with a standard deviation
of 2945.8. To test the validity of the model statistically, we use the t-test hypothesis test for which the
t-statistic could be easily computed as −1.41. Consequently, with a p-value of 0.17, which is greater than
the typical significance level (α = 0.05), the test fails to reject the null hypothesis. This means, there is
insufficient evidence to conclude that the population mean differs from 200,000. Therefore, the model is
valid and can be utilized reliably for further investigation and improvements.

Figure 2: A glance at the hybrid simulation model developed for the system under study.
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i , and Li j are respectively the real-time inventory, capacity, and threshold level j.

2.3 Redefining the PSMS Algorithm

Before defining the new algorithm for the PSMS, we would need to observe the available speed limits
for each segment of the line. As explained in Section 1, drawing a V-graph is one of the best graphical
approaches for identifying the bottlenecks in such continuous lines. Based on the collected data, this
system’s V-graph is given in Figure 4. This graph shows that the most influential station in this system
is the Combi machine. That is, this machine defines the cap of achievable improvements in this line. It
is also observed that the beverage supply in this line will always exceed the required capacity, regardless
of the chosen speed for any other machine. It is also observed that keeping the labeler, cluster packer, or
over packer machines constantly on low speed will risk the system turning these stations into a bottleneck.

Based on these observations, we define a new algorithm for the PSMS that overwrites the existing setup
in the system. This algorithm is graphically presented in Figure 3. As seen in this figure, unlike the existing
setup, the decisions are now affecting both the predecessor and successor stations. Furthermore, multiple
rules and levels are defined to take the most out of all the options we have for the machine speeds. Here,
the algorithm benefits from separate threshold level sets for each conveyor (i.e., Li j for threshold level j of
conveyor i), allowing for independent calibration and tuning of the decision rules in each conveyor. This
feature provides us with better tuning and optimization compared to the static coefficients considered in
the existing setup. Given that the system has 5 conveyors, the threshold level matrix L is a 5×5 matrix. It
can be observed that in this algorithm, these thresholds are checked sequentially, and thus when assigning
values to these thresholds, the following relationship should logically hold for them:

Li1 < Li2 < Li3 < Li4 < Li5, ∀i (1)

2.4 Tuning by Design of Experiments (DOE)

In this study, the Taguchi method is employed to optimize and tune the proposed PSMS algorithm by
systematically evaluating the influence of the above 25 factors, each considered at 3 distinct levels. In
order to make sure that in all experiments the statement in Eq. (1) holds for each i ∈ {1,2, ...,5}, we define
a set of mutually independent auxiliary factors L′

i j, and use them instead of the original L factors for the
DOE purposes:

L′
i1 = Li1, ∀i (2)

L′
i j = Li j −Li( j−1), ∀ j > 1, i (3)
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Figure 4: The V-graph for important stations of the case study.

The L81 orthogonal array is chosen to effectively organize the experimental design, facilitating a
comprehensive analysis of the factors’ effects and interactions while reducing the number of necessary
experiments. This methodology, tied to Taguchi’s philosophy of design, seeks to improve algorithm
performance by determining optimal configurations that maximize efficiency and minimize resistance to
noise (Taguchi 1986). The employed L81 array, as a fractional factorial design, efficiently manages our
extensive parameter space, consistent with established methodologies for multi-factor optimization (Roy
2001). The data from the performed experiments is then used to develop a linear model and find the
optimum factor values.

One of the main advantages of this method over its counterparts from the DOE class is that it requires
significantly fewer runs than a full factorial design, which would require 325 = 8.47× 1011 experiments
(Antony 2014; Attar et al. 2016, 2025) . This makes the deployed method less complicated compared
to the response surface-based ones by Attar et al. (2016, 2025), ideal for tuning production management
algorithms, like PSMS, with numerous stations and factors, and ultimately offering a reproducible framework
for future research in algorithmic optimization within analogous computer-operated production systems.

3 RESULTS AND DISCUSSIONS

In this section, we apply the proposed tuning approach to the refined PSMS and compare the achieved
results with the existing setup of the system from multiple perspectives. To have an in-depth understanding
of the performance of the system and its reliability in real practice, first, we deploy the proposed approach
to the existing failure and repair patterns explained in the previous section. Subsequently, we conduct
sensitivity analyses to test the resiliency of the proposed PSMS under a set of unforeseen disruptions in
different parts of the production line.

3.1 Performance in Normal Conditions

Based on our preliminary experiments, the acceptable values for L′
i j factors would fall in the following

ranges: [0,0.10] for j = 1 and [0.05,0.30] for all other j values. For each of the 81 experiments designed
using the Taguchi method, we collected 30 samples from the simulation model. This sample size was
shown to be statistically effective in the literature based on the central limit theorem (Attar et al. 2016). The
data obtained from the experiments (i.e., design and responses) is then analyzed by fitting a linear model
to the data and solving it to optimality using MATLAB. This resulted in an R-squared value greater than
0.9; the fitting results demonstrate a statistically rigorous assessment of the factors’ impacts on the PSMS
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Table 2: The optimum values of the auxiliary DOE factors and corresponding algorithm parameters.

L′
i j Li j

Rule ( j) 1 2 3 4 5 1 2 3 4 5

Conveyor (i) 1 0.00 0.05 0.05 0.30 0.05 0.00 0.05 0.10 0.40 0.45
2 0.10 0.05 0.05 0.05 0.30 0.10 0.15 0.20 0.25 0.55
3 0.10 0.30 0.05 0.05 0.05 0.10 0.40 0.45 0.50 0.55
4 0.00 0.05 0.30 0.05 0.05 0.00 0.05 0.35 0.40 0.45
5 0.00 0.05 0.05 0.30 0.05 0.00 0.05 0.10 0.40 0.45

algorithm’s performance. Table 2 reports the optimum factor settings for the proposed PSMS algorithm,
both for the auxiliary factors and their translation to the original L factors.

By achieving the optimal values for the L factors, we can now test the expected performance of
the proposed tuned PSMS against its simple ancestor, i.e., the existing setup, from Figure 3. To have a
statistically valid comparison between the approaches, we collect 30 samples of each method and report
their statistics for the main key performance indicators (KPIs). These results are presented in Table 3,
along with the value and percentage of change achieved by our method. As seen in Table 3, the tuned
PSMS has achieved a significant increment in the expected throughput (per shift) of this production line.
Apart from the high increment of approx. 18% in the throughput mean, we also observe that the variations
of the results were slightly decreased in this method. Even though a 3.4% reduction in the standard
deviation might not seem very significant, it can signal that the proposed tuned PSMS was more successful
in mitigating machine failures while maintaining acceptable WIP levels and avoiding blockage. This all
should be considered together with the fact that the new PSMS algorithm offered a drastic reduction in the
average WIP of the system in the buffers — lowering it from over 964 units to the negligible amount of
41 and scoring 95.7% of reduction. Furthermore, Figure 5 illustrates the performance of the new PSMS
in eliminating the blockage in the Combi machine as well as reducing the block state in other critical
segments of the line.

Table 3: KPI Comparison between the existing setup and the proposed tuned PSMS.

KPI Model Change

Baseline Tuned PSMS Amount Percentage

Throughput Mean 199239.3 234218.6 +34979.3 +17.6%
Std Dev 2945.8 2846.2 −99.6 −3.4%

Average WIP 964.3 41.7 −922.6 −95.7%

3.2 Resiliency Analysis

The drastic reduction in the WIP levels reported in Table 3 may raise some concerns regarding the ability
of the new PSMS algorithm to withstand changes in the failure patterns of the production line assets. It is
also important for the new algorithm to handle new patterns and longer durations of repairs. In order to
investigate the proposed approach from such resiliency aspects, we defined 8 scenarios in which different
parts of the system would encounter new failure and repair distributions. As defined in Table 4, the first
half of these scenarios maintains the existing assumption of perfect conveyors and considers no failures for
them. For the second group (i.e., Scenarios 5-8), we added failure-prone conveyors with 95% uptime and
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Figure 5: Performance of the proposed approach vs the baseline in mitigating the blockage in the bottleneck.

an average repair time of 1 minute. For each of these two scenario groups, we considered a combination
of the availability drop of the six main stations and significant increments in their repair time.

The availability drop considered for these experiments is set to the realistic amount of 10%. For repair
time increment, on the other hand, it was assumed that the system would face machine repairs that could
take twice as long. Both models were run under all these scenarios to collect 30 samples, and the results are
summarized and compared statistically in Table 4. Here, for each scenario, we report a relative improvement
(RI) percentage achieved by the proposed method compared to the baseline model. Considering Scenario
1 as a reference point for normal conditions, we calculated the deviation percentage (i.e., Dev) from the
corresponding normal throughput (Scenario 1) as well. The common definitions of the RI and Dev relative
performance indices were adopted from Attar et al. (2024a) and used for calculating the values reported
in this table. The results reported in Table 4 disclose that the proposed PSMS algorithm is significantly
more resilient than the existing setup of the system. The superiority of the proposed approach ranges from
17.56% up to the very high level of 37.65% in different scenarios. To demonstrate the significance of this
gap more clearly, we plotted the collected samples in Figure 6 for both models under all scenarios.

Table 4: Throughput resiliency analysis and comparison; Existing setup vs The proposed tuned PSMS.

Scenarios 1
(N | N | N)*

2
(N | N | Y)

3
(N | Y | N)

4
(N | Y | Y)

Baseline Tuned PSMS Baseline Tuned PSMS Baseline Tuned PSMS Baseline Tuned PSMS

Mean 199239.3 234218.6 182330.2 231059.3 150330.2 197621.5 132010.1 177962.0
Std Dev 2945.8 2846.2 6220.9 4434.3 4171.1 4830.6 8507.3 9633.4

RI (%) 17.56 26.73 31.46 34.81
Dev (%) - - 8.5 1.3 24.5 15.6 33.7 24.0

Scenarios 5
(Y | N | N)

6
(Y | N | Y)

7
(Y | Y | N)

8
(Y | Y | Y)

Baseline Tuned PSMS Baseline Tuned PSMS Baseline Tuned PSMS Baseline Tuned PSMS

Mean 168207.6 216854.7 157910 212847.3 129912.4 174234.6 114684.2 157858.1
Std Dev 3462.8 4582.4 4779.8 5062.5 3953.0 5127.7 7718.7 9888.8

RI (%) 28.92 34.79 34.12 37.65
Dev (%) 15.6 7.4 20.7 9.1 34.8 25.6 42.4 32.6

* Scenario specifications: (Conveyor Failure | Availability Drop | MTTR Increment); Y: Yes; N: No
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Figure 6: Resiliency of the proposed approach and the existing setup of the system under several unforeseen
scenarios for failure and repair fluctuation.

As illustrated in Figure 6, there is a significant gap between the data points of the proposed PSMS
and those of the baseline model in all scenarios, and the box plots of these methods did not overlap at
any point. These plots also show that in both models, the availability drop considered in the scenario
definitions can have a more significant effect on the throughput of the system than the increment in the
MTTR. Furthermore, comparing the results of these models for Scenarios 1 and 2 shows that the new
algorithm is less sensitive to the MTTR changes and it encounters only a negligible 1.3% reduction in
its productivity. This observation is also repeated in the transition from scenario 5 to 6, where the tuned
PSMS only sees a 1.7% further throughput reduction. Meanwhile, the system seems to be noticeably more
sensitive to fluctuations in the availability ratio of the machines (i.e., the failure rates), with the Dev values
rising to 35% and 25% for the Baseline and tuned PSMS models, respectively.

As expected, the combination of the availability drop and MTTR increment assumptions simultaneously
in Scenarios 4 and 8 causes more disruption in the production line under both model setups. Additionally,
adding the failure-prone conveyor assumption causes between 8.7% and 15.6% reduction in the throughput
of the base model and lowers the productivity in our tuned system by 7.4 to 10 percent. That is, the tuned
algorithm was more successful in maintaining the added failure pattern in these transportation types of
equipment. In general, comparing the RI values in Table 4 with that of normal conditions (i.e., Table 3)
reveals that the new failure and patterns did not weaken the superiority of the proposed PSMS algorithm
over the current baseline. In fact, these disruptions even noticeably increased the performance gap between
the two setups. Therefore, these findings, together with the ones reported in Table 3 and Figures 5-6,
strongly support the implementation of the new approach in the real system.

4 CONCLUSIONS

Digital twins play a pivotal role in managing continuous production lines by enabling real-time monitoring,
simulation, and optimization of complex manufacturing processes. With a particular emphasis on continuous
smart manufacturing lines, this study analyzes the proposition of transforming the PSMS into an online
digital twin that is capable of optimizing the system in normal conditions and properly mitigating unforeseen
fluctuations, faults, and congestion that may be experienced in these lines. Default PSMS settings that might
come from the equipment manufacturers can be excessively conservative, generic, simple, or imbalanced,
and thus their decisions may rely on local remedial adjustments to the manufacturing process, overlooking
the overall productivity of the system. In addition, these systems are usually running continuously alongside
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the real system and have real-time access to all sensors’ data. As the name implies, the PSMS also has the
highest required privileges to set and adjust the speed of all parts of the line at any point in time.

That is, the PSMS inherently has the real-time monitoring feature required for being a digital twin, and
it also has the power to execute the necessary commands. This all signals an interesting opportunity for
decision algorithm refinements and tuning for these systems. This study proposes a five-step framework to
accomplish this task: (i) conceptual modeling, (ii) simulation modeling, (iii) PSMS algorithm refinement,
(iv) DOE and tuning, and (v) real-system implementation. To illustrate the application of this framework in
a practical context effectively, we examined a case study from the food and beverage sector. After defining
the initial conceptual model of the system, we utilized Siemens TPS to build the simulation model. Here,
we used the available features of this simulation platform to model and merge the continuous and discrete
event segments of the system effectively. The model included all the existing setups and rules of the system
for the PSMS, and it was validated against the collected real data using a statistical hypothesis test.

In the next step, we attempted to redefine the internal logic of PSMS by using the collected data, system
description, and the validated simulation model. To identify potential bottleneck stations and the cases they
can be problematic, we deployed the V-graph method. Unlike the simple existing decision procedure, the
proposed step-wise algorithm for the PSMS benefits from five distinct rules that are evaluated sequentially
to find the best speed for both upstream and downstream stations. This algorithm also makes use of the
whole available speed range for each machine if necessary. Another advantage of the proposed algorithm
is that the decision thresholds of the rules are adjustable independently for each part of the production
line. This feature provides a very high level of customization and adaptability. Due to the numerous
decision thresholds in this algorithm, we employed the Taguchi DOE and utilized an L81 orthogonal array
to systematically structure the experimental design. This approach enabled a thorough examination of the
factors’ effects and interactions while minimizing the required experiments, enhancing both the efficiency
and robustness of the study.

The results of the tuned PSMS were numerically contrasted with the existing setup, which showed around
an 18% improvement in the overall throughput along with a drastic WIP reduction. However, the noticeable
drop in WIP could cause concerns for management about the performance of this method in the event of
new, significant disruptions in the system. This concern was also investigated using a variety of numerical
scenarios for possible changes in the repair and failure patterns of the system components. This resiliency
analysis revealed that the significance of the performance gap gets even greater under such disruptions
(i.e., approx. 38%), making the benefit of switching to the new tuned PSMS for production management
more remarkable. For future research, one may consider applying this framework to manufacturing lines
in other industries such as textiles or steel manufacturing. Examining how algorithms perform amid the
uncertainties introduced by human resources, or by exploring their impact within production systems across
different industries, could broaden its practical relevance.
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