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ABSTRACT

This paper investigates a parallel batching problem with incompatible families, unequal job sizes and
non-identical machine capacities. The objective is to minimize the total energy costs. Motivated by a
real-word autoclave molding process in composite material manufacturing additional factors need to be
considered: machine eligibility conditions, machine availability constraints, machine dependent energy
consumption, and the job size and machine capacity may not be available in absolute terms. Mathematical
models are formulated for both defined and undefined job and machine sizes. The latter approach creates
batches based on a set of best-known batches derived from past production data to meet the machine
capacity constraint. Finally, a heuristic is presented. Computational experiments are conducted based on
a real case study. Energy savings of over 20 % can be achieved compared to the actual planning with
sensible batch forming and machine allocation in a short amount of computing time.

1 INTRODUCTION

In parallel batching (p-batching) multiple jobs are grouped as a batch and processed simultaneously on a
so-called batch processing machine (BPM). It is an important part of many industrial production systems
and can be encountered in a variety of – often energy-intensive (Abedi et al. 2022) – industries, including
semiconductor manufacturing (Mathirajan and Sivakumar 2006), aerospace parts manufacturing (Azami,
Demirli, and Bhuiyan 2018), the textile industry (Huynh and Chien 2018), steel production (Tang et al.
2016), and coating/painting applications (Horn, Demirović, and Yorke-Smith 2023). If several parallel BPMs
are available, the assignment of the batches to the machines must be solved along with batch formation.
Problems typically also include a scheduling component to optimize makespan (Cmax), cycle-time or due-date
related performance measures. In the context of rising energy prices and growing environmental concerns,
minimizing energy consumption (PC) and total energy costs (T EC) are becoming increasingly important.

The present paper considers an autoclave molding process found in composite material manufacturing.
Specifically, it studies a new energy-aware p-batching problem with parallel identical machines with unequal
capacity limits and energy consumption rates. Articles, respectively jobs can only be processed on a limited
set of machines, belong to incompatible families and have non-identical sizes. In contrast to existing studies,
it is taken into account that the determination of article size and machine capacity can be a challenge in
practical applications. This information is essential to ensure autoclave capacity is not exceeded. However,
it is not always easily available to support batching decisions. Furthermore, the spatial requirements of
the equipment and nesting considerations would have to be taken into account for an exact calculation.
Solution methods are presented for both, known and unknown job and machine size.

The remainder of this paper is structured as follows: Section 2 details the problem. Section 3 gives an
overview of related work on p-batching and bin-packing. Section 4 presents a MILP formulation for the
assumption that job sizes and machine capacities are known. Section 5 proposes a mathematical model and
a dispatching rule for the case of undefined job sizes and machine capacities. The results of computational
experiments are reported in Section 6. Section 7 gives a summary and suggestions for future work directions.
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2 PROBLEM SETTING

The batching problem under study is based on the following assumptions:

1. There are A different article types.
2. Each article a belongs to family f (a) ∈ {1, ...,F} where F is the number of incompatible families.

Only articles of the same family can be batched together.
3. Each article has specific dimensions. To simplify, each article is assigned a size sa.
4. There are n jobs that have to be processed, labeled by j = 1, . . . ,n. Each job j has an article type

a( j) ∈ {1, ...,A}.
5. Each job j requires a specific curing operation p( j) ∈ {1, ...,P} where P is the number of unique

operations. All jobs in a batch must require the same curing operation.
6. There are m parallel BPMs, labeled by i = 1, . . . ,m.
7. The machine capacity Vi is limited. The maximum batch size depends on the compilation of parts.
8. Articles (or jobs) can only be processed on a limited set of eligible machines M j with 1≤

∣∣M j
∣∣≤m.

9. The processing time tp depends on the curing operation p and is considered to be independent of
the composition of the processed articles in a batch and the batch size.

10. Preemption is not allowed, i.e., after a batch is started on a BPM it cannot be interrupted.
11. All jobs and machines are available at time t = 0. The machine availability is defined by Ti.
12. Energy costs cpi are assumed to be constant over time and related to performing a curing operation

p on machine i.

It should be noted that the same article type may require different curing operations. Moreover,
the concept of the family differs from the understanding that is common, for example, in the context
of p-batching in semiconductor manufacturing. Here, families are formed based on material, part type,
higher-level assembly group or customer specifications. This means that parts of the same family may
require different operations and may be qualified for different machines. Belonging to the same family is
therefore a necessary but not sufficient condition for manufacturing parts together. Using the three-field
notation from deterministic scheduling theory of Graham et al. (1979), the problem can be described as

P|p−batch, incompatible,s j,Vi,M j|EC,

where P refers to identical parallel machines, incompatible to incompatible job families and s j to non-
identical job sizes, Vi indicates different maximum machine capacities and M j the eligibility constraints.
The total energy costs EC required to process all jobs are to be minimized.

Two interdependent problems must be solved: (1) forming batches and (2) assigning batches to machines.
The scheduling of batches on the machines can be disregarded, since the performance measure is not time-
related. Job characteristics such as unequal ready times, due dates, or sequence-dependent setup times are
not considered. The task is therefore similar to the one-dimensional (1D) bin packing problem (BPP), in
which a set of items must be packed into a minimum number of identical bins. In fact, we can consider
instances of the problem where Vi and cip are identical for all machines, |F |= 1, |P|= 1 and |M j|= m for
all j, and obtain instances of the BPP. Since the BPP is therefore a special case of the given problem and
is NP-hard due to Garey and Johnson (1979), this problem is also NP-hard.

Note that, although a small number of batches or bins is generally associated with low energy costs,
a minimum number of batches is not a necessary or sufficient condition for attaining optimality.

3 RELATED WORK

There is an extensive literature on p-batch scheduling and bin packing. Here, we (1) give an overview
on energy-aware scheduling in batch processing environments with parallel machines, (2) refer to batch
processing with uncertainties, and (3) provide references to related BPP literature. A detailed overview of
papers on p-batching can be found in Fowler and Mönch (2022).
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Despite the growing interest in energy-aware scheduling in general and also in the context of p-batching
(Gahm et al. 2016; Gao et al. 2020; Fowler and Mönch 2022), there are still relatively few papers dealing
with energy-aware batch processing in parallel machine environments. The majority of these studies address
multi-objective problems (Table 1). Consequently, they use methods designed for such problems, like the
non-dominated sorting genetic algorithm II (NSGA-II) approach (Rocholl, Mönch, and Fowler 2020) or a
bi-criteria ant colony optimization (ACO) algorithm (Jia et al. 2017; Jia et al. 2019). Multiple papers present
mixed-integer linear programming (MILP) models and use the ε-constraint method to obtain Pareto-optimal
solutions (Rocholl, Mönch, and Fowler 2018; Rocholl, Mönch, and Fowler 2020; Cheng 2017; Cheng,
Cheng, and Chu 2022). The problem structure also offers opportunities for decomposition approaches.
Cheng (2017) proposes a two-stage heuristic. Batches are formed using a linear programming (LP) or
a successive knapsack-based method; batch allocation is done with a LP based method. A three-stage
heuristic developed by Feng et al. (2022) first assigns jobs to machines, then forms batches for each
machine and finally assigns batches to periods. Stage one and two use rule-based approaches, stage three
solves an integer programming model. Typically, a conventional performance measure, such as Cmax or the
total weighted tardiness (TWT ) is optimized while also minimizing T EC or PC. Energy costs are usually
calculated based on TOU tariffs, i.e., the energy price depends of the time during which the energy is
consumed. Sometime a machine-dependent power rate (Jia et al. 2019; Cheng 2017; Cheng, Cheng, and
Chu 2022; Feng et al. 2022; Tian and Zheng 2024) or a machine- and mode-dependent power rate (Jia
et al. 2017; Zhou et al. 2018; Qian, Jia, and Li 2020; Abedi et al. 2022) is presumed.

Table 1: Reviewed literature on p-batch scheduling with energy related performance measures and parallel
machine environments. Mathematical models are only listed as solution approaches, if the paper presents
related computational experiments. The following abbreviations have not been declared in the text: Q:
parallel uniform machines; R: parallel unrelated machines; r j: job release times; ND: non-dominated;
NEM: number of enabled machines; TWC: total weighted completion time.

Reference Problem Solution approach
Jia et al. (2017) P|p−batch,r j,s j|ND(Cmax,T EC) bi-criteria ACO
Jia et al. (2019) P|p−batch,r j,s j|ND(Cmax,PC) bi-criteria ACO
Rocholl, Mönch, and Fowler (2018) P|p−batch, incompatible,r j,s j|ND(TWC,T EC) ε-constraint
Rocholl, Mönch, and Fowler (2020) P|p−batch, incompatible,r j,s j|ND(TWT,T EC) ε-constraint, NSGA-II
Schorn and Mönch (2023) P|p−batch, incompatible,r j|λTWT +(1−λ )T EC genetic programming
Zhou et al. (2018) Q|p−batch,r j|ND(Cmax,T EC) differential evolution
Qian, Jia, and Li (2020) Q|p−batch,r j,s j|ND(Cmax,T EC) evolutionary algorithm
Cheng (2017) Q|p−batch,s j|ND(T EC,NEM) ε-constr., 2-stage heuristic
Cheng, Cheng, and Chu (2022) Q|p−batch,s j|ND(T EC,NEM) ε-constraint
Abedi et al. (2022) Q|p−batch, incompatible,r j,s j|λTWT +(1−λ )PC MILP, tabu search
Feng et al. (2022) R|p−batch|T EC MILP, 3-stage heuristic
Tian and Zheng (2024) R|p−batch,s j,Cmax ≤C|T EC branch and price

Very few papers address p-batch scheduling problems with uncertain data (Shahnaghi et al. 2016;
Fowler and Mönch 2022). Uncertainty in optimization problems is generally understood as the presence
of non-deterministic data. For instance, in the context of p-batching, the expected values for job size or
processing time are known, yet the actual values vary within established limits (Shahnaghi et al. 2016;
Shahmoradi-Moghaddam et al. 2016; Wang, Shao, and Yan 2022; Wu et al. 2023) or according to a
known distribution function (Rocholl, Yang, and Mönch 2022). Sources of uncertainty are, e.g., a non-
zero defect rate (Wu et al. 2023), tolerance in production (Shahmoradi-Moghaddam et al. 2016) or data
quality issues (Wu et al. 2023; Rocholl, Yang, and Mönch 2022). The two methods commonly used for
problems with uncertainty are stochastic or robust optimization approaches. This paper explores a different
case. Information is theoretically available, e.g. the article size could be determined from CAD models.
However, data extraction or incorporation of the exact data into the planning process is considered too
time-consuming. I.e., the data is uncertain in the sense of being undefined or unknown during batching.
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In order to differentiate between the general conception of uncertainty and the present case, the term
“undefined” is used for the remainder of the text to refer to undetermined job sizes and machine capacity.
To the best of our knowledge, there is no research on the subject of p-batching or bin packing in which
data on a required parameter is not directly available.

A close bin-packing counterpart to the p-batching problem under consideration is the 1D variable-sized
BPP with conflicts or (in)compatible categories. A well-known approach to solving the classical (offline)
1D BPP are approximation algorithms, most notably the offline variants of Next-(k-)fit, First-fit (decreasing)
and Best-fit (decreasing) described in Johnson (1973) and Johnson et al. (1974). Items are iteratively
fit into open bins; if no open bin has sufficient capacity, a new bin is opened. The heuristics differ in
terms of how items are sorted, when bins are opened and closed and how they select an open bin for the
current item. In addition to these rule-based approaches, various metaheuristics have been adapted to the
1D BPP. Munien and Ezugwu (2021) provide an overview. For lower bounds and heuristics for the BPP
with conflicts we refer to Gendreau, Laporte, and Semet (2004) and Muritiba et al. (2010). For a literature
review on packing and the related cutting problems under uncertainty readers can refer to Hadj Salem,
Silva, and Oliveira (2023).

4 MATHEMATICAL FORMULATION FOR BATCHING WITH DEFINED JOB SIZES

In the following, the batching problem introduced in Section 2 is formulated as a MILP. Item size and
machine capacity are assumed to be known. The article level is excluded, item volumes and families are
directly assigned to the jobs. The indices, parameters, and decision variable used to model the problem
are introduced in Table 2.

Table 2: Notation of the mathematical model for batching jobs with defined size.

Indices and sets i = 1, ...,m : set of machines
j = 1, ...,n : set of jobs
p = 1, ...,P : set of processes
f = 1, ...,F : set of families
b = 1, ...,B : set of batches

Parameters cip : non-negative energy costs related to performing process p n machine i
tp : processing time of process p
s j : space (volume) requirements of job j
Ti : maximum availability (time) of machine i
Vi : maximum capacity (volume) of machine i
ei j = 1 if job j is qualified to be processed on machine i, 0 otherwise
r jp = 1 if job j requires operation p, 0 otherwise
h j f = 1 if job j belongs to family f , 0 otherwise

Decision variables xi jb = 1 if job j belongs to batch b on machine i, 0 otherwise
yipb = 1 if batch b on machine i requires operation p, 0 otherwise
zi f b = 1 if batch b on machine i belongs to family f , 0 otherwise

The MILP can then be formulated as follows.

min
B

∑
b=1

m

∑
i=1

P

∑
p=1

cipyipb (1)

subject to
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m

∑
i=1

B

∑
b=1

xi jb = 1 j = 1, . . . ,n (2)

P

∑
p=1

yipb ≤ 1 i = 1, . . . ,m , b = 1, . . . ,B (3)

r jpxi jb ≤ yipb i = 1, . . . ,m , j = 1, . . . ,n , p = 1, . . . ,P , b = 1, . . . ,B (4)
F

∑
f=1

zi f b ≤ 1 i = 1, . . . ,m , b = 1, . . . ,B (5)

h j f xi jb ≤ zi f b i = 1, . . . ,m , j = 1, . . . ,n , f = 1, . . . ,F , b = 1, . . . ,B (6)
n

∑
j=1

B

∑
b=1

xi jbei j =
n

∑
j=1

B

∑
b=1

xi jb i = 1, . . . ,m (7)

n

∑
j=1

xi jbs j ≤Vi i = 1, . . . ,m , b = 1, . . . ,B (8)

P

∑
p=1

B

∑
b=1

yipbtp ≤ Ti i = 1, . . . ,m (9)

xi jb,yipb,zi f b ∈ {0,1} i = 1, . . . ,m , j = 1, . . . ,n , p = 1, . . . ,P , f = 1, . . . ,F , b = 1, . . . ,B. (10)

The objective (1) is to minimize the sum of energy costs, calculated as the sum of the element-wise
product of the matrices cip and yipb over all b. Equations (2) ensure that each job belongs to exactly one
batch and all demand is satisfied. Constraints (3) make sure each batch requires at most one curing operation
and constraints (4) ensure that all jobs in one batch require the same operation. Similarly, constraints (5)
and (6) assure that each batch belongs to at most one family and all jobs in one batch belong to the same
family. Equations (7) express that all jobs in a batch must be qualified to be processed on the respective
machine. Finally, constraints (8) ensure that the total volume of a batch must not exceed machine’s capacity
and constraints (9) make sure that the time required to process all batches of a machine does not exceed
the machine’s availability. Constraints (10) indicate that the decision variables are binary.

The model requires a value B, that specifies the maximum number of batches allocated to each machine.
Two simple upper bounds for B are the number of jobs to be processed and the maximum number of
batches that can be processed on a machine within Ti. It is clear that a smaller value B is preferable, as it
is associated with a smaller problem size so that B = min(n,maxi∈m{d Ti

min{oip(i)◦tp|oip(i)◦tp>0}e} where d·e is
the ceiling function and oip is a binary matrix indicating which process p can be performed on machine
i. A better upper bound can be derived from the result of a heuristic such as the BKB dispatching rule
(Section 5.3) or a BPP approximation algorithm.

A further approach to reduce the formulation size is to extend data preprocessing. If information about
the required curing process and the job family is summarized in an item group g with g = 1, . . . ,G where
G is the number of unique combinations of process and family (Figure 1) then the number of constraints
and decision variables is reduced, on the condition that G < P+F . r jp and h j f are then replaced by k jg,
so that k jg = 1 if job j belongs to item group g and 0 otherwise. Similarly, the decision variables yipb
and zi f b are omitted and replaced by yigb with yigb = 1 if batch b on machine i belongs to group g and 0
otherwise. Constraints (3) – (6) are substitued by the analogous constraints
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G

∑
g=1

yigb ≤ 1 i = 1, . . . ,m , b = 1, . . . ,B (11)

k jgxi jb ≤ yigb i = 1, . . . ,m , j = 1, . . . ,n , g = 1, . . . ,G , b = 1, . . . ,B. (12)

Constraints (11) ensure that each batch is linked to a maximum of one item group and constraints (12)
state that all jobs in one batch belong to the same group. Finally, the parameters cip and tp have to
be converted to cig and tg, i.e., the costs and processing time associated with each respective group g.
Constraints (1) and (9) must be adapted accordingly.

Figure 1: Formation of groups from unique process-family combinations.

5 BATCHING JOBS WITH UNDEFINED SIZE

5.1 Identification of Best-Known Batches

In real-world settings, data on article size and machine volume is not always available. In other cases, a
calculation using only job and machine volumes may not be accurate enough. To address these concerns,
the methods presented below, a MILP to determine an optimal solution (Section 5.2) and a computationally
faster heuristic approach (Section 5.3), utilize a set of machine- and process-dependent best-known batches
(BKBs). These are extracted from past production data. For each unique combination of articles, the batches
containing the highest known number of parts per article are identified (Figure 2). For mathematical modeling
the data is transformed into a three-dimensional matrix sioa∗ . Analogous to the procedure described in
Section 4, A∗ new items are created that combine information about articles and processes. Batches are then
represented machine-related by arrays of shape (O,A∗), where O is the maximum number of BKB options
over all machines. Empty batches fill out the data structure for machines with less than O BKBs. The
creation of batches based on historical data ensures the validity of the batches. The constraints regarding
article volume and machine capacity, family compatibility, admissibility of material combinations and
qualification of articles for machines are implicitly met. A disadvantage is that only known material
combinations can be used, as well as the requirement that the number of parts per material must lie within
a given range.

Figure 2: Example of extracting BKBs from set of batches produced on a specific machine.
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5.2 Mixed Integer Linear-Programming Formulation

The set of BKBs extracted from historical data is stored in a 3D matrix sioa∗ . Costs and processing time
are now related to a batch option o on a machine i. Demand is specified as an integer vector da∗. The
indices, parameters, and decision variables of the model are summarized in Table 3.

Table 3: Notation of the mathematical model for batching jobs with undefined size.

Indices and sets a∗ = 1, ...,A∗ : set of derived articles (including information on required processes)
i = 1, ...,m : set of machines
o = 1, ...,O : set of batch options (BKBs)
b = 1, ...,B : set of batches to be produced

Parameters da∗ : demand of article a∗

sioa∗ : quantity of article a∗ in batch option o on machine i
cio : non-negative energy costs related to performing batch option o n machine i
tio : processing time associated to batch option o on machine i
Ti : maximum availability (time) of machine i

Decision variables xiba∗ : quantity of article a∗ in batch b on machine i
yibo = 1 if batch b on machine i belongs to batch option o, 0 otherwise

The MILP can then be formulated as follows.

min
B

∑
b=1

m

∑
i=1

O

∑
o=1

cioyibo (13)

subject to

m

∑
i=1

B

∑
b=1

xiba∗ = da∗ a∗ = 1, . . . ,A∗ (14)

B

∑
b=1

O

∑
o=1

yibotio ≤ Ti i = 1, . . . ,m (15)

O

∑
o=1

yibo ≤ 1 i = 1, . . . ,m , b = 1, . . . ,B (16)

O

∑
o=1

sioa∗yibo− xiba∗ ≥ 0 i = 1, . . . ,m , b = 1, . . . ,B , a∗ = 1, . . . ,A∗ (17)

xiba∗ ∈ Z≥0 i = 1, . . . ,m , b = 1, . . . ,B , a∗ = 1, . . . ,A∗ (18)

yibo ∈ {0,1} i = 1, . . . ,m , b = 1, . . . ,B , o = 1, . . . ,O. (19)

Again, the objective (13) is to minimize the sum of energy costs. Constraints (14) make sure that all
demand is met. Constraints (15) ensure that the time required to process all batches of a machine does not
exceed the machine’s availability. Equations (16) indicate that each batch must be associated with at most
one BKB option. If the batch is empty, i.e. not required, ∑

O
o=1 yibo = 0. Constraints (17) ensure that all

batches are valid batches, i.e. the quantity of each article a∗ is equal or below the article quantity in the
associated BKB. Constraints (18) indicate that xiba∗ is a non-negative integer for all values of i, b and a∗

and constraints (19) express that yibo is a binary variable.
To speed up computation, the implementation introduces an additional variable ziba∗ with non-negative

integers for all values of i, b and a∗. It stores the BKB corresponding to the selected batch option (20).
Therefore, recalculation is not necessary when the quantity of each individual article is compared to the
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maximum article quantity (21). Thus, equations (17) are replaced by the following constraints:
O

∑
o=1

sioayibo = zT
iba∗ i = 1, . . . ,m , b = 1, . . . ,B (20)

ziba∗− xiba∗ ≥ 0 i = 1, . . . ,m , b = 1, . . . ,B , a∗ = 1, . . . ,A∗. (21)

Following the proposal in Santos et al. (2019) additional constraints were implemented.
O

∑
o=1

yibo ≥
O

∑
o=1

yi(b+1)o i = 1, . . . ,m , b = 1, . . . ,B−1. (22)

The equations (22) reduce the problem’s solutions space by ensuring that higher indexes are assigned to
unused batches in comparison to used ones. However, tests have shown that, in the present case, the costs
of the additional constraints outweigh the potential performance benefits. The equations were ultimately
removed.

5.3 Dispatching Rule

In order to effectively solve large problem instances, an iterative BKB-Batching rule is introduced below.
The previously presented approach based on BKBs is transferred to an iterative procedure, in which batches
are simultaneously formed and assigned to machines until there is no more open demand (Figure 3).

The dispatching rule takes the demand per process and article dpa of the specific time frame, the
machine availability ti, the costs cpi related to process p on machine i and a collection of BKBs bkb(p, i)
per process and machine as input. The variable Bi stores the batches created for each machine. E∗ contains
the evaluation of production options. There are various possibilities for implementation of E∗. Here, two
approaches are proposed: (1) a greedy approach BKB-BC trying to optimize costs and (2) an approach
BKB-MA that focuses on completing the demand within the specified machine availability.

Figure 3: Illustration of the general procedure of the BKB dispatching rule over one period of time.

• BKB-BC evaluates all available process-machine combinations for cost-benefit ratio. Without a
volume description, the evaluation of a batch composition must be based on the number of parts
produced; differentiation according to total volume/filling level is not possible. Thus, E∗ is a 2-
dimensional array of shape (P,m). Each value of Epi represents the minimum cost-part count-ratio
for the respective process and machine, where the part count is the maximum number of parts
produced in a batch considering machine availability, process duration, current demand and BKBs.
All elements with invalid process-machine-combinations are set to zero.
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• BKB-MA counts how many machines are available to process a specific article considering machine
availability, process duration and machine capability. I.e., E∗ becomes Eai. Articles with few
options are produced first.

The manufacturing option with the highest priority min{e∗} is selected. If several options are rated
equally well, a random selection is made. A batch is then formed for the designated machine and the
process and, if relevant, the selected article. Again, the batch evaluation can only be based on part count.
Thus, the new batch should contain as many parts as possible. The new batch is added to Bi. The variables
dpa and ti are updated accordingly. The algorithm stops if all demand has been met or when no feasible
manufacturing option remains. The remaining demand is carried over to the next time period.

6 COMPUTATIONAL EXPERIMENTS

6.1 Problem Instances and Notes on Implementation

The solution approaches are validated and evaluated based on a real case study. As the data are confidential,
instances and results are presented that are based on the original data but do not equal it. The following
assumptions are made: A production with five BPMs is mapped over the course of one year. The production
of the autoclave area is scheduled on a daily basis. All parts reaching the area from the upstream processes
must be processed on the same day. The number of problem instances is 325. In total, over 2000 batches
are completed, resulting in the production of around 200 different articles and over 25,000 parts. The
number of parts produced per day can vary significantly, ranging from a minimum of one to a maximum of
several hundred parts. The 25th and 75th percentiles of this distribution are 30 and 80 parts, respectively.

The MILP approaches are implemented in Julia (Bezanson et al. 2017) using the JuMP package (Lubin
et al. 2023) and solved with HiGHS (Huangfu and Hall 2018). Depending on the problem structure, the
computing time ranges from milliseconds to several hours in individual instances on a computer with an
Intel Core i9 processor with 2.3 GHz and 32 GB of RAM. The latter is particularly the case when the
demand of two consecutive days is bundled. To set a realistic time frame, the results presented below
were calculated with a time limit of 30 minutes. The heuristic approaches are implemented in Python
and run with 10 repetitions for each configuration. The calculation time is in the millisecond range when
batching the daily demand and less than ten seconds when computing the aggregated annual demand. In
the following only the mean values out of these runs are presented. The influence of randomness is limited;
the coefficient of variation is below 0.01 for all configurations considered.

6.2 Results

Given the unavailability of article sizes in the present case, s j is approximated by the bounding box volume
of the devices. The information is accessible for a subset of the articles. The calculation is therefore
conducted on a reduced data set of approximately half the batches produced. All instances can be solved
with the MILPs for both defined and undefined job sizes within the time limit. The total cost, assuming
known job sizes, is 20 % lower than that of the optimization with BKBs. However, it remains uncertain
whether these savings can be realized in practice. The data preparation showed a large variation in the total
volume of BKBs per machine. This could indicate that the estimation of the article sizes is not sufficiently
accurate and/or that additional influencing factors need to be considered.

Table 4 summarizes the comparative results for the BKB methods with undefined job size. The
MILP approach BKB-MILP reduces the total costs by 20 % compared to the actual production planning,
respectively 24.5 % when the demand of each two consecutive days is bundled. The total number of
batches decreases only by 2.3 %, 5.8 % respectively, indicating that a large part of the savings comes from
allocating batches to machines with lower energy consumption. All instances of daily demand are solved
within seconds, suggesting that the optimization approach can be used in the real production environment.
If demand of two days is aggregated, 94 % of the instances are solved within, or well below, the timelimit.
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The BKB-BC heuristic also reduces costs. At the same time, however, the number of batches increases, so
that in ∼30 % of cases, part of the demand has to be carried over to the next time period. BKB-MA avoids
carryover demand, yet ultimately attains less favorable outcomes.

Table 4: Comparison of results for undefined job sizes. Costs and batch count are relative to the as-is state.

1 Day 2 Days
BKB-MILP BKB-BC BKB-MA BKB-MILP BKB-BC BKB-MA

Costs /% -20.21 -6.86 +31.50 - 24.51 -14.56 +25.24
# Batches /% -2.30 +7.73 +38.76 -5.80 +6.20 +32.18
Solved instance /% 100 100 100 94.32 100 100
# Carry over /% 0.0 37.23 2.71 0.0 22.29 0.0

Figure 4 shows increasing potential savings under the assumption that demand can be aggregated and
optimized over different periods of time. In order to evaluate the influence of both batch forming and
machine assignment on the result, additional solutions are generated using two further approaches: (1) Max.
Batch: Batches are rearranged for each autoclave, with the objective of optimizing machine utilization and
minimizing the number of runs. (2) Min. Cost Machine: Batch combinations remain the same compared to
the actual data, but are always executed on the machine with the lowest process costs. Min. Cost Machine
achieves good results even with short planning periods. The advantages of improved batch forming only
arise when the demand of several weeks is combined and optimized. Possible reasons are that the batch
forming is already almost optimally designed, or that no better options are in past data used for the BKB
extraction. The lowest cost is achieved with with BKB-BC. If demand is planned weekly, which is a
reasonable assumption given the use case, T EC drops to 75 % of the actual costs. Six instances remain
with batches that have to be completed during the next time period.

Figure 4: Energy costs for different batching rules and for aggregation of demand over different periods
of time. As-is costs equal 100 %.

7 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This paper investigates a p-batching problem with incompatible families, unequal job sizes and parallel
BPMs with non-identical capacities. In particularly we consider the case of undefined job sizes and
machine capacities. The objective of the problem is to batch jobs and assign them to machines in a way
that minimizes total energy consumption. Two mathematical models and a dispatching rule are presented.
The MILP model for the case of undefined sizes could find optimal solutions for instances covering two
days of production in an acceptable time. The dispatching rule can be used for larger problem instances
or to generate a lower bound for the number of batches required in the exact approaches.

The approaches were evaluated based on a real use case. Assuming that the demand is processed
on a daily basis, potential energy savings of over 20 % were identified. If the demand of several days
can be aggregated, the potential increases. In the investigated case study savings primarily result from an
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increased use of autoclaves, which consume relatively less energy. From a practical point of view, this is not
surprising, as those responsible have extensive experience in batching, while energy consumption has only
recently been systematically documented. From an academic perspective, this finding is noteworthy, as the
extent to which individual, but interdependent decisions (batching, assignment, and sequencing) influence
the target values is commonly not investigated. A comprehensive evaluation of the presented approaches,
based on parameterizable, random instances and with regard to different problem structures should follow.
In the context of the case study, the initial focus of implementation is on improving machine allocation.

There are several other directions for future work. The model can be further refined to align more
accurately with the real-world use case. For instance, the autoclave area is closely linked to the upstream
production area, which the model does not address. It is also interesting to explore different objective
functions, e. g. use time-of-use electricity tariffs or to flatten demand peaks. In both cases, it is necessary
to add a time component to the model. Finally, the evaluation has shown that, although the proposed
dispatching rule is fast, the results deviate from the optimum by at least ∼15 %. When calculating short
planning periods, the number of batches increases considerably compared to the actual situation. More
complex heuristics, such as population-based algorithms or neighborhood search techniques, as presented
in other p-batching studies, could close this gap.
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