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ABSTRACT

Simulating realistic populations for strategic influence and social-cyber modeling requires agents that
are demographically grounded, emotionally expressive, and contextually coherent. Existing agent-based
models often fail to capture the psychological and ideological diversity found in real-world populations. This
paper introduces AURORA, a Retrieval-Augmented Generation (RAG)-enhanced framework that leverages
large language models (LLMs), semantic vector search, and salience-aware topic modeling to construct
synthetic communities and personas. We compare two opinion modeling strategies and evaluate three
LLMs—gemini-2.0-flash, deepseek-chat, and gpt-4o-mini—in generating emotionally and ideologically
varied agents. Results show that community-guided strategies improve meso-level opinion realism, and
LLM selection significantly affects persona traits and emotions. These findings demonstrate that principled
LLM integration and salience-aware modeling can enhance the realism and strategic utility of synthetic
populations for simulating narrative diffusion, belief change, and social response in complex information
environments.

1 INTRODUCTION

Understanding how opinions and emotions spread online requires tools that can realistically simulate belief
formation, sentiment expression, and social identity dynamics. Traditional agent-based models (ABMs)
often rely on simplistic rules, failing to capture the cognitive, cultural, and emotional complexity of real
populations. Advances in large language models (LLMs) and retrieval-augmented generation (RAG) offer
a path forward by enabling the creation of synthetic agents that are demographically grounded, contextually
informed, and psychologically coherent.

We introduce AURORA (AI-Utilized Retrieval for Optimized Representation of Audiences), a RAG-
enhanced ABM framework for generating diverse, realistic synthetic populations. AURORA combines
semantic vector search, salience-aware topic modeling, and LLM-driven persona construction to simulate
belief dynamics across multiple scales—from national discourse to individual emotional traits.

To evaluate AURORA, we model Taiwan’s information environment across three salient topics, com-
paring two opinion modeling strategies—Community-Guided Opinion Assignment (CGO) and Persona-
Differentiated Strategy (PDS)—and three LLMs. We define realism as the extent to which synthetic agents
exhibit demographic plausibility, emotional coherence, and ideological diversity. We assess this through
opinion variation across social groups, emotion-personality alignment, and salience-based opinion spread,
capturing how strongly held beliefs resist change in high-salience contexts.

Research Questions:

1. RQ1: How do different opinion modeling strategies (CGO & PDS) affect the realism and variability
of simulated opinions across national, community, and persona levels?

2. RQ2: To what extent do LLMs vary in their generation of psychological traits and emotional states,
and how does this variation influence the construction of synthetic agents?
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3. RQ3: Can salience-aware, RAG-grounded generation pipelines improve the alignment of synthetic
population behavior within discourse structures and ideological patterns?

Our results demonstrate that salience-aware, RAG-enhanced generation improves the contextual realism
and ideological coherence of synthetic populations. Community-guided opinion modeling better captures
sub-national diversity, while the choice of LLM significantly shapes psychological and emotional traits in
personas. These findings highlight the importance of aligning opinion modeling strategy and LLM selection
with simulation goals—whether to model polarization, disengagement, or emotionally expressive behaviors
in social-cyber scenarios.

2 RELATED WORKS

2.1 Simulating Human Behavior with Language Models

Recent work explores the use of LLMs to simulate social behavior. Park et al. model emergent interactions
through generative agents with memory Park et al. 2023, while Avery et al. use persona-conditioned
prompting to simulate survey responses Argyle et al. 2023. Liu et al. 2023 and Si et al. 2024 simulate
audience feedback and opinion shifts using structured prompting. However, these approaches often rely on
static, homogeneous agent behavior with limited contextual grounding. Most lack mechanisms for temporal
updates, salience modulation, or integration of real-world data. As Ribeiro notes, simulations built soley
on LLM output risk epistemic uniformity and reduced realism Ribeiro 2025.

2.2 Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) blends LLMs with external knowledge retrieval to improve factual
grounding and adaptability, as first demonstrated by Lewis et al using dense document retrieval for open-
domain QA Lewis 2020. While toolkits like LangChain extend RAG’s utility through modular pipelines
LangChain Team 2023, most implementations remain tailored to static task completion rather than dynamic
simulation. Challenges persist in applying RAG to behavioral modeling, including alignment of retrieved
content with psychologically coherent agent states, sensitivity to corpus design and embedding strategies,
and a general lack of salience-aware or temporally adaptive retrieval. Existing systems often treat retrieved
context as fixed input, limiting their capacity to simulate evolving beliefs and attention in agents.

Figure 1: The AURORA model workflow from semantic encoding and vector database creation through
context retrieval, community and agent prompt generation, to the final synthesis of realistic synthetic
communities and personas.
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3 AURORA MODEL ARCHITECTURE

The AURORA framework is structured as an advanced Retrieval-Augmented Generation (RAG)-enhanced
Agent-Based Model (ABM). At its core, AURORA integrates semantic vector representations, retrieval
methods, and Large Language Models (LLMs) to generate detailed, realistic synthetic personas within
defined community contexts. The process involves distinct stages: semantic data embedding, community
creation, persona generation, and dynamic simulation.

3.1 Semantic Vector Database and RAG

AURORA uses a high-dimensional semantic vector database, implemented via ChromaDB, to support
persona and community generation through Retrieval-Augmented Generation (RAG). A curated corpus
of country-specific documents, social discourse, and demographic data is preprocessed by chunking text,
removing duplicates, and adding metadata. Each chunk ci is embedded into a vector vi ∈ Rd using a
configurable encoder fencoder, such as OpenAIEmbeddings, forming a vector store V = {v1, . . . ,vN}.
For a query q, AURORA computes the embedding q = fencoder(q), and retrieves the top-k most similar
vectors using cosine similarity:

sim(q,vi) =
q ·vi

∥q∥∥vi∥
.

3.2 Integration with Community and Persona Generation

The retrieved content from the semantic vector database forms the contextual backbone for both community
construction and persona generation. After relevant document chunks are selected and formatted via the
RAG process, this context is embedded directly into standardized LLM prompt templates through the
relevant_text field. This ensures that generated outputs are not only syntactically coherent but also
semantically grounded in real-world discourse.

3.2.1 Community Formation and Salience Assignment

For each community Ci, AURORA formulates a semantic query based on community name and country of
origin (e.g., "community X in country Y"). This query is used to retrieve the top-k relevant textual
segments from the vector database. It is inserted into a structured prompt template that guides the LLM
to generate a detailed community profile.

Using the retrieved content and configured scenario parameters (e.g., number of communities, community
categories, key topics), the LLM generates standardized outputs that define:

• Community name and purpose
• Demographic structure (age, gender distribution, etc.)
• Political leaning (continuous and labeled)
• Topic list {t1, t2, ..., tk} with associated salience scores

Each community is also associated with a category (e.g., labor union, student group, activist coali-
tion), which influences its structural composition and ideological baseline. The output is validated using
standardized parsers and stored as a ‘Community‘ object within the simulation environment.

Topic Salience Modeling. For each key topic tk associated with community Ci, the LLM first
generates a salience label (e.g., Low, Medium, High, Very High) based on both the scenario context and
retrieved text. This label is then mapped to a corresponding salience score Sk ∈ [0,1], reflecting the relative
importance of the topic to that community.

Salience values influence downstream persona modeling, including: variance in opinion stance sampling,
likelihood of topic engagement, and emotional intensity during expression or interaction.
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Community Assembly. The full set of synthetic communities C = {C1,C2, ...,Cn} is assembled by
repeatedly invoking the RAG+LLM pipeline, guided by a configuration-defined number of communities
and categories. Each community is generated independently, allowing for modular diversity and scalability.

This formation process ensures that all communities are contextually grounded, demographically
plausible, and ideologically distinct—forming the foundational layer for subsequent persona generation
and social simulation.

3.2.2 Persona Generation with Emotional and Opinion States

Once communities have been generated, AURORA constructs individualized synthetic personas that inherit
demographic and ideological characteristics from their associated community, while introducing psycholog-
ical and behavioral diversity at the individual level. Persona generation is carried out through an ordered,
RAG-informed LLM pipeline that ensures consistency with upstream community data while enabling
population-scale heterogeneity.

Persona Generation Process. For each community Ci, AURORA synthesizes a set of personas using
a standardized language model pipeline that integrates community profiles with contextual information.
This approach produces persona profiles that capture the essential demographic and ideological traits of the
community while ensuring overall coherence. Each persona is uniquely identified and stored with relevant
metadata.

4 COMMUNITY-LEVEL OPINION MODELING AND SALIENCE-DRIVEN TOPIC ALIGNMENT

AURORA models ideological stance distributions by hierarchically aligning country-level, community-
level, and persona-level opinions. At the core of this system is a salience-aware, multi-resolution opinion
generation pipeline that captures micro-level psychological variability.

Each synthetic community Ci is assigned a set of opinions over topics tk ∈ T , where T is the global
topic set for a given simulation scenario. Topic-specific opinions Ok are generated using topic- and
community-specific queries. These contexts ground structured LLM prompts that output both Cabrera et al.
2021:

• An opinion value Ok ∈ [−2,2], where polarity and strength of sentiment are encoded,
• A salience value Sk ∈ [0,1], representing the issue’s centrality to the community Dong et al. 2018.

Formally, the community-level opinion on topic tk is represented as:

Ok,Sk = fLLM(tk,Ci,Dcontext), (1)

where fLLM is the structured language model chain, and Dcontext is retrieved contextual information.

4.1 Salience-Weighted Distributional Modeling of Persona Opinions

Once the community-level opinions Ok and salience values Sk are established, AURORA samples persona-
level opinions by introducing stochastic variance modulated by topic salience. For persona Pj in community
Ci, the opinion on topic tk is given by Alizadeh and Cioffi-Revilla 2016, Cabrera et al. 2021:

O(k)
p, j ∼


N (Ok,σ) if P(Ok) is normal,
Skewed(Ok) if P(Ok) is skewed,
Bimodal(Ok) if P(Ok) is polarized,

(2)

A normal distribution is used when the topic exhibits a neutral or balanced national stance, reflecting
general consensus. When the population shows an asymmetric stance—such as when one side dominates the
discourse but a minority voice persists—a skewed distribution is employed, implemented via parameterized
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Beta distributions Alizadeh and Cioffi-Revilla 2016. For topics characterized by strong ideological duality
and polarization, a bimodal distribution is used, capturing the presence of two dominant yet opposing
viewpoints Alizadeh and Cioffi-Revilla 2016.

The standard deviation σ of each distribution is inversely proportional to topic salience:

σ = σ0 · (1−Sk), (3)

where σ0 is a predefined upper bound (typically 0.5 to 1.5). High-salience topics (e.g., identity politics,
religion) lead to tighter clustering around the community stance, while low-salience topics (e.g., niche
policies) produce higher variance and weaker alignment.

4.2 From Community to Persona: Salience-Guided Opinion Synthesis

Each persona Pj’s opinion on topic tk is generated by combining the community opinion Ok, topic salience
Sk, and psychologically plausible noise ε j, sampled from a salience-aware distribution:

O(k)
p, j = Clip(Ok + ε j), ε j ∼ D(Ok,Sk)

where the standard deviation of ε j is inversely proportional to the salience Sk, reducing noise for more
central issues. The function Clip enforces bounds within a predefined opinion range (e.g., [−2,2]) to
maintain ideological plausibility and prevent unrealistic extremity. This approach aligns with bounded
confidence models, in which highly salient topics foster greater conformity and reduced variance across
agents Dong et al. 2018. The distribution D may be normal, skewed, or bimodal depending on the topic’s
characteristics and its observed or modeled ideological spread.

4.3 Community-Level Coherence and Ideological Realism

The framework uses a three-tier opinion alignment approach: (1) a country-level baseline for low-salience
issues, (2) community-centered opinion anchoring for salient topics, and (3) salience scaling to modulate
opinion spread. This structure is designed to preserve community coherence while allowing for meaningful
intra-country ideological variance, a challenge highlighted in both agent-based simulations and real-world
opinion clustering studies Cabrera et al. 2021, Alizadeh and Cioffi-Revilla 2016.

Finally, in dynamic simulations, persona opinions evolve according to both salience and influence,
using a learning update:

Op, j(t +1) = (1−α)Op, j(t)+α ·Sk ·Wj · I j

where high-salience issues lead to greater resistance to change—capturing the stability of entrenched
beliefs—while low-salience opinions adapt more readily, reflecting dynamic opinion responsiveness as
described in theoretical opinion diffusion models Dong et al. 2018.

5 INFERRING INITIAL EMOTIONAL STATES FROM PERSONALITY TRAITS

To establish psychologically grounded affective profiles in our synthetic personas, we infer each agent’s
initial emotional state directly from their personality configuration. This is based on the Big Five trait
model, which includes: Openness (O), Conscientiousness (C), Extraversion (E), Agreeableness (A), and
Neuroticism (N). Trait scores are normalized to the range [0,1] and serve as the foundational input to a
deterministic mapping model that computes intensity values for eight primary emotions.

5.1 Trait-Emotion Theoretical Mapping

The theoretical basis for linking OCEAN traits to emotion stems from established psychological and
affective neuroscience literature. Specifically, we draw from empirical studies and meta-analyses that
correlate specific personality traits with affective dispositions, along with models such as Plutchik’s Wheel
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of Emotions Abbasi and Beltiukov 2019 and Panksepp’s affective systems Montag and Panksepp 2017.
The mappings in Table 1 informed the design of the computational model described in the next subsection.

Table 1: Trait-Emotion Relationships Based on Empirical Psychology

Emotion Correlated Traits References
Joy High E, A, O; Low N Montag and Panksepp 2017
Trust Very High A, High C, High E; Low N Hiebler-Ragger and Fuchshuber 2018
Fear Very High N, Moderate A, C; Low E, O Costa 1992
Surprise High O, High E; Mod N McCrae 1997
Sadness High N, Mod A, O; Low E Sallehuddin, Md Yusof 2023
Disgust High C, N; Low A, O Roberts 2007
Anger Very High N, Low A, Mod O, E Hiebler-Ragger and Fuchshuber 2018
Anticipation Very High O, High E, C; Low N Davis and Panksepp 2011

5.2 LLM-Based Personality Inference Pipeline

The emotion initialization process is tightly integrated with our persona generation pipeline. It proceeds
in three deterministic stages:

1. Text-to-Traits: A structured LLM prompt elicits descriptions of each persona’s behavior, back-
ground, and social context. This is parsed to infer a normalized OCEAN vector using output parsers
and alignment with psychological descriptors Golbeck 2011.

2. Trait-to-Emotion Mapping: Based on the theoretical mapping, each emotion is computed as
a weighted linear combination of the Big Five traits. Weights are heuristically derived from
psychological literature and codified directly into the model.

3. Normalization: Final emotion scores are clipped to the [0,1] range, with any negative values
truncated to zero. This step ensures interpretability as intensity measures.

5.3 Computation Model

Each mapping of the core personality traits to the eight primary emotions reflects both positive and negative
contributions from relevant traits. For example, Joy is positively influenced by Extraversion, Openness,
and Agreeableness, and negatively influenced by Neuroticism. These weights are encoded directly in the
emotion synthesis function, and evaluated for every persona after their Big Five scores are inferred. The
result is a stable, reproducible emotional initialization that reflects empirically grounded associations and
preserves inter-agent variability due to earlier stochastic assignment of personality traits.

6 EXPERIMENT SETUP

To evaluate our synthetic population generation framework, we conducted an experiment comparing three
opinion modeling strategies using three different large language models (LLMs). These strategies generated
social media personas situated in Taiwan and assigned them stances on three salient cultural and geopolitical
topics: (1) “China plans to unite Taiwan with China,” (2) “Taiwan joins the UN,” and (3) “Celebration
of the Chinese New Year.”

6.1 Models Compared

We evaluated the following three modeling strategies for assigning topic-specific opinions:
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Table 2: Experimental Design Summary

Design Element Description
Synthetic Communities 25 communities
Synthetic Personas 125 personas (5 per community)
Topics Evaluated 3 geopolitical/cultural topics: "China plans to unite Taiwan with

China", "Taiwan joins the UN", "Celebration of the Chinese New
Year"

Independent Variable Opinion generation strategy:
CGO (Community-Guided Opinion Assignment)
PDS (Persona-Differentiated Strategy)

Dependent Variables Persona-level opinion values (scale: -2.0 to 2.0)
Salience values per topic (scale: 0.0 to 1.0)

Control Variables Country: Taiwan
Categories: 5 consistent across all models
Topics: 3 consistent across all models
Number of communities/personas: 25 / 125
Prompt templates and chaining structure
LLMs used: gemini-2.0-flash, deepseek-chat,
gpt-4o-mini

• Model A: Community-Guided Opinion Assignment (CGO) – Opinions reflect community-level
beliefs and topic salience, capturing meso-level diversity.

• Model B: Persona-Differentiated Strategy (PDS) – Opinions are shaped by national context,
community stance, and persona-specific traits such as ideology, profession, and emotion.

Each model generated a similar baseline populations for comparability, with personas assigned to
communities and evaluated across all three topics. An overview of the experimental setup is shown in
Table 2.

7 RESULTS AND DISCUSSION

7.1 Country-Level Opinion Comparison

To gain an overarching perspective on how the entire synthetic population responds to each topic, we
aggregated opinions at the country level. Figure 2 illustrates the mean stance across all communities for
the three focal topics and the three LLMs.

Country-level analysis shows that for “China plans to unite Taiwan with China,” bothgemini-2.0-flash
and gpt-4o-mini yield strongly negative opinions, while deepseek-chat is notably less negative,
suggesting a more moderate stance on unification. For “Taiwan joins the UN,” all models are posi-
tive—with gpt-4o-mini being slightly more favorable—and for “Celebration of the Chinese New Year,”
gemini-2.0-flash anddeepseek-chat cluster around a positive midpoint, whereasgpt-4o-mini
is more enthusiastic. These differences, particularly deepseek-chat’s milder tone on unification, high-
light how model-specific training and alignment choices impact aggregated opinion distributions, under-
scoring the importance of LLM selection for simulation objectives.

7.2 Community-Level Comparison of Opinion Distributions

To assess how each model captures sub-national diversity, we compare opinion outputs across five community
categories. Figure 3 displays average topic opinions per community under the CGO model.
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Figure 2: Country-level opinion comparison across topics and models.

(a) Chinese New Year (b) Taiwan Joins the UN (c) China Plans to Unite Taiwan

Figure 3: Community-level topic opinions under the CGO model across the three topics. (Community
Groups are from left to right: Business Groups, Environmental Groups, Military Groups, Government
Groups, and Student Groups) (Blue - Gemini, Yellow - ChatGPT, Green - Deepseek). Opinion Distribution
ranges: (a) −0.4 to 1.2, (b) 0 to 1.75, (c) −2.0 to 0.

The CGO model demonstrates strong capacity for generating realistic opinion dynamics by capturing
structured diversity across multiple levels of analysis. At the community level, it surfaces meso-level
ideological variation that is obscured in country-level averages. For example, military groups consistently
oppose Chinese unification—particularly under gemini-2.0-flash and gpt-4o-mini—while stu-
dent and business groups exhibit more moderate or heterogeneous views. These patterns mirror real-world
divisions across institutional and generational lines, underscoring CGO’s ability to preserve intra-national
diversity.

Realism is further enhanced through CGO’s salience-aware sampling strategy. High-salience topics
(e.g., “Taiwan joins the UN”) produce low-variance, tightly clustered opinions, reflecting stronger alignment
and ideological coherence within communities. In contrast, low-salience issues (e.g., “Chinese New Year”)
generate broader opinion dispersion and weaker emotional intensity. This modulation aligns with empirical
patterns of belief strength and public attention, reinforcing behavioral plausibility.
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Moreover, distinct interpretive tendencies across LLMs reveal how upstream model configurations
shape downstream opinion behavior. gpt-4o-mini exhibits heightened emotional sensitivity, producing
more polarized outputs that amplify both positive and negative sentiment. gemini-2.0-flash offers
balanced and expressive results, while deepseek-chat tends toward muted or inconsistent outputs and
demonstrates weaker RAG grounding—evidenced by its anomalously negative stance toward Chinese New
Year in military groups. These variations influence the realism and interpretability of synthetic agents,
offering principled guidance for model selection based on simulation goals.

Together, these findings establish that realism—defined as structured, plausible diversity in beliefs and
emotional responses—is not only achievable but observable in the CGO framework. Through salience-aware
sampling and LLM-specific behavioral signatures, AURORA produces synthetic populations whose narrative
and ideological dynamics align with social science expectations, making them suitable for high-fidelity
simulation of information environments.

7.3 Persona-Level Trait and Emotion Distributions

(a) Distribution of Big Five personality traits across
personas generated by each LLM. (Blue = Gem-
ini, Yellow = Deepseek, Green = ChatGPT). Traits:
Neuroticism, Extraversion, Agreeableness, Consci-
entiousness, Openness.

(b) Emotion distributions across personas inferred
from their personality traits. (Blue = Gemini, Yel-
low = Deepseek, Green = ChatGPT). Emotions: Joy,
Disgust, Anger, Fear, Trust, Surprise, Sadness, An-
ticipation.

Figure 4: Comparison of personality traits and emotion distributions across personas generated by different
LLMs.

Analysis of synthetic persona traits and emotions highlights clear and statistically significant distinctions
across language model implementations (Figures 4a and 4b). Notably, gpt-4o-mini generates personas
with elevated openness, agreeableness, extraversion, trust, joy, and anticipation, indicative of an emotionally
expressive and socially interactive agent population. This aligns particularly well with scenarios requiring
high levels of social engagement, collaborative behaviors, or pronounced affective responses.

Conversely, gemini-2.0-flash consistently produces personas exhibiting higher neuroticism, fear,
sadness, and disgust, traits associated with more cautious, emotionally reactive, and risk-sensitive behaviors.
This suggests suitability for simulations involving reactive social dynamics, crisis response, or polarization.
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deepseek-chat generally occupies a moderate position, though it notably scores lowest in consci-
entiousness, extraversion, and joy, and has relatively muted affective responses. This positions it ideally
for simulating disengaged, ambivalent, or skeptical populations where emotional intensity is deliberately
suppressed.

The pairwise t-test results across traits and emotions reinforce these observations, showing statistically
significant differences between all models. A concise summary of these comparisons is provided in Table 3.

Table 3: Pairwise t-test summary for traits and emotions across LLMs. All reported values are significant
at p < 0.001 unless indicated († non-significant).

Trait/Emotion Gemini Mean Deepseek Mean GPT-4o Mean Gemini vs Deepseek Gemini vs GPT-4o Deepseek vs GPT-4o

Openness 0.732 0.777 0.793 t=-13.09 t=-14.65 t=-4.96
Conscientiousness 0.841 0.828 0.879 t=4.01 t=-15.47 t=-18.43
Extraversion 0.655 0.663 0.721 t=-1.94† t=-15.54 t=-13.20
Agreeableness 0.790 0.814 0.874 t=-7.50 t=-30.77 t=-17.92
Neuroticism 0.351 0.291 0.305 t=17.34 t=13.35 t=-8.64
Joy 0.545 0.579 0.619 t=-14.02 t=-28.13 t=-16.19
Trust 0.702 0.726 0.776 t=-11.02 t=-35.41 t=-24.07
Fear 0.180 0.134 0.142 t=19.86 t=15.77 t=-5.00
Surprise 0.470 0.483 0.506 t=-5.38 t=-13.01 t=-9.34
Sadness 0.318 0.294 0.301 t=9.96 t=7.24 t=-4.10
Disgust 0.238 0.196 0.212 t=21.05 t=13.76 t=-10.46
Anger 0.096 0.060 0.058 t=14.84 t=16.11 t=1.18†

Anticipation 0.685 0.717 0.753 t=-14.33 t=-28.79 t=-18.34

These results emphasize the importance of aligning LLM choice with the intended goals of a sim-
ulation. More importantly, they highlight a second critical dimension of realism: the psychological and
emotional plausibility of synthetic agents. Across models, personality trait distributions are well-formed and
meaningfully distinct, while downstream emotional states follow expected psychological patterns—such as
elevated fear and sadness in agents with high neuroticism, and increased joy and anticipation in those high
in extraversion. Rather than producing generic or homogeneous agents, the system generates a psycholog-
ically diverse population whose emotional responses are consistent with established theory. This enhances
behavioral realism, a necessary component for simulating complex phenomena such as belief diffusion,
crisis response, and influence dynamics.

Taken together, these findings show that upstream LLM configurations significantly shape down-
stream persona behavior. They underscore the need for strategic model selection based on simulation
requirements: gpt-4o-mini may be best suited for emotionally expressive and opinionated populations;
gemini-2.0-flash for cautious, reactive agents; and deepseek-chat for simulating disengage-
ment, skepticism, or behavioral ambiguity. By selecting models that produce psychologically coherent and
emotionally grounded outputs, researchers can ensure that their synthetic populations are not only demo-
graphically plausible but also exhibit the nuanced, structured variation that underpins realistic agent-based
modeling in social-cyber environments.

8 CONCLUSION

This paper introduces AURORA, a RAG-enhanced agent-based modeling framework that synthesizes
demographically grounded, psychologically diverse, and contextually coherent synthetic populations.

RQ1: Opinion Modeling Strategies. Our experiments show that different opinion modeling strategies
yield distinct levels of granularity and realism in agent behavior. CGO surfaced realistic intra-country
differences, with communities such as military, student, and business groups exhibiting distinct stances on
high-salience geopolitical issues. This structured diversity—tight opinion clustering on salient topics and
broader dispersion on cultural or low-salience issues—supports the framework’s ability to generate agents
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with realistic, context-sensitive behaviors. These results affirm CGO’s utility in preserving both coherence
and heterogeneity in simulated belief landscapes.

RQ2: Psychological Diversity Across LLMs. Our analysis of personality and emotion distributions
revealed substantial and statistically significant variation across language models. gpt-4o-mini generated
emotionally expressive agents with elevated levels of extraversion, openness, trust, and joy, suitable
for simulating collaborative or affect-rich environments. In contrast, gemini-2.0-flash produced
agents with higher neuroticism, sadness, and fear—traits indicative of reactive or risk-averse populations.
deepseek-chat displayed affective moderation and psychological ambiguity, making it a useful tool
for simulating disengaged or skeptical communities. The diversity of these outputs highlights the impact
of upstream LLM configurations on downstream agent behavior, and underscores the need for principled
model selection in simulation design.

RQ3: Salience-Aware, Context-Grounded Generation. The integration of retrieval-augmented
generation and salience-aware opinion shaping demonstrably improved the alignment between synthetic
agent behavior. Salience values modulated both the mean and variance of persona-level opinions, reinforcing
ideological coherence within communities while preserving individual diversity. High-salience topics yielded
tightly clustered stances and more emotionally intense responses, whereas low-salience topics generated
greater opinion spread and lower affective engagement. This structure offers a scalable mechanism for
tailoring narrative responsiveness in synthetic populations based on contextual importance.

9 LIMITATIONS AND FUTURE WORK

While AURORA integrates LLMs, salience-aware topic modeling, and RAG to synthesize psychologically
rich agents, several limitations remain. First, emotional states and opinions are statically initialized based
on persona traits and community salience, lacking temporal dynamics such as belief updating and affective
contagion. Second, variability from model architecture, alignment tuning, and training data introduces
reproducibility challenges, as future updates or API changes may yield different results with identical
prompts. Additionally, although RAG enhances contextual coherence, the system does not explicitly
address cultural nuances or latent biases inherent in LLMs.

Future work will focus on extending AURORA to support time-evolving simulations through networked
belief updating, emotion propagation, and narrative exposure mechanisms. Additional enhancements will
include multilingual persona generation, alignment with behavioral datasets, and the incorporation of
cultural and linguistic variation in retrieval and generation. These improvements aim to further increase
AURORA’s fidelity, interpretability, and applicability to real-world strategic modeling scenarios.
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