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ABSTRACT

This research presents an aggregated simulation model for the front-end semiconductor supply chain to
assess master plans, focusing on the impact of demand and supply uncertainties on the key performance
indicators on-time delivery and inventory on hand. Supply uncertainty is modeled using discrete distributions
of historical cycle times, incorporating load-dependent cycle times through a non-linear regression model.
To model demand uncertainty, we use future forecasts and adjust them by sampling from distributions of
historical forecast percentage errors. By comparing master plan performance under uncertain conditions
with those from deterministic scenarios, the model provides valuable insights into how these uncertainties
influence supply chain performance. Using data from NXP Semiconductors N.V., a Dutch semiconductor
manufacturing and design company, we demonstrate the model’s applicability and offer practical guidance
for industry practitioners. Based on numerical experiments, we conclude that the impact of demand and
supply uncertainty significantly differs compared to deterministic planning.

1 INTRODUCTION

Semiconductors, the essential components for all electronic devices power everything, ranging from smart-
phones and computers to advanced medical equipment and cutting-edge artificial intelligence systems.
They have driven advances across various technologies and contributed to economic growth and global
competitiveness. The semiconductor industry is one of the fastest-growing industries, with semiconductor
components being essential, albeit in varying degrees, to all technology products. The semiconductor
supply chain comprises a front-end and back-end process. The front-end processes involve fabricating
microchips from a blank wafer to a completed wafer, where the microchips are created but remain on the
wafer. The back-end process involves assembly, where the semiconductor is separated from the wafer and
transformed into the end product. The die bank is an inventory point between the front-end and back-end
processes, where semiconductor wafers are stored before being assembled into final products.

The semiconductor industry faces complex master planning and control challenges (Mönch et al. 2013),
which have grown increasingly significant for semiconductor supply chains over time (Chien et al. 2008),
(Mönch et al. 2018). Master planning adopts a firm-wide, medium-term perspective on determining what to
produce, where, and how. Due to the scale and complexity, generalizations and assumptions, such as treating
demand forecasts, production capacities, and cycle times as deterministic, are necessary. The resulting
deterministic master planning problem is then often solved with mathematical programming models, most
commonly linear programs, due to their ability to optimize complex decision-making processes involving
multiple variables and constraints (Leachman 2002).

Cycle times, the time between work being released into the fab and its completion as a finished product,
are thus assumed to be deterministic and independent of resource utilization. However, queuing theory
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(Curry and Feldman 2011), simulation models (Atherton and Atherton 1995), and industrial observation (Wu
2005) all indicate that the mean and variance of cycle times increase non-linearly with resource utilization.
Furthermore, forecasting demand is challenging due to volatile market demand and short product life cycles
(Wang and Chen 2019). Deterministic mathematical programming models thus facilitate the incorporation
of complex technological constraints but ignore the pervasive stochastic aspects of both the production
process and demand (Ziarnetzky et al. 2020). This lack of consideration for uncertainty can result in plans
that are not robust to unexpected events. The robustness of a master plan refers to its ability to remain
effective and achieve its objectives when faced with uncertainty in demand and supply. Moreover, taking
uncertainty into account can yield substantial variations in performance indicators compared to deterministic
planning, highlighting the limitations of solely relying on deterministic planning results.

In this study, we propose an aggregated simulation model of the front-end manufacturing process to
assess master plans and deviations in the expected performance due to uncertainty. The proposed simulation
model is based on the existing master data structure of the company, limiting data maintenance effort and time
to set up the simulation model compared to a more detailed simulation approach. Additionally, the proposed
simulation model only models key bottleneck resources, reducing the computational expense. Moreover, it
accounts for load-dependent cycle times. We demonstrate the use of the aggregated simulation model by
evaluating master plans under stochastic supply and demand conditions and comparing the performance with
the expected deterministic outcomes. The main contribution of this paper is a methodology for simulating
front-end semiconductor supply chains using a high-level, aggregated modeling approach that also includes
load-dependent cycle times.

The paper is organized as follows: first, relevant literature in Section 2 is discussed, then we propose
our method in Section 3. Next, we apply the method to a real-world use case in Section 4, followed by a
discussion in Section 5, the managerial insights in Section 6, and finally, the conclusion in Section 7.

2 LITERATURE REVIEW

Extensive studies have been conducted on the simulation of semiconductor supply chains. Based on our
review of simulation models for semiconductor supply chains, we identify three main streams for this
purpose: (1) using system dynamics (SD), (2) using reduced simulation models within a detailed simulation
model, and (3) using only historical data.

(1) System dynamics. Orcun and Uzsoy (2011) use SD to study the effect of Production Planning on
the dynamic behaviour of a simple semiconductor supply chain. Hartwick et al. (2023) assess the effects of
external disruptions on a simplified semiconductor supply chain, and evaluate mitigation strategies. System
Dynamics models allow for a reduced computing effort and effectively capture feedback loops, time delays,
and nonlinear behaviors in complex systems like semiconductor supply chains.

(2) Reduced simulation models. Detailed simulation models capture the intricate behavior and dynamic
processes of a wafer fabrication (wafer fab) facility. Kopp et al. (2020) introduces four detailed discrete-event
simulation models representing modern wafer fabs. The aim of the testbed consists in providing researchers
with a platform able to credibly represent the complexity of modern semiconductor manufacturing. However,
detailed simulation models require large amounts of data and long computation times to produce statistically
valid results (Fowler et al. 2015). Therefore, reduction techniques have been introduced to mitigate these
challenges, such as modeling only bottleneck work centers (Hung and Chang 1999). Rose further studies
a similar approach in a series of papers (Rose 1999), (Rose 2007a), and (Rose 2007b). To make the model
utilization dependent, they replace the fixed delay time distributions in the delay units with delay time
distributions depending on the current inventory level. Ewen et al. (2017) use a similar bottleneck-based
simulation approach. However, in contrast to other work, they linearly interpolate between different load
situations to account for load-dependent cycle times. Furthermore, they use a second reduction approach
inspired by Duarte et al. (2007) that considers load-dependent cycle times. The disadvantage of model
reduction approaches is their dependence on detailed simulations to create response surfaces and identify
bottleneck workstations. Since developing and maintaining a detailed simulation to obtain the reduced model
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requires considerable resources in practice (Shanthikumar et al. 2007), we argue that these approaches are
inappropriate.

(3) Using only historical data. The Effective Processing Time (EPT) modeling concept by Spearman
(2014) can also be used to simulate the front-end processes. Deenen et al. (2024) developed an aggregated
wafer fab model that uses this EPT concept. Although this study has promising results and does not require
a detailed simulation, the aggregated model cannot accurately predict the cycle time distribution for the
complete wafer fab. Morrice et al. (2005) describe a DES model developed for Freescale Semiconductors
using probability distributions for the cycle time estimated from historical data to avoid modeling the supply
chain nodes in detail. A limitation of their approach is the assumption that the cycle time distribution is
independent of resource utilization or that the utilization level will remain relatively constant over time. In
this study, we relax this assumption by including load-dependent cycle times in the simulation model.

In conclusion, research on simulating semiconductor supply chains has been of great interest in the
literature. Many studies focus on reduced simulation models to lower computational demands while
preserving accuracy. However, these methods often require detailed models to generate data, making them
less practical. Therefore, the third category is the most relevant to this study as the approach does not initially
require building a detailed simulation model. In this study, we use discrete event simulation (DES) because
it enables us to model the stochastic, event-driven behavior of front-end semiconductor manufacturing
systems with a level of detail that system dynamics (SD) cannot achieve. The techniques in the second
category for capturing load-dependent cycle times are valuable for this study, which relies on historical
data rather than detailed simulation models. The approach of Morrice et al. (2005) is highly relevant to
this study, as it captures stochasticity within the production processes at a higher aggregation level without
needing to model each individual process step. Furthermore, this approach requires minimum effort to
set up, which makes the approach practical and scalable. The approach of this study will provide a more
realistic representation of the system’s performance under varying conditions by including load-dependent
cycle times.

3 METHODS

This section describes the method used to model front-end processes and the method used to generate the
final demand. First, we develop an aggregated simulation model of the front-end processes to simulate
the supply of wafers to the die bank. Second, we model supply uncertainty by leveraging historical cycle
times and Work-In-Progress (WIP) levels. Finally, our approach involves modeling demand uncertainty
using future forecasts and distributions of historical percentage errors.

3.1 Simulation Setup

To simulate the front-end processes, we use discrete event simulation (DES). Figure 1 depicts an example
of the front-end supply chain consisting of wafer fabrication and wafer test. Between these stages, products
are transported to the next stock point.

Wafer 

Fabrication

Wafer 

bank
DemandRaw wafer A

Wafer 

Test

Wafer 

bank

Die 

bank

Move

Figure 1: Front-end supply chain model.

Table 1 shows the relevant input parameters for the simulation model. Both wafer fabrication and
wafer testing require the same parameters. Each product is associated with a resource in the two processes,
each with its cycle time and yield. Only the key bottleneck resources are modeled, one for each process
step. The capacities for all resources are specified every week. These parameters and information for
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each product, including their corresponding resources, can be found in the company’s existing master data.
The transportation time between the two wafer banks can also be found here. This transportation time
is assumed to be fixed over time. This assumption is reasonable given that these times are guaranteed
and minor deviations have minimal impact on supply chain performance. We assume that the capacity
is fixed over time, as the facility must ensure it meets the stated capacity. This implies that we do not
consider uncertainty, such as breakdowns or fluctuations, in capacity availability. Although the front-end
supply chain includes multiple wafer fabrication and testing facilities, the operational sequence for products
manufactured at different locations remains consistent. The simulation model operates at a daily granularity,
as the cycle times are provided in days. A simulation run models the supply execution of a master plan
over multiple weeks while incorporating the arrival of demand.

Table 1: Supply chain parameters.

Process step Input parameters

Wafer fabrication
Wafer test

Location
ResourceID
Weekly capacity
Cycle time
Yield

Move Transportation time

3.2 Modeling Supply Uncertainty

Similar to the approach of Morrice et al. (2005), this study models supply uncertainty using probability
distributions for cycle times, estimated from historical data. This method avoids the need for detailed
modeling of each supply chain node. To effectively model supply uncertainty, we first analyze the
cycle times of wafer fabrication processes to determine if they exhibit load-dependent behavior. When
load-dependent cycle times are identified, we propose using non-linear regression models based on Work-
In-Progress (WIP) levels. Given the aggregation level of the simulation model, non-linear regression models
offer a practical balance between simplicity and effectiveness for predicting future cycle times, despite not
being the most advanced method available. If load dependency is not observed, we fit discrete distributions
to cycle times. Load-dependent cycle time modeling is applied exclusively to wafer fabrication and not to
wafer test.

In wafer fabrication, each wafer is categorized into a specific wafer technology group based on its
technological and processing requirements. The cycle time distributions are analyzed at this group level.
We have gathered historical data on cycle times for each lot within the wafer technology group and data on
the total WIP levels in the wafer fabrication facilities. Data points outside the 1.5 times interquartile range
are considered outliers and removed. This outlier removal technique is also employed when fitting other
cycle time distributions. We use a polynomial regression model to understand the relationship between
WIP levels and the expected cycle time and 5-fold cross-validation is performed to determine the optimal
degree. Polynomial models are chosen for their flexibility in capturing smooth, nonlinear trends commonly
observed in manufacturing systems, without requiring a predefined functional form.

To model supply uncertainty, we sample from the discrete residuals of the polynomial regression model
and added to the predicted cycle time of the regression model. The residuals are calculated by taking the
difference between the actual data points and the estimated value of the polynomial regression model. The
residuals are divided into equally broad WIP buckets, as increased WIP levels may lead to greater supply
uncertainty. This method introduces variability into the predicted cycle time values, creating a distribution
encompassing both the load-dependent cycle time predicted by the regression model and the variability
captured by the residuals.
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In cases where there is no relationship between WIP levels and cycle time, indicating stable cycle times
across different load levels, we adopt an alternative approach to model cycle time variability. Specifically,
an empirical distribution is fitted to the differences between planned cycle time (cycle time stated in master
data) and actual cycle time. This deviation is then sampled and added to the stated cycle time to determine
the cycle time of a lot. Furthermore, we fit an empirical distribution to the yield of the wafer fabrication
process. Finally, empirical distributions are fitted to both cycle times and yields of the wafer test production
step.

3.3 Modeling Demand Uncertainty

Ponsignon and Mönch (2014) generate final demands Dpt for product p in period t by adding a forecast
error R to the forecast Fpt of the product for in that period, see Expression (1). They assume that this error
is normally distributed. In this research, we also employ this method to model demand uncertainty since we
are interested in the impact of forecast accuracy. Following the methodology of Rosman et al. (2024), we
determine the distribution of the error term using historical data of forecasting percentage errors. Given the
monthly granularity of the forecast data, the t denotes a monthly period. It is worth noting that the future
forecasts remain unchanged during the simulation run, so a rolling horizon approach is not employed. In
the simulation, the final demand for a month is determined by adding a randomly sampled error to the
future forecast for that month.

Dpt = Fpt · (1+R) (1)

To determine the distribution of this error term, we first analyze the historical error percentages. We
adopt the same methodology as Rosman et al. (2024) to calculate these error percentages. Given that
their study focuses on end-product demand, while ours examines the front-end supply chain, we begin by
aggregating end-customer demand to wafer-level demand. The forecast percentage errors are calculated for
each wafer for each look ahead period. A positive forecast error indicates under-forecasting, where actual
demand surpasses estimates. Whereas, a negative forecast error suggests over-forecasting, meaning the
actual demand was lower than expected. For each look-ahead period and wafer combination, the historical
percentage errors are fitted to five candidate distributions: Normal, Lognormal, Gamma, Weibull, and
Beta. The best fit is selected based on the Kolmogorov-Smirnov test, using the highest p-value above the
significance threshold of 0.05.

In each simulation run, error percentages are sampled from these distributions and are added to future
forecasts to generate final demands. Given that the demand has a monthly granularity while the simulation
operates daily, the final monthly demand is evenly distributed across the weeks. Since we do not model
the back-end operations, we assume a ’perfect’ back-end with sufficient capacity to process the requested
demand. This assumption is reasonable, as in front-end master planning, the back-end capacity constraints
are often relaxed to ensure that the back-end does not become the bottleneck.

4 APPLICATION

In this section, we apply our method to evaluate the impact of supply and demand uncertainty on key
performance indicators, specifically On-Time Delivery (OTD) and Inventory on Hand (IOH), in the die
bank. This evaluation aims to emphasize the differences between deterministic planning and planning that
accounts for uncertainty. The proposed method is applied to the NXP front-end supply chain. First, the use
case is discussed. Subsequently, we examine the cycle times of wafer fabs and test facilities, to decide on
the modeling of supply uncertainty and validate them against real-world data. Following this, we analyze
historical forecast errors. Finally, we conduct experiments to assess how uncertainties in demand and
supply affect the OTD and IOH metrics and compare the results with those from deterministic planning.
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4.1 Use Case

The front-end supply chain under consideration consists of two in-house wafer fabs (Fab 1 and 2), one
outsourcing wafer fab (Fab 3), and two wafer test facilities. Fab 2 and Fab 3 supply to the same wafer test
facility, while Fab 1 supplies to the other one. The simulation model includes a total of 8 different wafers.
These products were selected to represent one wafer technology per fab, with multiple products modeled
within each selected technology. In the results, the performance of wafers C and D from wafer Fabs 1 and
2, respectively, will be reflected. Results are obtained through 500 simulation replications.

4.2 Supply Modeling Validation

First, we determine whether the cycle time is influenced by the workload by fitting a polynomial regression
model to the data. We analyze data between the beginning of 2020 to mid 2024. Fab 3 is an outsourced
fab, so data on WIP levels could not be collected. The R-squared score of 0.695 for Fab 1 indicates a good
fit, whereas the score of 0.106 for Fab 2 suggests a poor fit. Therefore, it can be assumed that wafer Fab 1
has load-dependent cycle times, while wafer Fab 2 does not. S-curves are fitted to the cycle times of Fab
2 and for Fab 3 we determined deterministic cycle times. Figure 2 depicts the validation of arrivals at the
die bank for products produced in the different wafer fabs, taking wafer test and yield into account. The
predicted cumulative arrivals at the die bank are represented by a line and a shaded region indicating the
95% confidence interval of the observed values. A historical master production plan was used to determine
the wafer starts. The simulation model’s output is then validated against actual weekly arrival data at the die
bank, allowing for a direct comparison between predicted and observed performance. The vertical dotted
line represents the total cycle time, calculated by summing all process step durations. Deviations beyond
this point may result from changes in the master plan. Since the data of actual arrivals is in weeks, we look
at weekly arrivals of the wafers at the die bank. The weeks and quantities are normalized between 0 and
1. The simulation model accurately simulates the supply of wafers as the values fall within the confidence
intervals.
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(b) Fab 2.
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(c) Fab 3.

Figure 2: Validation of supply of all wafer fabs.

Table 2 denotes the accuracy of the simulation model both with and without the consideration of load-
dependent cycle times. Three different master plans from different dates are simulated, and the average
MAPE is calculated for the different wafers for each week leading up to the wafer’s lead time. The results
presented in Table 2 show the average MAPE with a 95% confidence interval. It is evident that including
load-dependent cycle times improves simulation model accuracy for the different products, as demonstrated
by a better average MAPE in all cases except one, where the results were similar.
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Table 2: Difference load-dependent cycle times.

Runweek Wafer MAPE with MAPE without
A Wafer A 12.18%±1.28% 47.16%±5.23%
B Wafer A 9.02%±0.86% 40.39%±6.11%
C Wafer A 27.12%±1.30% 35.60%±0.45%
A Wafer B 16.64%±1.51% 25.56%±2.10%
B Wafer B 34.58%±1.74% 34.15%±0.96%
C Wafer B 12.06%±0.76% 25.97%±1.81%
A Wafer C 54.08%±2.26% 64.48%±1.26%
B Wafer C 18.22%±1.20% 29.33%±1.85%
C Wafer C 17.79%±1.07% 31.87%±1.61%

4.3 Forecast Error Distributions

For all unique sets, we compute the historical forecast percentage errors, see Figure 3. We analyze data
between the end of 2020 to mid 2024. The relative forecast error percentage (%) on the y-axis indicates the
percentage difference between the forecast and the actual requested demand. A positive forecast error means
under-forecasting, while a negative relative forecast error means over-forecasting. The figure indicates that
the bias of the forecast percentage error is positive for wafer C and negative for wafer D. This is evident
from the fact that the median line inside the boxplot of the violin plot is positioned above zero for positive
bias and below zero for negative bias. Moreover, the bias in Figure 3b is larger than in Figure 3a. This
is reflected by the larger distance of wafer D’s median from zero and the more consistently shifted data
points, which indicate a greater deviation from the reference value compared to wafer C. A distribution is
fitted to the percentage errors for each combination of subset and look-ahead period. All fitted distributions
yielded p-values greater than 0.05, indicating statistically acceptable goodness-of-fit.
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Figure 3: Historical forecast errors of wafers C and D.

4.4 Results

We utilize our method to assess the impact of supply and demand uncertainty on the performance indicators
on-time delivery and inventory on hand at the die bank. This assessment aims to highlight the discrepancy
between deterministic planning and the consideration of uncertainty.

To achieve this, two scenarios are defined. Each scenario involves manually adjusting the WIP level of
Fab 1. In scenario 1, the low WIP levels of wafer Fab 1 lead to an overestimation of the cycle time and in

1694



Sieders, Rosman, Drent, and Akcay

scenario 2 the High WIP levels an underestimation. We test each scenario under a different combination of
uncertainty namely, no uncertainty, only supply uncertainty, only demand uncertainty, and uncertainty in
both demand and supply. In each case, the remaining parameters are kept deterministic to isolate the effects
of the specified uncertainty. Each scenario uses a different historical master plan, but within a scenario,
the same plan is used for all uncertainty simulations. Each combination of uncertainty is simulated over
a 26-week horizon. A 26-week horizon offers a balanced time frame that is long enough to capture the
impact, yet short enough to support actionable, tactical decision-making. Figure 4 illustrates the OTD and
inventory on hand performance for both scenarios and the two wafers. The crosses on the graph represent
the mean values with a 95% confidence interval of the observed values. Both OTD and inventory on hand
are normalized between 0 and 1. The ‘x’ signifies the expected performance indicator values when only
deterministic parameters are considered. The OTD performance is not affected for wafer D, whereas for
wafer C, the uncertainties do impact the expected OTD performance.
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(a) Wafer C scenario low WIP.
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(b) Wafer D scenario low WIP.
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(c) Wafer C scenario high WIP.
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(d) Wafer D scenario high WIP.

Figure 4: IOH vs OTD for different scenarios.

The warm-up period is two weeks, which allows the simulation model to reach the desired conditions.
This period is reasonable because it represents the time required for the first products to arrive at the
die bank. WIP levels from the wafer fabrication facilities are available and used to initialize the model,
ensuring that it begins in a realistic steady state. As a result, the system is already producing outputs that
reflect normal operating behavior. From this point onward, the results are recorded.

When accounting for supply uncertainty, the inventory on hand for wafer D differs minimally from
the deterministic results in both scenarios, as the mean inventory on hand is relatively close. Cycle times
in both wafer fabrication and wafer test are slightly overestimated, contributing to this small difference.
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Additionally, the low standard deviation, shown by the narrow cross, reflects minimal cycle time variation.
In contrast, wafer C demonstrates significant differences in inventory on hand in both scenarios with a larger
uncertainty, resulting in either more or less inventory being built than anticipated. This even improved the
OTD in the low WIP scenario, as can be seen in Figure 4a. The differences when considering only demand
uncertainty can be explained by bias. Wafer D’s negative bias causes over-forecasting and higher inventory,
while Wafer C’s positive bias leads to under-forecasting and lower inventory. Considering both supply and
demand uncertainties amplifies their effects. Overestimated forecasts and lead times excessive inventory
building, while overestimated lead times and underestimated demand partially offset each other. Overall,
the uncertainty increases due to compounded uncertainty. For Wafer D, demand uncertainty dominates,
whereas Wafer C is affected by both. For wafer C, incorporating uncertainty in both supply and demand
improves OTD in the low WIP scenario but worsens OTD in the high WIP scenario. The deterministic
results fall outside the confidence intervals for wafer C and are on the edge of the confidence intervals for
wafer D.

In Figure 5, we show detailed simulation results where inventory on hands over time are compared for
the different scenarios. This provides clear insights into how inventory levels evolve over time, helping
to identify potential shortages or overstock situations. For each period, the mean inventory on hand and
the standard deviation are calculated with a 95% confidence interval. The inventory on hand is normalized
between 0 and 1.
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(b) Wafer D low WIP.
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(c) Wafer C high WIP.
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Figure 5: IOH for different scenarios.

When only demand uncertainty is considered, the confidence intervals widen, as expected, due to
decreasing forecast accuracy over time. This trend continues when both demand and supply uncertainties
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are factored in, with the intervals expanding and extending. Additionally, in Figures 5b and 5d, the
deterministic results are located at the edge of the confidence interval. This indicates that, in the worst-
case scenario, the inventory on hand aligns with these deterministic outcomes, suggesting that the current
planning approach is conservative. Moreover, in Figure 5c, the deterministic results fall outside the
confidence intervals of the line, indicating a significant difference between expected values. Although
the average inventory on hand in Figure 5a is higher compared to the deterministic results, the increased
uncertainty causes the deterministic values to fall within the confidence intervals for the final weeks. This
indicates reduced certainty regarding the distinction between the values.

5 DISCUSSION

Originality. We propose an aggregated simulation model of the front-end semiconductor supply chain.
Unlike the detailed simulation models often required in the literature, our approach does not rely on such
a model. The simulation model is based on master data structures and applied to the NXP Semiconductors
N.V. master data. The simulation modeling of supply is validated using real-world data. To account for
supply uncertainty, we utilize discrete distributions of historical cycle times and integrate load-dependent
cycle times using a non-linear regression model. Additionally, we incorporate demand uncertainty by
employing distributions of historical forecast errors and adding them to future forecasts.

Methodology. Our approach models the front-end supply chain at an aggregated level using master
data, avoiding the need for detailed simulation models. This reduces computational effort, simplifies data
management, and shortens development time. The proposed aggregation level may have the drawback of
losing important details, which could result in less accurate outcomes.

Although we considered clustering to model load-dependent cycle time distributions, it proved less
accurate than our chosen method. We assume that both the cycle time distributions and demand forecasting
will not improve over time, and therefore, the historical distributions will still be relevant in the future. The
limitation of this approach is that the entire fab must be modeled to update the WIP levels, or assumptions
must be made regarding the development of these levels. There is a concern about over-fitting past
percentage errors onto future demand forecasts. Additionally, the lack of adjustments to future forecasts
during the simulation amplifies the effects of growing demand uncertainty over time. If no distribution fits
the historical forecast percentage errors, we suggest sampling discrete historical percentage errors.

Application. The proposed simulation model is applied to assess master plans and their performance
in the face of demand and supply uncertainty, comparing it to deterministic planning. Real-world data is
used to validate the accuracy of the modeling of supply uncertainty. The current approach for modeling
supply uncertainty accurately simulates supply for the current set of wafers. However, it could be further
validated for various wafer technologies within the different wafer fabs. While other wafer technologies
within Fab 1 demonstrated a relationship between WIP levels and expected cycle times, this relationship
has not yet been validated.

6 MANAGERIAL INSIGHTS

The proposed aggregated simulation approach enables practitioners to validate master plans under uncertain
supply and demand conditions. Additionally, practitioners can adjust the master plan and validate it under
uncertainty rather than solely deterministic parameters. The simulation model provides insights into how
the uncertainties impact performance indicators, helping practitioners assess both the expected average
performance and the likelihood of meeting performance targets. The results demonstrate that biases in
the parameters could significantly impact the performance indicators, highlighting the added value of the
simulation. These capabilities enhance the ability to make informed decisions in master planning, balancing
inventory costs with On-Time-Delivery.

Although our study primarily focuses on master plan validation, our proposed simulation model
has other compelling applications, such as incident analysis or high level capacity planning. This is
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because the aggregation level of the simulation reduces the computation time, allowing for the testing of
multiple scenarios. By only modeling key bottleneck resources aligned with the company’s existing master
data structure, we not only reduce the time needed to develop the simulation model but also lessen the
computational burden compared to more detailed approaches. This enables the model to efficiently test
various scenarios, thereby assisting practitioners in making strategic decisions.

7 CONCLUSION

In this study, we present an aggregated simulation model of the front-end semiconductor supply chain. We
demonstrate our proposed method by analyzing master plans and deviations in the expected performance due
to uncertainty. To account for future supply and demand uncertainties, we use historical data on cycle times,
forecast errors, and future forecasts. Upon analyzing the cycle time distributions across different wafer
fabs, we observed a correlation between cycle times and work-in-progress (WIP), indicating load-dependent
cycle times for one wafer fab. The approach of modeling supply is validated using real-world data and
yields accurate results. Our simulation results highlight the impact of demand or supply uncertainty on
inventory levels and On-Time Delivery performance. Specifically, we found that the presence of a large
enough bias renders deterministic outcomes insignificant. Moreover, when both supply and demand are
taken into account together, the standard deviation (uncertainty) increases compared to when they are
considered separately.

In future research, it would be of great interest to expand the study by incorporating a wider range
of products. Additionally, it would be beneficial to integrate a simulation model of the back-end supply
chain to factor in the capacity constraints of the back-end operations. Moreover, it would be interesting to
extend the simulation by integrating forecast evolution, enabling the model to be used in a rolling horizon.
Instead of just analyzing the work-in-progress (WIP) of the entire fab as done in the current method, future
research could also consider the WIP of the wafer technology. Given that this study’s findings are based
on data from a single company, it is crucial for future research to consider using the same approach with
data from various companies to confirm the results throughout the semiconductor industry.
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