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ABSTRACT

As the aviation industry works to reduce carbon emissions, airport energy optimization has also been
brought into focus. This study explores strategies to reduce peak electricity demand at a major Swedish
airport driven by increased electric vehicle charging (EV). EV charging increases grid load, but integrating
solar power and battery storage helps stabilize fluctuations and reduce peaks. We present a framework
and simulate the combined impact of these factors, demonstrating that smart scheduling with solar and
battery systems effectively balances the load. This approach reduces high-load occurrences from 8.6% to
2.5%—where 100% would mean exceeding the threshold year-round—even with 500 additional charging
points.

1 INTRODUCTION

Airports are large-scale energy consumers, requiring significant electricity to operate efficiently. As airports
strive for greener operations, effective management of energy infrastructure becomes essential to support
their sustainability goals. Swedavia, the Swedish state-owned company responsible for managing ten of
the country’s busiest airports, aims to achieve fossil-free domestic flights and Airport travel by 2030. One
approach to achieving fossil-free travel is by enabling EV charging, which adds load to the electricity grid.

Over the past decade, vehicle charging scheduling has become a key research area driven by the
increasing adoption of electric vehicles. Often paired with renewable energy sources, this approach helps
minimize grid dependence. Swedavia, which is expanding electricity usage at its major airports, is also
facing a growing strain on the grid during peak hours (Wedenberg 2024). They are exploring solutions to
reduce peak demand introduced by additional load, such as EV charging, including solar production and
battery storage systems to manage variability in solar energy. Since the airport requires an uninterrupted
electricity supply, any additional energy load must be carefully managed. This paper presents a simulation
framework to assess the impact of EV charging on grid load and evaluates how solar power and battery
storage can optimize energy use, ensuring a more sustainable and resilient airport energy infrastructure.

We evaluate EV charging with different scheduling algorithms and their interaction with renewable
energy and battery storage systems. We demonstrate that immediate charging significantly increases peak
demand, whereas smarter Greedy scheduling shifts load to lower-demand periods, reducing grid stress.
Additionally, solar production alone lowers high-load occurrences but remains sensitive to weather variability.
The integration of battery storage further stabilizes the grid by compensating for solar fluctuations and
peak demand. Our results indicate that combining Greedy scheduling, solar power, and five battery units
can reduce the proportion of high-load occurrences from 8.6% to 2.5% for cases with 500 charging points.

The paper is structured as follows: Section 2 reviews related work on efficient vehicle charging, battery
storage optimization, and simulations integrating renewable energy sources and batteries. Section 3 provides
an in-depth overview of the simulation framework. Section 4 details the data and algorithms used to reduce
grid load through intelligent car charging and battery management. Section 5 presents the simulation results.
Finally, Section 6 concludes with a discussion on the benefits of optimized EV charging, combined with
solar power and battery systems, to effectively balance grid load at a major airport.
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2 RELATED WORK

Related research is grouped into three main areas. The first covers scheduling algorithms for electric vehicle
charging, which is crucial to balance grid demand as the need for EV charging increases. The second
focuses on control strategies for battery energy storage systems (BESS), which are vital to stabilizing grid
fluctuations. The third examines studies that integrate EV charging scheduling, renewable energy sources,
and BESS in a unified simulation model.

2.1 Vehicle Charging Scheduling Algorithms

Optimizing vehicle charging schedules is often classified as an NP-complete problem, prompting researchers
to explore various algorithmic approaches for different objectives.

Genetic Algorithms (GA) are widely used for vehicle charging scheduling (Ghofrani et al. 2012; Hou
et al. 2020; Su et al. 2020). GA are heuristic search algorithms inspired by evolutionary principles like
natural selection. They optimize solutions by maintaining a population of candidates and refining them
iteratively through operations like crossover and mutation. GA can produce high-quality solutions but do
not guarantee optimality. They are effective at handling multiple objectives, though their convergence can
be slow. To address this, Che et al. (2024) proposed a dual-population GA to enhance global optimization
and reduce premature convergence.

Particle Swarm Optimization (PSO) is another bio-inspired method used in scheduling (Celli et al.
2012; Yang et al. 2014). Influenced by bird flock behavior, PSO iteratively adjusts particle positions based
on past experiences and neighbors’ best-known positions. PSO typically converges close to the global
optimum but may get stuck in local optima in high-dimensional spaces.

Reinforcement Learning (RL) allows an agent to learn optimal actions through trial and error, maximizing
rewards. RL is effective for complex tasks like EV charging scheduling but requires large datasets and
significant computation. Wang et al. (2021) applied RL with an approximate Q-table to manage high-
dimensionality. Deep reinforcement learning (DRL) further enhances this by using neural networks,
overcoming high-dimensional state space limitations (Jin and Xu 2021; Wan et al. 2019). Multi-agent
DRL (Aljafari et al. 2023; Park and Moon 2022) involves agents collaborating to improve efficiency.

Scheduling can also be formulated as a mathematical optimization problem, where decision variables are
optimized under constraints using solvers. Korolko and Sahinoglu (2017) and Koufakis et al. (2020) tackled
this with mixed-integer programming, using cutting-plane optimization and commercial CPLEX solvers,
respectively. Similarly, Ioakimidis et al. (2018) used linear programming with an interior-point scheduling
algorithm. Due to its complexity, dynamic programming is challenging for EV scheduling. Zhang and Li
(2017) introduced approximate dynamic programming as a computationally simpler alternative.

Most studies (Aljafari et al. 2023; Che et al. 2024; Hou et al. 2020; Ioakimidis et al. 2018; Jin and
Xu 2021; Koufakis et al. 2020; Park and Moon 2022; Su et al. 2020; Wang et al. 2021; Yang et al.
2014; Zhang and Li 2017) focus on optimizing charging at public stations with short parking durations,
typically during daytime hours. In contrast, airport EV charging follows a different pattern, where vehicles
are parked for extended periods, allowing for overnight charging during off-peak hours.

Our goal is to reduce peak grid loads by shifting charging to off-peak times. We focus on a computationally
efficient approach instead of aiming for the absolute optimal solution. We implemented a simple yet effective
greedy algorithm integrated into broader electricity usage simulations, offering greater transparency than
black-box machine learning models.

2.2 Control Algorithms for Battery Energy Storage Systems

The performance of a battery energy storage system (BESS) is heavily influenced by the control algorithm
governing its operation. A well-designed control strategy ensures optimal charging and discharging, aligning
with grid demands and energy requirements.
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Real-time control algorithms adjust dynamically to load variations using real-time data, managing
BESS operations without predictive models. Danish et al. (2020) and Lange et al. (2020) use charge
and discharge thresholds. The BESS supplies energy when the demand exceeds the discharge threshold
and charges when the load falls below the charge threshold. Chua et al. (2016) further refine this by
adjusting the discharge threshold based on the current load, increasing it when demand exceeds supply, and
decreasing it when excess energy is available. Real-time algorithms are simple, computationally efficient,
and avoid forecast errors. However, with limited battery capacity, they can prematurely deplete the battery,
failing to address peak demand effectively.

Predictive algorithms use load forecasts, often powered by neural networks, to anticipate peak loads and
optimize BESS operation. Chapaloglou et al. (2019) use day-ahead load forecasts from neural networks to
set charge and discharge thresholds for effective peak shaving. Efkarpidis et al. (2023) propose a rule-based
method, setting the discharge threshold based on predicted loads and the peak from the previous month,
with immediate charging occurring when the load falls below this threshold.

Optimization-based algorithms use mathematical models to minimize load variance or reduce peak-to-
valley differences, relying on load predictions for complex, multi-peak scenarios. Lu et al. (2014) employ
mixed-integer programming for peak shaving based on predicted load profiles. Barzkar and Hosseini (2018)
use Lagrangian multiplier optimization with GAMS to solve peak shaving, while Rostamnezhad et al. (2023)
apply Particle Swarm Optimization with historical data. Mary et al. (2023) use linear programming with
day-ahead load forecasts by a neural network to optimize BESS operation.

Our goal is to design a system optimized for scenarios with a single daily peak and night valley. To
achieve this, we prioritize simpler, faster algorithms that set thresholds based on predicted load, avoiding
more computationally intensive optimization methods.

2.3 Simulation of EV Charging with Renewable Energy and Battery Storage

Simulations of EV charging that integrate renewable energy and battery storage focus on optimizing energy
efficiency, economic viability, and testing system feasibility.

Several studies have incorporated renewable energy into charging strategies. Jin and Xu (2021) use
reinforcement learning to optimize EV charging scheduling combined with solar power. Koufakis et al.
(2020) simulate solar-integrated EV charging to reduce energy costs and maximize solar use. Ghofrani
et al. (2012) explore wind-powered vehicle-to-grid scenarios to minimize reliance on conventional energy.
Some studies integrate battery energy storage systems (BESS) to address renewable intermittency. Badea
et al. (2019) simulate a solar-powered charging station with BESS, using a genetic algorithm for system
optimization evaluating solution feasibility and islanded operation. Gogoi et al. (2024) examine power
balance at a solar-powered charging station with BESS in various scenarios. Yadav et al. (2023) validate a
charging station design and management strategies with solar and BESS through simulations. Sing et al.
(2022) use real-world data to assess self-sufficiency at different charging station locations, finding that
moderate solar power plant sizes yield high self-sufficiency. Gopal et al. (2023) simulate strategies to
reduce peak demand at fast charging stations with solar and BESS. Kucevic et al. (2021) simulate the
impact of BESS (without renewable energy) on peak load reduction at charging stations, exploring different
battery capacities and charging units.

Similar to Gopal et al. (2023) and Kucevic et al. (2021), we simulate the impact of various charging
station configurations, solar power plant sizes, and battery capacities on grid load, focusing on mitigating
peak demand to avoid grid overloading at the airport.

3 SIMULATION FRAMEWORK

We present a simulation framework, illustrated in Figure 1, and conduct simulations using the proposed
framework. The framework initializes all modules before executing simulations at predefined intervals
(every 2 hours in this study). Each simulation step comprises six phases, with two phases per module.
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First, future consumption is planned in the following order: solar generation, EV charging, and battery
usage. EV charging is scheduled based on predicted solar production, while the battery plans peak shaving
after accounting for solar generation and EV charging. Execution follows the same sequence.

Schedule currently
parked cars charging

using the selected
method

Plan battery charging
and discharging 

for the next 24 hours

Execute planed car
charging 

for the current interval

Execute battery
charging or

discharging for the
the current interval

according to plan and
actual needs

Start: Modules initialization
- Base grid load
- Solar
- Car charging
- Battery storage 

Repeats for every
simulation interval 

Plan solar production
based on the weather

forecast

Compute battery
production 

for the current inteval
based on actual

weather

Figure 1: Schema of the simulation framework, which initializes modules before iterating through three
planning steps per time interval—solar estimation, EV scheduling, and battery consumption planning—
followed by three execution steps: computing solar production, EV charging, and battery operation.

3.1 Solar Module

We use pvlib’s ModelChain module (Anderson et al. 2023) for solar production simulation. We simulate
"REC Group REC740AA Pro XL" monocrystalline modules (power 739.4 W under standard test conditions)
with properties similar to modern modules, using parameters from the California Energy Commission
(CEC) library (National Renewable Energy Laboratory 2024). Inverters are dynamically selected from the
CEC library (National Renewable Energy Laboratory 2024), ensuring the PV array’s rated power closely
matches the inverter’s rated power while adhering to array-to-inverter sizing ratios (Zidane et al. 2021).
Arrays are configured in parallel strings to keep the voltage within the inverter’s operating range under all
temperatures (Omar et al. 2020).

The solar module estimates production in both the planning and execution phases. The key difference
between phases is the weather data used: execution relies on past observations, while planning uses simulated
forecasts, introducing uncertainty. This uncertainty is modeled using an autoregressive approach (Zheng
et al. 2025). Distributions and autoregressive model parameters are obtained by analyzing past weather
forecasts against actual observations (see Section 4.1) for each weather variable. During simulation, these
distributions and models are used to model uncertainties.

As shown in Figure 2-A, solar production (orange) reduces the base load of the grid (blue), with daily
variations due to weather conditions, as shown in Figure 2-B.

3.2 EV Charging Module

During the planning phase, a charging schedule for the cars currently parked is generated using the algorithms
in Section 4.2. Charging is simulated based on real airport station data, scaled as needed, as detailed in
Section 4.1. In each simulation step, vehicles not yet fully charged are rescheduled to optimize resource
allocation. Although this may shift a charging vehicle to a different time slot, interruptions remain limited.

Our simulation assumes unknown car arrival times, so charging is scheduled only after arrival. However,
the last available charging slot is known, as owners will report departure times. Departure times were
inferred from actual data for simulation purposes. Scheduled car charging is performed for the current
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simulation interval (the next two hours in this study) in the execution phase according to the schedule from
the planning phase. Since rescheduling occurs at fixed intervals, some vehicles may not receive enough
charge if they arrive and depart between two events or if there is not enough time for a full charge after
the next rescheduling. To address this, we initiate charging immediately upon arrival.

Figure 2-A shows the impact of the station with 500 charging points using a Greedy scheduler on grid
load (green line). The graph shows that the Greedy scheduler (described in Section 4.2) primarily shifts
charging to grid load valleys, minimizing additional demand during peak hours. Figure 2-C illustrates
charging behavior for 15 charging points, where black lines denote charging sessions and blue bars indicate
active charging. The Greedy algorithm schedules charging during lower grid load or high predicted solar
production periods. Charging schedules account for planned maintenance (gray bar), and charging in the
execution stage is interrupted by unexpected failures (red bar). In Figure 2-C, maintenance at charger
100 shifts the third session, while a failure at charger 109 disrupts session two, forcing a rescheduled
rescheduling to a less favorable time. Swedavia reports a 1% failure rate, so our simulations assume a 1%
probability for both events, with durations randomly varying from 30 seconds to 12 hours.

3.3 Battery Storage Module

Since solar alone cannot reliably mitigate peak loads due to weather variability, we integrate a battery
energy storage system (BESS) into our framework. Our BESS follows the specifications of the popular
Tesla Megapack 2 XL, with each unit providing 3.916 MWh capacity and 1.927 MW peak power. We
incorporate a round-trip efficiency of 93.7% into the BESS module.

Battery charging and discharging are scheduled based on initial grid load, predicted solar production
and EV charging demand using the algorithm in Section 4.3. Model updates charging and discharging
thresholds at every simulation step to account for dynamic changes in grid load forecasts, solar predictions,
vehicle charging schedules, and battery state of charge.

Execution follows the planned thresholds, ensuring battery operations align with actual demand.
Figure 2-A (red) illustrates the battery’s impact on peak shaving. For example, on 2025-03-21, when solar
production is insufficient, BESS helps to shave the peak. Figure 2-D shows the battery’s state of charge.

4 DATA AND METHODOLOGY

We simulate using real data from an airport and a national weather agency. This section first details
the dataset, followed by EV charging scheduling methods and battery control. Finally, we define the
performance metric for evaluating the strategies.

4.1 Data

We use three datasets: airport grid load, airport’s public charging station data, and past weather observations
from the Swedish Meteorological and Hydrological Institute. Simulations are based on data from January
1 to December 31, 2023, ensuring alignment across all datasets.

The grid load data comprises hourly electricity consumption (kWh) with corresponding timestamps.
Since future grid load is expected to resemble past trends, we use historical data for simulations. Unlike
averaged values, actual past data retains peaks and valleys, making it a more accurate representation.

EV charging is modeled using real data from the airport’s station with 10 charging points, totaling 937
sessions in 2023. Each session records the charger ID, the car’s arrival and departure times, and charged
energy (kWh), which we consider to be the charging need for the EV. Since most cars stay longer than
required for charging, we assume each session represents a full charge. To simulate different charging
station capacities, we upsample sessions by shifting start and end times by ±4 hours and adjusting energy
needs by ±2 kWh while maintaining realistic distributions.

Weather observations are retrieved from the Swedish Meteorological and Hydrological Institute’s
API (SMHI 2025), where we export temperature and wind data from observations at the meteorological
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Figure 2: The figure shows a 12-day excerpt from a year-long simulation of solar production, EV charging
with a Greedy scheduler, and battery storage. A) Grid load with no modifications (blue), after solar
production (orange), with EV charging (green), and with battery support (red). B) Hourly solar production
(kWh). C) Charging behavior for 15 charging points: black lines show parked cars, blue bars active
charging, gray bars maintenance, red bars failures. D) The battery’s state of charge (%).

station located at the airport and irradiance (direct normal irradiance, global horizontal irradiance, and
diffuse horizontal irradiance) parameters from the STRÅNG module.

To model uncertainty in the weather forecast described in Section 3.1, we retrieve historic forecasts for
every three hours in the year 2024 from the Norwegian Meteorological Institute’s Thredds service (MET
2025). The forecast includes temperature, wind speed, direct normal irradiance, and global horizontal
irradiance. The diffuse horizontal irradiance is computed from the other two parameters after uncertainty
is modeled. We compared the forecast to the SMHI observations from the same period to build the model.

4.2 EV Charging Scheduling Algorithms

We implemented four distinct EV charging scheduling algorithms.
The Immediate Scheduler mimics real-time charging, starting immediately upon arrival and con-

tinuing until the EV is fully charged or departs, without considering grid load.
The Greedy Scheduler schedules charging based on departure time and electricity demand. Vehicles

departing soonest are scheduled first, using time slots with the lowest predicted grid load. Scheduling is
limited to available time slots between the moment of scheduling and departure. Once an EV is scheduled,
its expected charging load is incorporated into the overall grid load, and the next vehicle is scheduled
accordingly. We use 30-minute slots to balance computational speed and scheduling accuracy. Shorter
durations offer minimal improvement (Godec and McKeever 2024).

Since EVs often remain parked at the airport for days or weeks, delaying charging improves battery
health. Neither the Immediate nor Greedy Scheduler accounts for this, so we introduce two additional
approaches: The Before-departure Scheduler takes the opposite approach of the Immediate Scheduler.
It delays charging until just before departure, ignoring grid load. The Greedy Last-day Scheduler is a
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modified version of the Greedy Scheduler, which restricts scheduling to 36 hours before departure, ensuring
at least one full night—when demand is lower—is available for charging.

Figure 2-C presents a ten-day schedule using the Greedy Scheduler. The grid load graphs reveal its
preference for nighttime or high-solar daytime charging (orange line in the top graph). In contrast, the
Immediate Scheduler increases demand during peak hours, as most vehicles arrive during the day.

4.3 Battery Energy Storage System Control Algorithm

A Battery Energy Storage System (BESS) requires effective control algorithms to optimize its performance.
We chose a simple yet effective algorithm (Godec and McKeever. 2025) ensuring transparency and efficiency.

Predictive Threshold Algorithm schedules charging and discharging 24 hours ahead based on
predicted grid load (including solar prediction forecast and scheduled EV charging). It identifies charging
periods when the grid load is below the threshold and discharging periods when it exceeds the threshold (in
this experiment, the threshold is set to 17 MW). The method dynamically adjusts the discharge threshold
within discharge periods to ensure that energy is reserved for grid load peaks rather than being depleted
prematurely. Similarly, it predicts a charging threshold for charging cycles, ensuring that charging occurs
when the grid load is at its lowest (i.e., the deepest valley).

During execution, the battery discharges when the actual grid load exceeds the predicted threshold,
supplying power to bridge the gap. It charges when the grid load is below the predicted threshold, limiting
the charging and discharging by the battery’s maximum power rate and available energy in the battery.

4.4 Metrics

We assess grid load impact using deviation from mean load, daily maximum mean, and peak ratio.
Deviation from mean load is computed as the root mean square deviation from the mean grid load.

Grid load is computed as the rolling 10-day grid load average, mitigating seasonal shifts. It measures
how effectively the charging schedule, solar production, and battery storage stabilize grid fluctuations by
reducing peaks and filling valleys. A lower value signifies better load balancing.

Daily maximum mean measures the average of daily maximum values over the simulation period,
measuring the effectiveness of peak shaving. A lower value indicates a greater average peak reduction.

The daily maximum mean does not fully capture how many peaks were successfully reduced, as it only
reflects average peak shaving. We address this with the Peak Ratio, which measures the proportion of grid
load values exceeding a set threshold, indicating the number of peaks eliminated. We set this threshold at
18 MW, close to the airport’s maximum allowable load while retaining flexibility for unforeseen demand.

5 RESULTS

Adding more EV chargers increases grid demand, potentially exceeding the airport’s energy capacity. In
Section 5.1, we assess the impact of different charging algorithms on grid load. Section 5.2 examines how
solar power mitigates this additional load, while Section 5.3 evaluates battery storage’s role in compensating
for solar variability due to weather and daylight fluctuations. All simulations are run in 2-hour planning-
execution cycles over 2025, with 10 buffer days before and after for warm-up and cool-down.

5.1 Impact of EV Charging on the Grid Load

We compare how different EV charging algorithms from Section 4.2 impact grid load. Figure 3-A shows
that Immediate and Before Departure scheduling increases load deviation by adding demand during peak
hours, while the Greedy algorithm reduces deviation by shifting charging to valleys.

Since our goal is to minimize peak load, Figure 3-B analyzes how each scheduler affects daily peak
power. Immediate scheduling adds the most load to peaks, followed by Before-departure. The difference
arises because cars typically arrive when the grid load is already high (Immediate charges upon arrival),
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whereas departures often occur when the load is slightly lower. Additionally, Before Departure may fail
to fully charge if a failure occurs, reducing overall load. Greedy algorithms keep peak loads low, even in
the case of 500 chargers.

Figure 3-C shows the proportion of hours with high load (exceeding 18 MW). The Immediate and
Before-departure algorithms increase high-load hours more than Greedy; the difference between Immediate
and Before-departure arises due to the same reasons as in Figure 3-B. Both greedy algorithms introduce
significantly fewer new high-load hours through smarter scheduling.
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Figure 3: Comparison of EV charging impact on airport grid load across different scheduling algorithms
and charger counts. A) Deviation from the mean grid load quantifies algorithms’ impact on the grid load
balance by filling valleys and avoiding peak overload. B) Daily maximum mean measures additional
demand during daily load peaks. C) The proportion of hours exceeding 18 MW evaluates each algorithm’s
effectiveness in limiting high-load occurrences.

5.2 Impact of EV Charging with Solar Power on the Grid Load

Solar power helps mitigate the impact of load added by EV charging on the grid. Figure 4 examines the
effect of solar production on load balancing and peak reduction.

Figure 4-A presents the charging and solar effect on grid load balancing. It shows that adding up to
3000–4000 solar modules improves grid balancing for both Greedy and Immediate charging, but worsens it
beyond this point. This occurs because excess solar generation creates additional valleys. Greedy algorithms
complement solar better, filling valleys while solar reduces daytime peaks.

Figure 4-B examines the effect of charging and solar scenarios on daily grid load peaks. It illustrates
that all charging algorithms increase the mean daily peak load compared to the baseline (16660.7 kW), with
Immediate more significantly reaching 16921.9 kW and Greedy 16709.5 kW for 500 chargers. However,
solar production reduces mean daily peak loads, with 1000 modules already negating the impact of 500
Greedy chargers, while Immediate requires at least 3000 modules. Solar production with 4998 modules
reduces the mean daily peak load of Immediate charging with 500 chargers to 16476.4 kW, just below the
initial level, while Greedy achieves a more significant drop to 16272.0 kW.

Figure 4-C highlights that solar reduces the number of high-load hours (above 18 MW). For the
Immediate algorithm, at least 4998 modules offset the impact of 500 chargers, while Greedy achieves this
with only 1992. Solar also removes pre-existing peaks (values below the black line). For example, the
proportion of hours above 18 MW is reduced from 7.8% to 6.1% without extra chargers and from 8.6%
to 6.9% with 500 Greedy chargers.

5.3 Impact of EV Charging, Solar Power, and Battery Storage on Grid Load

In the previous section, we showed that solar power reduces both existing peaks and those introduced by
EV charging. However, a significant number of peaks remain due to weather-dependent solar production.
In Figure 5, we further examine how Battery Energy Storage Systems (BESS) help redistribute energy
load on days with lower solar output, using a fixed set of 4,998 solar modules. Figure 5-A shows that
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Figure 4: The graphs show how solar plant size mitigates the load added by charging. The x-axis represents
the number of solar modules, the y-axis shows scores, and the lines’ colors indicate charger counts. The
black line marks score without EV charging or solar. A) Deviation from mean load quantifies grid balance.
B) Daily max mean shows added peak demand. C) The proportion of occurrences exceeding 18 MW is
evaluated for the reduction of high-load occurrences.

BESS consistently balances grid load by mitigating peaks and filling valleys, with even better results when
combined with the Greedy charging algorithm, which also aims for load balancing.

As shown in Figure 5-B, BESS also significantly lowers the daily peak load mean. The improvement
is more pronounced when combined with the Greedy scheduler. For example, with 500 chargers and 4,998
solar panels, the daily maximum load drops from 16,273.7 kW (without BESS) to 16,028.6 kW when
adding five battery units.

A similar trend is seen in Figure 5-C, where the proportion of grid load hours exceeding the threshold
of 18 MW is drastically reduced compared to solar-only cases. While BESS improves cases with all
algorithms, it performs slightly better with Greedy scheduling when fewer battery units are used. For
instance, with 500 chargers using Greedy scheduling, solar production lowers the proportion of high-load
occurrences to 6.9% (Section 5.2). The proportion of high-load occurrences further improves to 2.5%
with the addition of five battery units. The remaining peaks result from inaccurate load forecasts affecting
battery control performance or insufficient stored energy during prolonged high-demand periods, such as
winter.

6 DISCUSSION

This paper presents a simulation framework for assessing airport grid load impacts from additional EV
chargers and evaluates how solar and battery storage can mitigate these effects. Results show that immediate
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Figure 5: The graphs illustrate how battery units further improve grid load with EV charging and 4,998
solar panels. The horizontal axis represents the number of battery units, while the vertical axes present the
corresponding measure, as in Figure 5. Lines indicate the number of chargers. Black lines denote scores
for the scenario with 4,998 solar panels but without additional charging or BESS.

charging increases peak demand, while smarter scheduling mitigates this by shifting the charging to lower-
demand periods. Solar production further offsets peaks, while battery storage compensates for solar
variability. Our simulations reveal that combining these strategies not only neutralizes the added EV
charging load but also additionally reduces the proportion of high-load occurrences from 8.6% to 2.5%,
even with 500 additional chargers using Greedy scheduling. A key contribution is our analysis of the
combined impact of EV scheduling, solar power, and battery storage on grid load.

Despite reducing the proportion of high-load occurrences to 2.5%, complete minimization remains
challenging due to forecast inaccuracies affecting battery control and insufficient stored energy during
prolonged high-demand periods, such as winter. While the latter requires additional battery capacity, the
former can be mitigated with a more robust, prediction-error-resistant control algorithm. In the future,
vehicle-to-grid (V2G) technology could provide additional battery capacity. Before deploying V2G systems,
it is important to examine both EV owners’ willingness to participate and the incentive structures required,
given the impact of V2G on battery wear and longevity. The framework currently operates via a script,
limiting accessibility for non-developer Swedavia users in energy planning. The next phase will focus on
developing a user-friendly interface to address this. Although the implementation is currently proprietary,
we are committed to making the key algorithms publicly accessible in a structured, ontology-driven format
as future digital-twin development progresses.
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