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ABSTRACT

Surgeons’ actions are key to surgical success. Our objective is to develop a decision-support tool to help
prioritize patient safety and reduce risks during surgery. We propose a structured mathematical framework
that defines key components of a surgical procedure, making it adaptable to various types of surgeries.
Using the CholecT50 dataset, we generate and pre-process event logs to construct a process map that
models the surgical workflow through Process Mining techniques. This process map provides insights into
procedural patterns and can be visualized at different levels of granularity to align with surgeons’ needs.
To validate its effectiveness, we simulate synthetic surgeries and assess the process map’s performance in
replicating real surgical workflows. By demonstrating the generalizability of our approach, this work paves
the way for the development of an advanced decision-support tool that can assist surgeons in real-time
decision-making and post-operative analysis.

1 INTRODUCTION

Surgical safety remains a priority due to ongoing risks from human error, equipment issues, and patient
variability. As modern technologies increase procedural complexity, decision-support tools are essential to
help surgeons manage these systems and reduce adverse events.

Several approaches exist to model surgical procedures based on operating rooms workflows (Neumuth
2017). Previous works explored various techniques to understand and predict surgeon activities and surgical
workflows (Neumann et al. 2022; Franke et al. 2015; Bieck et al. 2020). In the field of image recognition,
recent efforts aim to automatically assess the critical view of safety, a key step for ensuring patient safety in
procedures such as laparoscopic cholecystectomy (Mascagni et al. 2022). Existing studies have employed
terms such as surgical phase, instrument, anatomic target, surgeon verb, and high-level and low-level
surgical tasks. However, the lack of a comprehensive public dataset capturing surgeon activities remains
a barrier to developing a generalized framework applicable to various surgical procedures.

Intraoperative process mapping (Chung et al. 2017) is commonly used for postoperative analysis and
training. In Central Venous Catheters (CVC) procedures, process mining has been shown to generate
effective process maps from event logs (Lira et al. 2018). However, such techniques are largely used
retrospectively, and real-time or generalized applications remain limited.

Robot-assisted surgery has driven progress in analyzing surgical gestures using video and kinematic
datasets (Anastasiou et al. 2023). Neural network models such as Transformer (Vaswani et al. 2017) have
been widely used for skill assessment and workflow prediction. However, most public datasets include
fewer than 20 activities—e.g., JIGSAWS has 9 (Gao et al. 2014), SARAS-ESAD has 21 (Bawa et al.
2021)—while real surgeries involve over 100, limiting model applicability to complex procedures.

While prior research has provided valuable observational insights, it has largely stopped short of
enabling in-depth analysis or identifying intraoperative errors and adverse events. Most work has focused

979-8-3315-8726-0/25/$31.00 ©2025 IEEE 616



Wang, Augusto, Pehlivan, Fleck, and Mekhenane

on recognition and segmentation, without translating findings into actionable feedback. As a result, current
studies remain far from delivering real-time decision support tools to assist surgeons. Advancing surgical
outcomes requires moving beyond observation toward predictive, interactive systems that offer meaningful
intraoperative guidance.

Our study has three main objectives. First, we aim to develop a robust and flexible framework for
modeling various surgical procedures as event logs. Second, we seek to establish an efficient methodology
for pre-processing these logs to identify the surgical workflow. As a case study, we apply our framework to
laparoscopic cholecystectomy, using its data to execute the first two steps and generate a detailed process
map of the procedure. Finally, we simulate the surgery to assess the reliability of our process map.

Despite existing studies in surgical modeling and process mapping, many lack precise mathematical
definitions to clearly distinguish the various steps of a surgical procedure. In our work, we propose a formal
framework of mathematical definitions to address this gap. First, it provides the precision and unambiguity
required for informatics systems, enabling machine interpretability and real-time automated analysis—unlike
the intuitive, context-dependent descriptions typically used by clinicians. Second, it ensures reproducibility
and standardization, which are essential for building robust benchmarks and advancing research in surgical
error and adverse event detection. Third, it facilitates consistent data annotation and labeling, allowing
the creation of high-quality datasets for training and validating algorithmic models. Finally, the proposed
framework is designed to be generalizable across different surgical procedures, laying the groundwork for
broad applicability in both research and clinical settings.

This work marks a crucial step towards the development of a decision-support tool that assists surgeons in
real time by detecting errors and predicting surgical events, while also enabling comprehensive post-operative
analysis.

2 METHODOLOGY

2.1 Framework

In 2022, a public dataset (Nwoye and Padoy 2023) was introduced specifically designed for recognizing
surgical triplets. A surgical triplet is defined in the form of <instrument, verb, target>. Surgical triplets
have been widely accepted as an effective way to represent surgeon activities during procedures. Previous
works (Sharma et al. 2023) have identified such surgical triplets from video data. In parallel, there has been
growing interest in the detection of surgical phases (Lavanchy et al. 2023), which segment a procedure
into distinct stages, providing a clearer understanding of the overall workflow.

In this context, we define key concepts relevant to surgical process modeling—namely, surgery, surgical
phase, surgical gesture, surgical error, and surgical event—as follows.

Let:

• S be a finite set indexing all surgical procedures. An element is denoted by s ∈ S.
• For each surgery s ∈ S, let Ps be the finite set indexing all surgical phases of s, with p ∈ Ps.
• For each phase p ∈ Ps, let Gps be the finite set indexing surgical gestures of p, with g ∈ Gps.
• T = N be the discrete time domain.
• Pr = {1. Primary gesture,2. Auxiliary gesture} be the set that indexes all gesture properties.
• E and A be finite sets indexing surgical error types and adverse event types independent of s and

p, respectively.

Definition 1 A surgery denoted as surge, is defined as (s, tb, te) where s∈S, and tb, te∈T denote the start
and end times of the surgery, respectively.
Definition 2 A surgical phase, denoted as pha, is defined as (s, p, tb, te), where p∈Ps is a phase of surgery
s, and tb, te∈T denote the start and end times of the surgical phase, respectively. At any single time point,
only one phase is possible.
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Definition 3 A surgical gesture, denoted as ge, is defined as (s, p,g, pr, tb, te), where: g∈Gps is a gesture
within phase p, and pr∈Pr denotes the gesture type. tb, te∈T denote the start and end times of the surgical
gesture, respectively.

At any single time point, many gestures are possible. In our research, a gesture type is a surgical triplet.
According to the definitions, surgical phases refer to the higher-level tasks that make up the complete
surgical procedure (Garrow et al. 2021), distinguishing them from more granular actions such as gestures.

A primary surgical gesture type generally refers to the essential actions directly involved in performing
the main tasks of a procedure, while an auxiliary surgical gesture type would describe supporting actions
that assist or complement the primary tasks.
Definition 4 A surgical error, denoted as error, is defined as (s, p,g,e, t), where e∈E is the error type
and t∈T is the time point at which the error is detected. An adverse event, denoted as ae, is defined as
(s, p,g,a, t) where a∈A is the adverse event type and t∈T is the time point at which the adverse event is
detected.

In medical terms, a surgical error (Suliburk et al. 2019) refers to either the failure to complete a planned
action as intended (i.e., an error of execution) or the implementation of an incorrect plan to achieve a
goal (i.e., an error of planning). Surgical errors are preventable mistakes. In contrast, an adverse event
(Gawria et al. 2021) is an injury caused by medical care during surgery, rather than the underlying disease.
Therefore, in the context of Definition 4, sets A and E represent fundamentally different concepts. For
instance, a surgical error may result from a lapse in a surgeon’s attention, whereas an adverse event could
manifest as unexpected bleeding during the procedure.

As highlighted in these definitions, surgeries, phases, and gestures all have an associated duration,
whereas surgical errors and adverse events do not. We discretize the detection of phases, gestures, errors,
and adverse events, considering T= N . The discretization interval ts is defined by the user. At each time
step, we update the current gesture, phase, error, and adverse event. If no changes occur in the phase or
gesture, their duration is incremented. Otherwise, a new phase or gesture begins, resetting the count.

A surgical phase offers a high-level perspective on the procedure, allowing us to determine the current
stage within the entire surgical process. In contrast, analyzing gestures enables the identification of specific
errors, which can help predict potential adverse events.

2.2 Surgical Data Modeling

To standardize workflows, detect errors, and optimize performance—ultimately enhancing surgical precision
and patient safety—a process map of the surgical procedure is essential. Our approach involves constructing
this process map using an existing dataset and the framework presented in Section 2.1.

A process map requires event logs as input. An event log is a structured record of events that occur
within a system or process over time. In the context of process mining or workflow analysis, an event
log typically includes attributes such as Timestamp, Activity, Case ID, and Resource. Event log data
provides a robust foundation for generating process maps, enabling direct observation of procedural flow
and dynamics.

As discussed in Section 1, triplets are commonly used to model surgical activities based on formal
surgical ontologies (Neumuth et al. 2006). Algorithms have been developed to automatically detect these
triplets from surgical videos, supporting the initial level of automation needed for building a decision-support
system. In our approach, we incorporate triplets as gestures (as defined in Definition 3) within our event
logs.

2.2.1 Data Preparation

We consider that each entry of an event log contains the following elements: the patient identifier (Case
ID), the type of gesture (Activity) as described in Definition 3, the beginning and ending timestamps of
the gesture (Timestamp), and the type of phase (Resource) as described in Definition 2 that corresponds
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to the current gesture. Up to three gesture types can be recorded simultaneously within a single entry. As
detailed in Section 2.1, the definitions of both a phase and a gesture require the inclusion of both the start
time (tb) and the end time (te). An illustrative example is provided in Table 1.

Table 1: Illustrative example of an event log.

ID begin time end time phase gesture
11 0:25:9 0:25:10 clipping-and-cutting grasper,retract,gallbladder;bipolar,coagulate,cystic_pedicle
11 0:25:11 0:25:39 clipping-and-cutting bipolar,coagulate,cystic_pedicle
11 0:25:40 0:25:43 clipping-and-cutting grasper,retract,gallbladder
11 0:25:44 0:25:48 clipping-and-cutting grasper,retract,gallbladder;scissors,cut,cystic_duct
11 0:25:49 0:26:19 clipping-and-cutting scissors,cut,cystic_duct
11 0:26:19 0:26:21 clipping-and-cutting grasper,retract,gallbladder

Using the framework from Section 2.1, we perform the following procedure to pre-process the raw
event log data:

1. Replace “instrument, null_verb, null_target" by earlier or later gestures. When surgeons switch
instruments, transitional gestures like “instrument, null_verb, null_target" appear. These transitional gestures
actions are replaced by examining the previous and consecutive gestures involving the same instrument.

2. Merge neighboring gestures that have an inclusion relationship. In event logs, variations of
gestures with an inclusion relationship, like “gesture A; gesture B; gesture C" and its subsets, often appear
continuously. When the same combination is repeated over time, neighboring gestures with this inclusion
relationship are merged.

3. Keep primary gestures. As described in the dataset, raw annotations can include up to three
simultaneous gestures. Usually, one is the primary gesture, while the others are supporting or auxiliary. To
focus on primary gestures in cholecystectomy, we exclude auxiliary gestures like “grasp," “retract," which
assist in actions. We also exclude "aspirate" and "irrigate," as they are cleaning actions not directly related
to the surgical procedure, even when performed by the main surgeon. However, we retain “grasper, grasp,
specimen_bag" as a key surgical activity.

After this pre-processing step, there is typically only one gesture occurring at any given time.
4. Keep the verb and target of the triplets. The verb and target in triplets capture the core actions and

objectives of the procedure, crucial for understanding surgical workflows. Since surgeons are familiar with
the instruments, focusing on verbs and target provides a clearer, high-level view, simplifying the process
map without losing essential details

5. Regroup related gestures. In our research, we regroup repetitive gestures that occur in loops during
specific phases of surgery. These systematic actions help capture patterns that are essential to the success
of the surgery and prevent self-loops in the process map.

The pre-processing method was developed based on expert input from surgeons. While we hypothesize
that it performs well, it has not yet been quantitatively evaluated.

2.2.2 Process Mining

Process mining analyzes event data to improve operations through techniques like Process Discovery,
Conformance Checking, and Process Enhancement (van der Aalst 2016).

Process Discovery automatically generates process models from event logs, revealing actual workflows
and patterns based on real-time data. In our research, we apply Process Discovery to create a detailed
process map of the surgical procedure. We use the software Disco (Günther and Rozinat 2012) for Process
Discovery, utilizing the Flexible Heuristics Miner algorithm (Weijters and Ribeiro 2011) to generate a
process map from event log data.

Next, we apply Conformance Checking to assess how well the actual procedure aligns with the
established process model. Additionally, Conformance Checking supports post-operative analysis by
identifying potential errors and adverse events. To evaluate and compare Process Mining Discovery
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models, we utilize key indicators such as fitness, precision, simplicity, and generalization (Buijs et al.
2012). The mathematical formulations of the four indicators (Rozinat and van der Aalst 2008; van der Aalst
et al. 2012; Berti and van der Aalst 2020; Buijs et al. 2012) are not included here due to their complexity;
however, a concise description of each metric is provided in this section to support understanding.

Fitness evaluates how well a process model can reproduce the behavior recorded in the event log. In
token-based replay (TBR) fitness (Rozinat and van der Aalst 2008), the metric quantifies the proportion of
correctly produced and consumed tokens during the simulation of log traces through the model, penalizing
missing or remaining tokens. In contrast, alignment-based (Align) fitness (van der Aalst et al. 2012)
measures how closely each trace in the event log can be aligned with an execution of the model by
computing the cost of deviations; lower alignment costs indicate higher fitness.

Precision measures how well the behavior allowed by a process model matches what actually happened
in the event log. In TBR, the model loses precision (Berti and van der Aalst 2020) if it allows steps that
are never used when simulating real executions. In alignment-based (Align) precision (van der Aalst et al.
2012), the model is penalized for having transitions (called escaping edges) that are possible in the model
but never needed to match the log.

Additionally, the generalization metric evaluates a process model’s ability to generalize beyond the
observed event log by capturing unseen but plausible behavior. It penalizes models that overfit the log
by relying too heavily on infrequent or unique traces, thus assessing the model’s robustness to future,
similar process executions. Simplicity reflects the structural complexity of the model and is measured by
comparing the size of the process tree to the number of activities in the event log. Larger models tend to
increase perceived complexity and error likelihood. They are defined both in Buijs et al. (2012).

2.3 Simulation

To assess the performance of the process models generated through Process Mining, we conducted simulations
of 1000 complete surgical procedure scenarios for each model using Python. The simulation parameters
consist of three main components:

1) Process Model Selection: The process models are derived from the process maps obtained via
Process Mining, by selecting specific Path and corresponding Activity percentages. Table 5 presents the
detailed configurations of the process models used in the simulations.

2) Activity Duration Modeling: For each activity, all observed durations from the event logs are collected
into a list. We then automatically fit the most appropriate probability distribution to these durations using
Python. The fitting procedure considers a set of candidate distributions. For each activity within a simulated
scenario, the duration is sampled from the fitted distribution corresponding to that activity.

3) The transition probability between activities is calculated as the frequency of each transition divided
by the total frequency of all outgoing transitions from a given activity.

The evaluation focused on several key performance metrics: (i) the mean procedure duration, (ii) the
number of activities per simulated procedure, (iii) the frequency distribution of each activity across all
simulated scenes, and (iv) the statistical similarity between simulated and real-world data, measured using
p-values from appropriate statistical tests (e.g., Kolmogorov–Smirnov test).

3 RESULTS AND DISCUSSION

3.1 Dataset and Event Logs Generated by Framework

In this work, we utilize the CholecT50 dataset, which was initially created for the recognition of triplets
in endoscopic videos of laparoscopic cholecystectomy surgery. Cholecystectomy is the removal of the
gallbladder by dividing the cystic duct and cystic artery, and separating the gallbladder from its bed, without
injuring the common bile duct, the liver, or its vascular structures.

CholecT50 (Nwoye and Padoy 2023) comprises 50 endoscopic videos of laparoscopic cholecystectomy
surgeries, designed to support research in fine-grained action recognition within laparoscopic procedures.
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The videos were recorded in Strasbourg, France, and frames were sampled at a rate of 1 frame per second
(fps). Each frame is annotated with triplet information capturing surgical actions in the format: “instrument,
verb, target". In addition to triplet annotations, the dataset includes surgical phase labels, as illustrated in
Figure 1.

In the raw video data and corresponding annotations, up to three triplets may co-occur simultaneously
within a single frame, reflecting the complexity and multi-instrument nature of real-world surgical procedures.

Figure 1: Surgical triplets and phase annotation from the CholecT50 dataset.

We begin by transforming the annotations of the 50 videos from the CholecT50 dataset into event
logs that incorporate the defined terms for phases (Definition 2) and gestures (Definition 3) following the
framework outlined in Section 2.1. This process results in raw event logs with fine granularity, capturing
the intricate details of the cholecystectomy procedures, as illustrated in Table 1.

Table 2: Illustrative example of a pre-processed event log.

ID begin time end time phase gesture
11 0:25:9 0:25:43 clipping-and-cutting coagulate,cystic_pedicle
11 0:25:44 0:26:21 clipping-and-cutting cut,cystic_duct

Next, we pre-process the raw event logs according to the steps outlined in Section 2.2.1. Table 2
presents the pre-processed version of the data shown in Table 1. Compared to Table 1, the gestures in
Table 2 have been simplified and cleaned to ensure greater consistency and clarity.

3.2 Process Mining Discovery and Conformance Checking

3.2.1 Process Map

The process maps, generated at varying levels of granularity using Disco, are then analyzed based on the
pre-processed event logs.

In Disco, the level of detail in a process map can be adjusted by modifying the parameters for Activity
and Path. An Activity represents a single step within the process, while a Path refers to the sequence of
activities followed by a specific case throughout the process. For a process map, we can individually adjust
the percentage of Activity and Path from 0% to 100% depending on the user’s needs to increase the model’s
flexibility and allow different levels of granular analysis. This ensures the map accurately represents the
process without any data leakage. A higher Activity percentage will display more activities, while a higher
Path percentage will reveal additional possible pathways in the procedure.

In our case, Activities refer to gestures performed during laparoscopic cholecystectomy, extracted from
the pre-processed event logs of the CholecT50 dataset. Each gesture consists of a verb and a target, without
instrument details, and is labeled as ge1, ge2, etc.

In our laparoscopic cholecystectomy process map, 0% Paths retains only the strongest (most common)
connections, while 100% Paths includes all transitions, even rare ones, resulting in a highly complex,
spaghetti-like model. Given the inherent complexity of surgical workflows, even at 0% Paths, some low-
frequency paths (e.g., occurring once) can still appear. To maintain clarity and avoid excessive complexity,
we recommend keeping the Paths percentage minimal, ideally below 10%, or even 5% for intricate models.
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After pre-processing, 50 distinct gestures were identified across 50 laparoscopic cholecystectomies.
In Disco, the Activity slider filters gestures by frequency. At 10%, only the 5 most frequent gestures are
shown; at 15%, 8 gestures appear, though some phases remain unrepresented. At 25%, 11 gestures are
displayed, covering all surgical phases. Higher thresholds add more detail but increase map complexity.

Based on the feedback from surgeons at l’Hôpital Paul-Brousse AP-HP, we selected 25% Activity and
0% Path to ensure the map is representative. These parameter values represent a trade-off between capturing
essential variations while keeping the process map clear and manageable. Figure 2 and Figure 3 present
the result. Figure 2 displays the total frequency of each gesture and its transitions in 50 cholecystectomy
procedures. Figure 3 displays the average duration for each gesture and transition. The time next to each
path represents the duration of the transition, which in our case is 1 second due to the frequency of our
dataset.

Figure 2: Process map of a laparoscopic cholecys-
tectomy representing the frequency of gestures (25%
Activity and 0% Path).

Figure 3: Process map of a laparoscopic cholecys-
tectomy representing the duration of gestures (25%
Activity and 0% Path).
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Although this process map includes only 25% of the gestures, it effectively represents the key steps in a
laparoscopic cholecystectomy surgery. As shown in Table 3, the workflow recommended by expert surgeons
is shown in the column "Suggested main gestures" and the workflow generated by process mining is given
in the column "Process map main gestures". The map perfectly aligns with the workflow recommended
by expert surgeons, making it a realistic and reliable model. Table 4 presents the names of the phases and
gestures from Table 3.

Table 3: Process map conformance checking.

Phase (pha) Suggested main gestures (ge) Process map main gestures (ge)
pha1 ge1 ge1
pha2 ge2, ge3 ge2, ge3
pha3 ge4, ge5 ge4, ge5
pha4 ge6, ge7, ge9, ge10 ge6, ge7, ge8, ge9, ge10
pha5 ge11 ge11

Table 4: Phase and gesture names.

phase name gesture name
pha1 preparation ge1 pha1 - dissect, omentum

pha2 calot-triangle-dissection
ge2 pha2 - dissect, cystic artery/duct/plate/pedicle
ge3 pha2 - coagulate, cystic artery/duct/plate/pedicle

pha3 clipping-and-cutting
ge4 pha3 - clip, cystic artery/duct
ge5 pha3 - cut, cystic artery/duct

pha4 gallbladder-packaging

ge6 pha4 - dissect, gallbladder
ge7 pha4 - coagulate, gallbladder
ge8 pha4 - coagulate, liver
ge9 pha4 - grasp, specimen bag
ge10 pha4 - pack, gallbladder

pha5 cleaning-and-coagulation ge11 pha5 - coagulate, liver

3.2.2 Conformance Checking and Analysis

After identifying the most representative model for a standardized surgical workflow, we modify the
parameter configurations (Activity and Path) to conduct Conformance Checking. The performance of each
model is evaluated using quantitative metrics, including number of gestures, number of paths, fitness,
precision, simplicity, and generalization. The results, presented in Table 5, were generated with the PM4Py
(Berti et al. 2019) library in Python.

Table 5: Metrics to evaluate model performance.

Model
Activity Path nb nb fitness precision

simplicity generalization
(%) (%) gestures paths TBR align TBR align

Model 1 25 0 11 18 0.86 0.75 0.57 1 0.76 0.83
Model 2 40 0 17 28 0.82 0.78 0.53 1 0.72 0.75
Model 3 50 10 25 47 0.84 0.81 0.53 1 0.65 0.57
Model 4 15 0 143 227 0.41 0.75 0.57 1 0.76 0.83

In Table 5, Models 1 to 3 are based on pre-processed data, with the indicators of fitness, precision,
simplicity, and generalization derived from the pre-processed event logs. In contrast, Model 4 is generated
using the raw data, and the corresponding indicators are calculated from the original event log.

The metrics from Model 4 indicate that the raw data without pre-processing is highly complex. Even
with parameter values set to 15% for Activity and 0% for Path, the various combinations of gestures result
in numerous activities and paths. As a result, replay fitness, precision, simplicity, and generalization are
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significantly lower compared to models generated using pre-processed data. This demonstrates that our
pre-processing method is effective in simplifying the data and improving model performance.

As shown in Table 5, reducing the percentages for Activity and Paths leads to improved simplicity and
generalization. Models 1, 2, and 3 all exhibit strong fitness, indicating that they accurately capture the actual
workflow. Given that these models are based on pre-processed event logs, their alignment precision reaches
1 in all cases. Although TBR precision is lower in certain instances due to the inclusion of infrequent
activities and a wide variety of paths, the models still perform well in terms of generalization. It is clear
that, to better observe the randomness in a surgical procedure, we can increase the percentage of Activities
and Paths, which highlights variations and unpredictability. Notably, Model 1, which was selected by
expert surgeons, demonstrates the best overall performance across key metrics.

3.3 Simulation Performance Analysis

Using the generated models (Model 1, Model 2, and Model 3), we simulated 1,000 synthetic surgical
procedures for each model. Although the process maps are not strictly acyclic, the simulation regulates
repetition by leveraging the transition probabilities from Figure 3. Additionally, to prevent excessive loops,
we impose a constraint ensuring that no repetition exceeds five occurrences.

Table 6 presents a comparison of the procedure between the synthetic data and the real raw data after
pre-processing. Models 1-3 represent the same models as in Table 5, and Model 5 represents the real raw
data after pre-processing. The “number of gestures" refers to the count of distinct, individual gestures, while
the “mean number of gestures per scene" represents the total count of gestures within a scene, including
any repeated actions.

The mean duration of procedures exhibits minimal differences across different models. To assess the
statistical significance of these variations, we conducted a hypothesis test and evaluated the p-values. Since
all p-values exceed 0.05, we fail to reject the null hypothesis, indicating that the simulated data closely
align with the real observations.These findings indicate that our simulation approach is reliable, particularly
for Model 1, which demonstrates the strongest alignment with real-world data.

These results indicate that Models 1-3 exhibit a relatively high standard deviation in procedure duration,
with Model 1 and Model 3 also showing shorter average durations compared to the real data. This variability
can be attributed to two main factors. First, the process discovery algorithm introduces inconsistencies in
loop probabilities and non-representative paths, increasing procedural variability and contributing to the
observed standard deviation. Second, the models contain fewer gestures than the actual procedures, which
inherently reduces total duration. This simplification prevents the models from fully capturing the procedural
complexity, leading to a less accurate representation of real-world surgical timelines. Furthermore, Model
3 includes a higher number of non-representative paths, further affecting its alignment with actual surgical
workflows.

However, Models 1-3 have successfully captured the most frequent pathways and activities, suggesting
that even the simpler models are capable of representing the core structural elements of the surgical process.

Table 6: Simulation result to evaluate model performance.

Model 1 Model 2 Model 3 Model 5
nb gestures 11 17 25 40
mean duration (min) 33.0 34.6 32.2 33.7
median duration (min) 27.6 30.4 27.8 32.9
standard deviation duration (min) 28.1 20.6 26.2 10.3
mean nb of gestures/scene 14 16 14 15.9
p-value 0.684 0.590 0.365

Table 7 presents the frequency of gestures per scene across the three models. As model complexity
increases, the number of gestures also rises. For clarity and consistency in comparison, we focus on the 11
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key gestures that are present in all three models. This selection ensures that the analysis remains meaningful
and allows for a direct comparison of gesture distribution across different model configurations.

Overall, the results consistently show that Model 1 has the smallest deviation from Model 5, further
confirming that Model 1 is the most representative in reflecting real surgical workflows.

In particular, gestures ge6 and ge8 appear more frequently in the simulated models than in the real data.
This discrepancy arises because the simulated models contain fewer activities overall, making ge6 a necessary
step in all process maps. Additionally, the ge6 → ge8 loop is the most frequently observed transition.
According to surgeons, ge4 and ge5 are the most stable gestures, occurring in every cholecystectomy. This
is reflected in Models 1, 2, and 5, where the frequency of ge4 and ge5 exceeds 1, aligning with real-world
expectations. However, in Model 3, the frequency falls below 1, which is not realistic. This suggests that
Model 3 is overly complex or contains excessive "spaghetti" behavior, making it less representative of the
actual procedure.

Table 7: Frequency of gestures per scene.

gesture (ge) 1 2 3 4 5 6 7 8 9 10 11
model 1 0.6 2.0 1.0 1.0 1.0 3.1 0.8 1.3 2.0 0.4 0.6
model 2 1.6 1.9 0.9 1.0 1.0 3.2 0.8 1.4 1.9 0.3 0.6
model 3 1.5 2.0 0.9 0.9 0.9 2.3 0.5 1.2 1.9 0.3 0.6
model 5 0.9 2.3 1.0 1.2 1.1 2.1 0.5 0.9 1.9 0.4 0.8

3.4 Errors and adverse events analysis based on the framework

Process maps and simulations are done base on our framework. When the level of detail in the process map
is increased—with more granular activities and paths—it becomes possible to identify potential surgical
anomalies, particularly through collaboration with surgeons. For instance, an error appears on the process
map as an additional isolated phase and as an extra gesture compared to the global process map.

Some gestures containing terms like “coagulation” might indicate a response to unexpected bleeding.
If such actions appear infrequently or outside typical phases, they can signal the occurrence of an adverse
event. Likewise, the emergence of additional gestures not present in a reference process map may imply
a deviation caused by complications, where these extra actions serve to manage or mitigate the issue.

The simulation component also provides valuable metrics, including average durations and standard
deviations for each gesture. Abnormal phase durations—whether unusually short or unusually long—as
well as additional pathways or gesture sequences, may indicate errors, whether cognitive or technical.
Instrument failure can also be reflected through these parameters.

By integrating structural analysis, gesture frequency, and temporal metrics, our approach facilitates the
precise identification of deviations within surgical workflows. This level of insight enhances the detection of
critical issues and deepens our understanding of how complications impact procedural dynamics, ultimately
supporting safer and more efficient surgical practices. However, this analysis has not yet been formally
validated. Further discussions with surgeons are necessary to develop quantitative methods for a more
robust evaluation.

4 CONCLUSION AND PERSPECTIVES

Our work highlights three key contributions: 1) a formal mathematical framework for generating event logs
that comprehensively describe the entire surgical procedure, applicable for modeling a variety of surgical
types, 2) an event log pre-processing method designed to streamline and simplify the surgical process,
and 3) the application of this approach to real-world data from laparoscopic cholecystectomy surgeries
using process mining techniques, and the simulation of synthetic surgical procedures. These contributions
provide a structured foundation for better understanding surgical workflows, improving decision-making,
and enhancing the analysis of procedures.
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A limitation is that, at this stage, our framework has been validated using only a single surgical
procedure—cholecystectomy—due to the limited availability of annotated datasets for other types of
surgeries. Future work will focus on validating the framework across a broader range of surgical procedures
and integrating surgeon expertise into the design and evaluation process to enhance the system’s robustness
and generalizability. Another limitation is the lack of quantitative evaluation of the event log pre-processing
method. The current assessment relies primarily on informal discussions with surgeons, which introduces
potential subjective bias due to the absence of a standardized validation protocol. In the future, we aim
to develop a standardized evaluation framework with objective metrics and structured validation —such
as completeness, accuracy, and consistency—by multiple surgeons. This will reduce subjective bias and
improve the reliability of the pre-processing method.

In our future research, we anticipate focusing on three key objectives. Firstly, by generating an event
log from real-time detection of triplets within surgical videos, we will pre-process the event data using
our proposed method. Next, we aim to classify these detailed triplets into the broader activities depicted
in our process map. This approach will enable us to emphasize the surgeon’s primary actions at any
given moment, providing clearer insights into the procedural flow. Secondly, we will perform a more
detailed analysis of gesture triplets to quantitatively identify errors and adverse events, and further to
predict the occurrence of these adverse events, and forecast upcoming activities. By leveraging our process
map, simulations, and machine learning techniques, we aim to develop a real-time risk warning system
for surgeons, enhancing patient safety during the procedure. Finally, we will incorporate patient-specific
information to further refine the methods outlined earlier. By including factors such as the patient’s medical
background, health status, and other relevant data, we can enhance the system’s ability to recognize potential
complications and anticipate next steps more accurately. Additionally, analyzing how procedural variations
across different patient profiles impact the framework’s performance will provide valuable insights into its
adaptability. This personalized integration will enable more precise guidance during surgery, supporting
better decision-making and minimizing risks for each patient.
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