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ABSTRACT

Coupled Socio-Environmental Networked experiments have been used to represent and analyze complex
social phenomena and environmental issues. There is a lack of theory on how to accurately model diverse
entities and the connections between them across different spatial and temporal scales. This gap often leads
to significant challenges in the modeling, simulating, and analysis of formal experiments. We propose
a framework that facilitates software implementation of multi-dimensional coupled socio-environmental
networked experiments. Our approach includes: (i) a formal data model paired with a computational
model, together providing abstract representations, and (ii) a modeling cycle that maps socio-environmental
interactions over time, allowing for multi-action, interactive experiments. The framework is flexible, allowing
for a wide variety of network models, interactions, and action sets. We demonstrate its applicability through
a case study on agroecological transitions, showing how the modeling cycle and data model can be used
to explore socio-environmental phenomena.

1 INTRODUCTION

Coupled Socio–Environmental Systems (SESs) are complex adaptive systems, characterized by interactions
within and among the environmental (e.g., natural, biological, physical) and human (e.g., economic, social,
political) components (Berkes et al. 1998). These interconnected entities usually have different attributes
and interact with each other, locally or via networks, on multiple spatial and temporal scales (Redman
et al. 2004). Understanding SESs is critical to supporting sustainable resource management. SES modeling
provides a science-informed platform where stakeholders can share and consolidate their knowledge, and
test different scenarios for theory building and hypothesis testing (Elsawah et al. 2020; Lippe et al. 2019).
An experimental environment provides spatial and temporal resource dynamics that allow a researcher to
capture these two variables. SES experiments to study social behavior related to environmental issues have
been used to explore phenomena such as punishment versus communication (Janssen et al. 2010), resource
optimization (Gaba and Bretagnolle 2020), and collective action (Castillo and Saysel 2005; Waring and
Bell 2013; Kimbrough and Wilson 2013). Given the intrinsic connection between social and environmental
systems, Socio-Environmental Networks (SENs) have become a well-established approach to conceptualize
and analyze their inter-dependencies within and across spatial and temporal scales (Janssen et al. 2006;
Cumming et al. 2010; Bodin et al. 2019; Sayles et al. 2019; Felipe-Lucia et al. 2022).

SEN research studies produce patterns by socio-environmental entities/nodes and their relationships/edges.
There is a lack of theory on how to accurately represent SEN diverse entities and define the connections
between them across spatial and temporal scales. Temporal and spatial scale mismatches affect the abil-
ity to integrate, aggregate and disaggregate data (Virapongse et al. 2016). For example, temporal scale
mismatches might occur when stakeholders have different timelines for the completion of a project. Also,
location inconsistencies between stakeholders might produce spatial scale mismatches. To understand SENs
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across scales, it is also important to understand the roles of multiple stakeholders who may have direct or
indirect influence and interest in decision making (Lippe et al. 2019).

To explore and analyze complex social phenomena and environmental issues, a combination of exper-
iments, modeling, and simulations of SENs have been used to study resource management (Le Pira et al.
2017; Giordano et al. 2021; Matous and Bodin 2024; Zhou and Liu 2024) and explore social phenomena
such as group dynamics and comparisons (Janssen et al. 2010; Gaba and Bretagnolle 2020). To understand
and reason about socio-behavioral studies, computational modeling is useful (Fujimoto et al. 2017). Often,
in SEN studies, there is emphasis on experiments (Janssen et al. 2010; Gaba and Bretagnolle 2020) or
modeling (Le Pira et al. 2017; Giordano et al. 2021; Matous and Bodin 2024; Zhou and Liu 2024),
with no iterations of experiments and modeling. Combining experiments with modeling, in a repeated and
iterative process, enables each to inform and guide the other (Epstein 2007; Lazer et al. 2009). In research,
each modeling approach assumes how the nodes and edges are related within and across different scales,
using different network models (e.g. single layer, multiplex, multi-level or multi-dimensional) (Sayles et al.
2019). Multi-dimensional networks are appropriate to capture the complexities intrinsic in organizational
life (Shumate and Contractor 2013), allowing different kinds and numbers of nodes in different layers and
multiple edges within and among different node types.

This work presents a novel framework and modeling cycle for Modeling and Simulation (MAS) of
multi-dimensional SEN experiments across scales. We design a data model and apply a computational model
that together form abstract representations of SEN experiments and MAS so that we can determine whether
an experiment or simulation can be introduced to our proposed modeling cycle, and ensure correspondence
between experiments and MAS. Our framework and modeling cycle can be used as the base of a software
platform for behavioral experiments on SENs. Figure 1 provides an overview of the proposed modeling
cycle in which, SEN experimental data are transformed to conform to our Data Model, that is a combination
of an Abstract Data Model and a Computational Model (see Section 2). The abstract data model and the
computational model enable formal specification of SEN experiments and observations and MAS, allowing
a generated Conceptual Model to be used in a Simulation Software Model. Any experiment whose data can
be cast in terms of the model can be transformed into conceptual data models used in software development
(i.e., ODL, UML, or data structure diagrams, among others). The implementation of model and simulation
can be defined, as running software implementations of models (e.g. of agent-based models). Simulation
results may provide insights through model validity. With controlled experiments we seek to specify the
parameters for a next set of experiments (experiment specification).

Figure 1: Proposed modeling cycle framework for implementing Socio-Environmental Networked experi-
ments Modeling and Simulation (MAS).

Our contributions include:
A formal data model. We design a formal abstract data model for multidimensional SEN experiments.

The data model proposed has the following seven characteristics, (1) an experiment may be composed of
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many phases (i.e., sub-experiments); (2) each phase may have a different finite duration; (3) each phase
may be composed of many layers; (4) each phase may have a different interaction structure among layers;
(5) each layer may have a different interaction structure among entities/agents (i.e., different networks);
(6) each layer may have a different set of actions (and interactions) among entities/agents; and (7) these
actions may be repeated by entities/agents any number of times within the duration of a phase (i.e., temporal
interactions). The data model in 2.1, with our computational model in 2.2, provides a correspondence for
experiments and models. Frameworks with different types of SEN modeling approaches and network models
have been proposed to standardize the analysis of emerging phenomena in SENs (Ernstson et al. 2010;
Ghandar et al. 2019; Felipe-Lucia et al. 2022; Man et al. 2023; Zhou and Liu 2024). In (Ernstson et al.
2010; Felipe-Lucia et al. 2022) purely conceptual network frameworks for modeling multi-dimensional
SENs are described; but they don’t employ a mathematical or computational model and they look for a
theoretical understanding of specific research questions. (Ernstson et al. 2010) uses a narrative approach for
a conceptual network model, that can be considered multi-dimensional, that describes how social network
structure influences ecosystem governance. (Felipe-Lucia et al. 2022) provides a typology to represent
ecosystem services using SENs, with the objective to improve research designs by aligning specific SEN
conceptualizations and research questions. And, while they are frameworks that define MAS of SEN,
(Ghandar et al. 2019; Man et al. 2023; Zhou and Liu 2024), they only focus on multi-level networks,
allowing only one relationship between any two nodes and are oriented to a specific research domain.
(Ghandar et al. 2019) proposes a framework for modeling urban agricultural systems. (Man et al. 2023)
develops a multilevel social-ecological network analysis approach to identify the collaboration’s effect
on genetically connected coastal areas. (Zhou and Liu 2024) defines a SEN framework to quantify the
supply-demand flow of grain ecosystem service, identifying supply and demand nodes and analyzing
spatiotemporal patterns. None of these frameworks combines this approach of experiment-and-modeling
iterations, to investigate multi-dimensional coupled SEN experiments and facilitate automatization. Our
work is unique.

A modeling cycle. We provide a modeling cycle for SEN experiments that includes: (i) Gathering of
data from SEN experiments, through observations, field/lab/online experiments, role playing games, social
media, etc. (ii) Transforming the raw data into our abstract data model along a Computational Model. (iii)
Computation of the model properties through a conceptual data model (i.e., ODL, UML, or data structure
diagrams, among others). (iv) Implementing MAS of temporal, multi-action, interacting experiments to
study behavioral experiments on SEN. We emphasize that our framework and modeling cycle in 2.3 can be
used as the base of a software platform to run coupled socio-environmental behavioral experiments. There
are experimental platforms available to conduct behavioral experiments on socio-environmental systems
(Janssen et al. 2014), but their focus is distinct and they must be adapted for novel research questions.
Depending on the phenomena being studied, our SEN experiments can vary widely because they are
multi-phased, multisubject, and multi-action. In (Grimm et al. 2020), the Overview, Design concepts
and Details (ODD) protocol describes individual and agent-based models in socio-ecological sciences but
doesn’t provide a computational model. In (Augusiak et al. 2014) a workflow for model design is presented,
the objective is to help modelers and model users to organize model evaluation and its communication;
but doesn’t provide a formal data model. There is a need for a framework with systematic model analysis
in combination with iterative model development for SESs (Thober et al. 2017).

Case study. We describe a case study in Section 3 to illustrate the use of the modeling cycle and data
model as an analytical tool for SEN experiments. SEN experiments have been modeled and simulated, in
research areas like mobility management (Le Pira et al. 2017), water management (Giordano et al. 2021),
and soil nutrition management (Matous and Bodin 2024; Zhou and Liu 2024). SEN experiments have been
implemented to explore behavioral phenomena in different experimental domains, including the laboratory
(Janssen et al. 2010) and the field (Gaba and Bretagnolle 2020) In this case study, we describe SEN
experiments to foster agroecological transition (i.e. reducing weed control intensity) (Gaba and Bretagnolle
2020), thus showing that we can evaluate such experiments and studies with our system.
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The remainder of this paper is structured as follows. In Section 2 we present formalisms for the data
model, and the computational model of discrete dynamical systems, and describe the implementation of
the proposed modeling cycle for multi-dimensional SEN experiments and MAS. We provide a case study
in Section 3, conclusions and future work in Section 4.

2 ABSTRACT DATA MODEL FOR MULTIDIMENSIONAL SEN EXPERIMENTS AND MAS

We present a formal abstract data model for Multidimensional SEN Experiments and Modeling and
Simulation (MAS). The utility of this model is to determine whether a SEN experiment can be represented
by the characteristics of our data model, then data from the experiment can be used in a modeling cycle to
simulate the experiment, thus reducing time for implementation and analysis of modeling and simulation.

2.1 Formal Data Model

To model SESs adequately, interactions occur at multiple scales, and there is constant interaction not only
within the same scale, but also across different scales. To overcome the static nature of SENs, the structure
of our framework defines experiments with different phases and layers, capturing the continuous change
and evolution that characterize SESs as complex adaptive systems. The data model can be used to formulate
experiments and models for simulating experiments. Given a description of an experiment or model, and
given a phenomenon to study, the number of phases and layers are defined. To overcome any temporal scale
mismatch, each phase represents a system of agents as a (time-varying) graph, and has to define the unit
of time of one time increment. To overcome any spatial scale mismatch, each layer defines a graph where
nodes represent agents, and edges represent pairwise interactions. Entities/agents can be any combination
of humans, animals, insects, plants, and inanimate objects, any object that can act or be acted on. Figure 2
shows an example of a multi-dimensional SEN experiment composed of np phases with a set of V entities
where n = |V |, and a set of L layers where nl = |L|.

Figure 2: Representation of a SEN experiment composed of np phases with a set of V entities where
n = |V |, and a set of L layers where nl = |L|.

Table 1 shows part of the model with the computational model, to provide a formal representation for
experiments and MAS.
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Table 1: Partial definition of our abstract data model. The experiment schema describes the experiment
parameters. The structure of the phase schema describes the parameter types for an experimental phase; an
experiment can have any number np of phases. The structure of the layer schema describes the parameter
types for a phase layer; a phase can have any number nl of layers. Instance variables within the phase
schema structure and layer schema structure can vary across phases.

# Parameters Symbols Description
Experiment Schema
1 Set of layers IDs L L = {l1, . . . , lnl}. Set of layers over all phases; li ∈ L.
2 Set of entities IDs V V = {v1, . . . ,vn}. Set of entities over all phases; vi ∈V .
Layer Schema
1 Entity attributes Ω Ω = ∪ne

j=1Ω j. Ω j = (ω j1,ω j2, . . . ,ω j,nsa) is the sequence of nsa

attributes for v j ∈V .
2 Network defini-

tion
H(Vi,Ei) Node set Vi = {v1, ...,vη} and edge set Ei = {e1, . . . ,em}, where

Vi ⊆V may not be all nodes (entities) in the system, and ek = {v j,vℓ}
with v j,vℓ ∈Vi. Ei may be empty and i = inl .

3 Edge meaning Λ Set Λ of string representations λ ∈ Λ stating the meaning(s) of an
edge (e.g., λ = “communication channel” or “influence”).

4 Action set Ai Ai = {a1,a2, ...,ana}. Set of na actions an entity can execute, over
time, any number of times, during a phase, na ≥ 0 and Ai ⊆ A.

Phase Schema
3 Phase begin t_ph_begin Timestamp of phase beginning.
4 Phase duration tp Number of time increments in the phase.
5 Unit of time up Time unit of one time increment (e.g., seconds, days).
6 Phase Network

definition
G(V ′,E ′) Node set V ′ = {v1, . . . ,vη}, edge set E ′ = {e1, . . . ,em}, where

V ′ ⊆V may not be all nodes (entities) in the system, ei = {v j,vℓ}
with v j,vℓ ∈V ′. E ′ may represent across layer edges, and empty.

7 Node attributes
for a phase

Γ Γ = ∪tp
t=0

(
∪η

j=1 Γ j(t)
)
. Γ j(t) = (γ j1(t),γ j2(t), . . . ,γ j,ηv(t)) is the

sequence of ηv attributes for v j ∈V ′ in the phase inp at time t. Γ

is a triple nested sequence in attributes, entity ID, and time.
8 Edge attributes for

a phase
Ψ Ψ = ∪tp

t=0

(
∪m

j=1 Ψ j(t)
)
. Ψ j(t) = (ψ j1(t),ψ j2(t), . . . ,ψ j,ηe(t)) is

the sequence of ηe attributes for e j ∈ E ′ in the phase inp at time t.
Ψ is a triple nested sequence in attributes, entity ID, and time.

9 Action set A Set of actions executed, over time, any number of times.
10 Action sequence T T = ∪tp

t=0

(
∪η

k=1 Tk
)
. Tk = (σi,a j,vℓ1 ,vℓ2 , to, pyq) is the schema for

an action tuple. σi is a string that is a unique identifier for an
action sequence. Action a j ∈ A′ is initiated by node vℓ1 ∈V ′, and
vℓ2 is the target node of the action, with edge e = {vℓ1 ,vℓ2} ∈ E ′.
to ∈ R is the time of the action (0 ≤ to ≤ tp); pyq is the payload
represented as a JSON schema.

Experiment Schema. Each experiment has the following elements: a unique id exp_id, a number
np of phases, a number nl of layers, a number n of entities, a t_begin timestamp for the beginning of
the experiment, and a t_end timestamp for the end of the experiment. Each layer has a unique id li for
identification and each entity has a unique id vi for identification. A set of layers in an experiment is
defined by L = l1, ..., lnl . A set of entities in an experiment is defined by V = v1, ...,vn.
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Layer Schema. Each layer has the following elements: a unique id l_id, a number ne of entities. A
layer has nsa entity attributes defined for each entity. Entity attributes Ω are invariant across phases. Each
layer represents the interaction structure among entities as a network H(Vi,Ei) with meanings of edges Λ.
Entities and edges may have initial conditions Bv and Be, respectively. A is the set of available actions.

Phase Schema. Each phase schema has the following elements: a unique id ph_sch_id, the number
inp of the phase in the sequence of phases, a t_ph_begin timestamp at the beginning of the phase, number
tp of time increments in the phase, and the unit of time up of one time increment. Each phase represents
the interaction structure among entities as a network G(V ′,E ′) with meanings of edges Λ′. Over all nodes
and edges, node attributes Γ and edge attributes Ψ capture attribute changes in time. Edges may have
initial conditions δ e. A is the set of permissible entity actions. An action tuple Ti that captures pair-wise
interactions between entities, from the attribute sequences Γ and Ψ of a phase when action tuples, may
cause or be caused by changes in node and edge attributes. In essence, Γ and Ψ can be viewed as sequences
of node and edge states. There are several sequences of values for a particular node or edge j. Each entry
in these sequences can be scalars, sequences, sets, maps, and other structures. Then, these entries are
sequenced over time through the union of entries over time, from time 0 to time tp. The exceptions are the
initial conditions Bv

j,B
e
j and δ e

j , specified only at time 0.

2.2 Graph Dynamical System Model

The relationships between diverse entities in SESs make these systems nonlinear and complex. To model
the interaction structure of a time varying SEN, a mathematical formalism can capture the diversity and
interactions of the entities. To describe a formal framework for Multidimensional SEN experiments and
MAS, we use a mathematical and computational framework known as a discrete Graph Dynamical System
(GDS) (Adiga et al. 2018; Mortveit and Reidys 2007). GDS provides a modeling framework for bio-social
systems. To formalize experiments and MAS, this model explicitly represents individual components of a
system, capturing the interactions among them via a network. For example, there may be a set of entities
representing farmers in a social network defined by a set of n nodes, where each node i has a state si from
a set K that is {0,1}. si = 1 could encode that farmer i has executed landscape management, while si = 0
could encode a non-management state. A set of local transition functions F = { f1, . . . , fn} governs the
local dynamics by using fi to determine how the state of node i evolves from time t to t +1. An update
scheme U determines how the functions F assemble to a map F : Kn → Kn with the form F = (F1,F2,Fn).
The update scheme U applies the functions fi in parallel. The set F has an associated graph G with nodes
{1,2, · · · ,n} that captures the dependency between variables, and there is a directed edge {i, j} whenever
a function fi depends on the state of node j.

Formally, a GDS S , is a triple (G,F ,U ), where (i) G(V,E) is an undirected graph with node set V
and edge set E where | V |= n and 1 ≤ i ≤ n, (ii) F = { f1, f2, . . . , fn} is a collection of local transition
functions where fi is used to determine how the state of node vi evolves from time t to t + 1 for some
suitable time scale, (iii) U is the state space representing the union of the nodes state space U v with the
edges state space U e, U = U v ∪U e. An undirected edge {vi,v j} ∈ E can be represented by two directed
edges: (vi,v j) and (v j,vi). To each node vi, a G-local transition function fi is assigned. This function
depends only on the state of node i and those of the neighbors of vi in G. The inputs to function fi are the
state of vi, the states of the neighbors of vi, and the states of the edges outgoing from vi in G. Function
fi maps each combination of inputs to s′i ∈ U v for vi and to s′i j ∈ U e for each directed edge ei j. s′i is the
next state of node vi and s′i j is the next state of edge ei j. These functions are executed synchronously in
parallel at each time step t. The GDS model is equivalent to the data model in Subsection 2.1.

Connections between the data model and GDS. The abstract data model described in Section 2.1 and
partially defined in the Table 1 is consistent with a GDS. In each phase, the graph G(V ′,E ′) is equivalent
to the graph G(V,E) of the GDS. In the model, the nodes state space U v and the edges state space U e

are subsets of the node attributes Γ and the edge attributes Ψ. Attributes may have additional parameters
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that are not part of the node or edge state (i.e., name and description). Action tuples Tk may be part of the
state. Entity/agent actions, the network, and many other parameters are well defined.

2.3 Implementation of Modeling Cycle

We describe the modeling cycle detailed in Figure 1 to implement SEN experiments. To make scientific
modeling of SESs efficient, researchers use various heuristics at different hierarchical levels of a modeling
project (e.g. rephrasing the problem, drawing a system diagram, imaging themselves in the system,
identifying essential variables and small problems) (Grimm and Railsback 2005). Heuristics can be
powerful, but do not include the full cycle of tasks performed in developing and using models. Our
modeling cycle is based on formal models, and theoretical models while taking the semantics of social
experiments into account and largely focusing on providing a generic data schema. In a typical modeling
cycle, modeling is an iterative process. The cycle includes the different elements of model development,
model implementation, model evaluation, verification, and validation into a coherent framework. The idea
of iterative experiments and modeling can be operationalized in various ways. For example, in our cycle,
an abductive analysis will perform experiments first, then identify patterns in the experimental data, and
this information will be used to construct, validate, and modify models.

SEN experiments. SEN experiments are defined. These types of experiments offer researchers the
potential to understand coupled socio-environmental systems by allowing the testing of different hypotheses
related to socio-environmental behavior.

Abstract Data Model + Computational Model. The purpose of the data model for multi-dimensional
SENs, provided partially in Table 1, together with the computational model of GDS, is to provide formal
representations for experiments and MAS, and their iterative interactions.

Conceptual Data Model. The data model can be transformed into an entity-relationship diagram that
is a more typical representation for reasoning about software, for implementation purposes. The abstract
data model can be translated to customary forms of data models (e.g., UML) for software development. A
UML representation of an entity-relationship diagram for our abstract data model is presented in Figure 3.

Simulation Software Model. To progress from a conceptual data model to a software model, specifica-
tion, building, and execution of experiments and simulators of experiments must be programmed. The ideal
outcome after developing a GDS is that the complete dynamical behavior of the system is computed. For
dynamical systems of hundreds, thousands or billions of nodes, computationally intractable problems might
be addressed by computing forward trajectories (Adiga et al. 2018). The technical challenges of building
software systems to analyze SEN experiments include (i) the definition of abstractions that capture data
analytics and computation; (ii) identifying appropriate levels of abstraction for tasks, pipelines, and systems.
Our SEN experiments are complex, defined as multi-phased, multisubject, and multi-action. Because SEN
experiments can vary widely, depending on the phenomena being studied; they require more sophisticated
software, and a greater range in modeling functionality. Our formal model, with high-level abstractions,
provides a system more understandable and reusable helping to solve these abstraction problems. In a
software implementation, these custom analyses can be addressed at a task level within a pipeline, or at a
pipeline level with the addition of new pipelines. The case study in Section 3 provides a full theoretical
modeling cycle execution, for reducing weed control intensity experiments.

3 CASE STUDY

In this Section we demonstrate the versatility and wide applicability of the modeling cycle framework. We
present a full theoretical modeling and simulation cycle execution for experiments in real-field conditions
to foster agroecological transition.

A socio-environmental experiment to reduce the intensity of weed control: In Gaba and Bretagnolle
(2020), an experimental socio-environmental approach is presented, identifying management practices that
optimize multiple objectives in adaptive governance. The experiment highlights the interactions between
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Figure 3: The data model from Table 1 can be transformed into data models used in software development,
like this entity-relationship diagram in Unified Modeling Language (UML) notation.

environmental and social processes. A socio–environmental experiment is defined to investigate how to
reduce weed control in winter cereal fields. SEN dynamics are driven by human actions, in this case
through farming practices and landscape management. No two farmers cultivate their fields exactly the
same way, making these human actions diverse, resulting in a wide range of management strategies that
may interact differently with environmental processes. To transform data from these experiments and
model them, our framework provides a clear path. In this case, experiments are used to establish causal
links between patterns and processes. Each field or farm is an experimental unit interacting with a social
network. The management practices may be sowing a crop or reducing pesticides or nitrogen. Different
levels of changes in management practices are implemented in several plots from a unit, while the rest of
the plots use their standard practices as a control. Variables include biodiversity indicators (e.g. plants,
pollinators, and pest enemies), long-term and short-term crop yields, economic returns (e.g. fixed and
variable costs), ecological functions (e.g. soil properties), the farm infrastructure and the farmers’ practices,
and the benefits to different stakeholders (e.g. yields and other economic and cultural goods).

Abstract Data Model + Computational Model: Each experiment, exp_id, consists of three phases
np = 3 and two layers nl = 2. The number of unique nodes V over all phases in the experiment is n,
where V = {v1, ...,vn}. Layer 1 is composed of experimental plots, each one of 200 m2. Layer 2 defines
the farmers/cooperatives social networks. G(V ′,E ′) is the network that defines the connections within and
between the layers. The meaning of an edge is Λ = influence channel between pairs of nodes. Γi contains
variables for vi initial node attributes like costs. Each layer i has a set of actions Ai. The action set A1
in Phase 1 surveys, the weeds (a11), and harvested weeds (a12) and crop plants (a13) to estimate weed
biomass, crop yield and quality. The action set A2 in Phase 2 is related to decision-making by farmers and
defines pesticide (a21) and fertilizer use (a22), crop plating (a23), ploughing (a24), and weed control (a25).
Each agent can execute any action from the action set A2, such as herbicide use in a plot. The surveys’
action set A1 in Phase 3, allows comparing yields and gross margins between experimental treatments.
Figure 4 provides an illustrative example of data model elements, showing many of these variables, and
examples of action tuples in each phase.
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Figure 4: Elements of a partial data model on Table 1 developed for the experiment conducted in Gaba
and Bretagnolle (2020).

Conceptual Data Model: Table 2 partially details the experiments in (Gaba and Bretagnolle 2020)
with our data model. Schema definitions for the experiment, layer 1 and phase 1 are presented. Schema
definitions for Layer 2, Phase 2 and Phase 3 are not shown, but they follow the definition of our abstract
data model. We define one experiment with three independent phases. In the first phase, values are gathered
through a survey to farmers associated with specific plots (scientists measure parameters). In the second
phase, management practices are defined between the farmers and plots. In the third phase, values are
gathered again through a survey to farmers associated with specific plots to assess the effect of management
actions. This data model instance, coupled with a GDS formulation (section 2.2), allows the experiment
to be transformed into data models used in software development to automatize procedures. Our abstract
mathematical data model is more abstract in its use, it corresponds much more closely to the information
required for software design capabilities, and enables compact representations of simulation models. The
data model can be translated into a entity-relationship diagram in unified modeling language (UML) form.
Figure 3 illustrates that the abstract data model can be translated to customary forms of data models (e.g.,
UML) that are more amenable for software development.

Simulation Software Model: The objective of the experiment is to analyze the data using statistical
models to compare the results, and the conceptual data model allows this. Our model also allows the
definition of a simulation environment for the experiments. For example, for phase 2, we can define
the implementation of modeling and simulation, where there are 5 actions, and i and j represent the
actions ai and a j ∈ A. The experiment, layer and phase schemas in Table 2 show data structures that can
be translated into standard forms of data model, like an entity-relationship diagram in unified modeling
language (UML). Experimental data can be transformed, into a data common specification that conforms
to our data model. After this, with any programming language, we can define an Agent Based Model with
a transition probability matrix from one action a(t) = ai at time t to the next action a(t +1) = a j for each
node vi and a(t) ∈ A, where the probability πi j is given by Pr(a(t +1) = j|a(t) = i) with ∑

5
j=1 πi j = 1 . The

experiment can be defined in increments of days, weeks, or months, depending on the frequency of the
interviews to the participants, or data collection. Figure 5 shows the experiment in phase 2 modeled with
agents and a transition probability matrix for one action to the next action for each agent from actions set A.
An agent vi can execute an stochastic process driven by transition probability matrix P. The specification
of models, software and pipelines represents the Software Design, that our model facilitates. At the end
of the execution of a simulation software model, and with model outputs, a new set of experiments may

648



Cedeno-Mieles and Shafiee-Jood

Table 2: Experiments in Gaba and Bretagnolle (2020) defined partially with our data model.

# Parameters Description

Experiment Schema

1 L L = {l1, l2}, set of layers over all phases.

2 V V = {v1, . . . ,vn}, set of entities over all phases.

Layer Schema

1 l_id = 1 Unique id for layer.

2 ne Number of entities in the layer.

3 Ω Ω j = (ω j1,ω j2, . . . ,ω j,nsa), sequence of nsa attributes for v j ∈V .

4 H(V1,E1) Node set Vi = {v1, ...,vη} and edge set Ei = {e1, . . . ,em}.

5 λ λ = influence channel between entities.

6 Bv Bv
j = (plant j1,cost j2, property j3, ...), initial conditions for nodes.

7 A1 A1 = {weed_biomass,crop_yield,crop_quality}.

Phase Schema

1 ph_sch_id = 1 Id for phase schema.

2 inp = 1 Element of the sequence of phases of the experiment.

3 t_ph_begin Timestamp of phase beginning.

4 tp Number of time increments in the phase.

5 up = days Time unit of one time increment.

6 G(V ′,E ′) Node set V ′ = {v1, . . . ,vη}, and edge set E ′ = {e1, . . . ,em}.

7 λ ′ λ ′ = influence channel.

8 Γ Γ j(t) = (γ j1(t),γ j2(t), . . . ,γ j,ηv(t)) is the sequence of ηv attributes for v j ∈V ′.

9 δ e δ e
j = (yield,value, ...) initial conditions for edges between layers.

10 A = A1 A1 = {weed_biomass,crop_yield,crop_quality}.

11 T T1 = (1,a11,v2,v4, t,value). v2 measures v4 plot.

T2 = (1,a12,v2,v6, t,value). v2 measures v6 plot.

...

be defined and executed over many loops in a study. Figure 5 shows an example of a software pipeline
execution to transform raw experimental data from a mathematical model to a software model; here we
show this output in json files that represent the input files for any system in an specific programming
language (where models and simulations are defined), after simulations are performed, model results are
obtained through output files.

4 CONCLUSIONS AND FUTURE WORK

SENs have become a widely recognized approach to conceptualize and analyze the inter-dependencies
within the natural connection between social and environmental systems. However, the variety in how SENs
are conceptualized poses challenges for their application to different problems and research questions. This
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Figure 5: Example of a software pipeline execution to transform raw experimental data from different data
sources, into a data common specification.

work aims to develop a framework, supported by iterative experiments and modeling, for MAS in multi-
dimensional SENs. A formal abstract data model is provided to ensure an agreement between experiments,
modeling, and simulation. We introduce a modeling cycle for SEN experiments, highlighting how our
framework and cycle can serve as the foundation for a software platform to run coupled socio-environmental
behavioral experiments. A case study on fostering agroecological transitions demonstrates the practical
application of the modeling cycle and data model. Future work will focus on implementing a distributed
experimental platform for the design of MAS of SEN experiments using our cycle and framework.
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