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ABSTRACT 

This research presents a novel approach to spare parts inventory management by integrating real-time ma-
chine health data with dynamic, state-dependent inventory policies. Traditional static models overlook the 
evolving conditions of industrial machinery. Leveraging advanced digital technologies, such as those pio-
neered by Augury, our framework dynamically adjusts inventory levels, reducing costs and improving ser-
vice. Using Markov chain modeling, simulation, and industry collaboration, we demonstrate up to 29% cost 
savings with state-dependent policies over static base-stock models. Sensitivity analysis confirms the ro-
bustness of these strategies. 

1 INTRODUCTION 

Effective spare parts inventory management is essential for continuous industrial operations. This research 
introduces a dynamic framework that leverages real-time machine health data, surpassing static models 
with fixed failure rate assumptions. By integrating real-time analytics, it improves inventory policies, re-
ducing downtime and holding costs. Augury, a leader in machine health diagnostics, demonstrates how AI 
and IoT enable 24/7 monitoring for predictive maintenance, though these technologies remain underutilized 
in spare parts inventory management.  

This study focuses on developing and testing dynamic policies for systems comprised of several ma-
chines organized in workstations—pairs of identical machines operating in a standby protocol—with one 
or two replaceable parts, demonstrating how real-time data integration enhances inventory management. 
Our system incurs both inventory holding costs and penalty costs. Through Markov chain modeling and 
simulation, we report up to 29% cost reduction when using state-dependent ordering policies compared to 
static policies. Future research will extend this model to third-party logistics (3PL) scenarios, incorporating 
machine learning to enhance decision-making. 

The paper is organized as follows. It begins with the Literature review, followed by the Markov chain 
model introduction. A simulation study follows, followed by an extension to multiple component modeling, 
demonstrating the framework's scalability and broader applicability. 

 
2  LITERATURE REVIEW 
 

Our paper contributes to the literature on spare parts inventory management and the integration of machine 
health data, two important areas of research whose intersection has rarely been examined. We address this 
gap by leveraging live sensor data to model spare parts demand based on machine health state evolution 
within a Markov Decision Process (MDP) framework. 

Spare parts inventory management poses unique challenges due to high demand variability and severe 
consequences of stock-outs; spare parts can constitute on average up to 2.5% of the equipment purchase 
price annually over a 30-year lifecycle (Zhang and Zeng 2017). Capital goods spare parts often experience 
irregular demand dictated by the health of the machines. Addressing these challenges requires integrating 
inventory management with predictive analytics and condition monitoring to ensure system reliability 
(Pinciroli et al. 2023; Van der Auweraer et al. 2019). Technological advancements have enabled real-time 
spare parts optimization in multi-echelon supply chains. IoT and AI tools now allow for dynamic 
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programming and reinforcement learning to address uncertainty in parts needs and maintenance scheduling 
(Pinciroli et al. 2023). Industry 4.0 technologies such as predictive maintenance algorithms further enhance 
efficiency by reducing downtime and costs. However, practical applications remain limited, necessitating 
further research into their implementation (de Jonge and Scarf 2020). Despite these advancements, most 
current models are constrained by their reliance on static policies or simplified frameworks that do not fully 
exploit live machine health data for dynamic decision-making. This gap highlights the need for integrated 
models that dynamically adjust inventory policies based on real-time machine conditions. 

The integration of machine health monitoring with spare parts inventory management has emerged as 
a transformative approach for limiting production downtime and reducing costs (Kritzinger et al. 2018). 
Condition-Based Maintenance (CBM) uses real-time condition monitoring to trigger maintenance actions 
based on signs of degradation. This minimizes unnecessary interventions while improving machine relia-
bility. Remaining Useful Life (RUL) predictions further support preemptive maintenance actions like re-
pairing machines or ordering spare parts (Dendauw et al. 2021). The integration of CBM with inventory 
management controls stock levels by incorporating RUL predictions into decision-making processes. Poli-
cies like the critical level policy prioritize corrective over preventive maintenance by reserving inventory 
for urgent repairs (Dendauw et al. 2021). Joint optimization models, such as Markov decision processes, 
synchronize maintenance scheduling with spare parts provisioning at the system level. These approaches 
account for dependencies between components in multi-unit systems, enabling cost-effective strategies like 
condition-based opportunistic preventive maintenance during corrective actions (Olde Keizer MCA et al. 
2017; Zhang and Zeng 2017). While these studies illustrate the potential benefits of integrating CBM with 
inventory management, they often fall short of utilizing live sensor data to model machine health state 
evolution dynamically at the service of spare part inventory management. Filling this gap, our model uti-
lizes machine health data from sensors to design efficient spare parts dynamic ordering policies that signif-
icantly reduce operations costs.  

3 MODEL BUILDING  

We begin by detailing our Markov chain model, which is based on the manufacturing operations of an oil 
refinery. We build our Markov chain model in three stages: we start with a model of a single machine, and 
then we expand our model to encompass workstations, defined as pairs of identical machines operating 
under a cold standby protocol. This configuration enhances operational continuity and introduces interde-
pendencies between the active and standby machines. Next, we integrate these components into a system-
wide model that includes multiple workstations and spare parts inventory management and incurs costs that 
we wish to minimize. 

3.1 Machine 

Our research is based on a model for a single machine using a five-state Markov chain,  each state 
representing a distinct condition of the machine: (0) perfect condition, (1) needs monitoring, (2) needs 
adjustments, (3) imminent failure, and (4) failure. These states are mapped in a continuous time framework, 
reflecting real-world settings where machine conditions evolve over time. We define the state space of our 
continuous time Markov process to be 𝑅ெ = {0,1,2,3,4}.  
 Each machine's state transitions were parameterized using real data, capturing the practical dynamics 
observed in operational environments. As illustrated in Figure 1, a machine in a perfect state (state 0) can 
deteriorate, requiring monitoring and adjustments until it inevitably fails. Notably, not all transitions are 
possible. At any given time, a machine’s health can degrade from state 𝑖  to any state 𝑗  where 𝑗 > 𝑖 . 
Additionally, it can transition from state 𝑖 ∈ {1, 2} to state 𝑗 ∈ {0, 1} when 𝑗 <  𝑖  without requiring a 
spare part, possibly due to an adjustment or routine maintenance. A machine can only transition from state 
(3) to state (4) since no adjustments can improve the situation once a machine reaches state (3). Finally, a 
machine can only transition from state (4) to state (0), since a repaired machine returns to perfect condition. 
This transition requires a spare part, which will be incorporated into the model in Section 3.3. We assume 
that the transition times between states 𝑖 and 𝑗 follow an exponential distribution with rate (λ௜௝) for (𝑖 ≠
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𝑗). This rate depends on the machine's current state and its potential subsequent states. The possible 
transitions labeled with their rates are presented graphically in Figure 1. 

3.2 Workstation 

Building on the Markov chain model of a single machine introduced in the previous section, we define a 
second Markov chain model for a pair of identical machines following a cold standby protocol, with one 
machine operating actively while its counterpart remains idle, ready to take over operations if the first 
machine fails. We call this pair of machines a workstation. The workstation's dynamics, as illustrated in 
Figure 2, aim to maintain continuity of operations to the extent possible. The figure also illustrates interde-
pendencies between the active and standby machines. This system allows for a seamless switch in opera-
tions without downtime, since the idle machine, if operational, activates immediately if and only if the 
working machine fails. Both machines, when active, are subject to the same probabilistic transition dynam-
ics modeled by the machine Markov chain.  
 We represent the state of each workstation by an ordered pair (𝑖, 𝑗) denoting the state of the active 
machine 𝑖 followed by the state of the idle or failed machine 𝑗. The state (4,4), where both machines require 
repair, represent a total operational shutdown, which the system aims to avoid. Notably, the idle machines 
can only be in state 0 or state 4, and that states (4,0) and (0,4) denote the same situation since once the 
active machine fails the back-up machine takes over immediately. We define the state space of the Markov 
chain associated with a workstation as 
𝑅ௐ = {(0,0), (1,0), (2,0), (3,0), (0,4), (1,4), (2,4), (3,4), (4,4)}. The state transitions in the workstation 
setting and the rates at which they occur are illustrated in Figure 3, providing a comprehensive view of how 
workstations react to changes in machine states. Note that the transition rate from state (4,4) to state (0,4) 
is 2𝜆ସ଴ as both machines in the workstation are being repaired, even though only the first of the two being 
repaired is recorded in the next transition. We denote by  Λ  the transition rate matrix of our workstations' 
Markov chain, where each element Λ௜௝ for 𝑖 ≠ 𝑗 represents the transition rate of a workstation from state 𝑖 
to state 𝑗, and Λ௜௜ = − ∑ Λ௜௝௜ஷ௝ . The matrix Λ is a 9 × 9 square matrix, since the workstations can be in 
nine possible states.  

Figure 1: Transition rates for a single machine. 

Figure 2: Workstation dynamics. Figure 3: Workstation transition rates. 
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3.3 System 

Building on the workstation Markov chain model detailed earlier, we define a comprehensive Markov chain 
model for our system, including managing spare parts inventory under a static policy and integrating the 
dynamics of multiple workstations. We introduce the notation 𝑊, which represents the number of work-
stations in our system and 𝐼, which represents the on-hand spare parts inventory and, by convention, in-
cludes the spare parts currently being used to repair machines. In addition, 𝑛௜ represents the total number 
of machines, both working and idle, in state 𝑖  for all 𝑖 ∈ 𝑅ெ, and 𝑛(௜,௝), which represents the number of 
workstations in state (𝑖, 𝑗) for all (𝑖, 𝑗) ∈ 𝑅ௐ. Recall that 𝑅ௐ has nine elements. 
 We denote by 𝑟 the state of the system that is represented by the ordered ten tuple comprising the in-
ventory level and the number of workstations in each state. We denote by 𝐼௥ the inventory level when the 
system is in state 𝑟 and by 𝑛(௜,௝)

௥  the number of workstations in state (𝑖, 𝑗) when the system is in state 𝑟. 
That is, 𝑟 = ൫𝐼௥; 𝑛(଴,଴)

௥ , 𝑛(ଵ,଴)
௥ , 𝑛(ଶ,଴)

௥ , 𝑛(ଷ,଴)
௥ , 𝑛(଴,ସ)

௥ , 𝑛(ଵ,ସ)
௥ , 𝑛(ଶ,ସ)

௥ , 𝑛(ଷ,ସ)
௥ , 𝑛(ସ,ସ)

௥ ൯. For simplicity, we often refer 
to the elements of this ten tuple without the superscript 𝑟. We note that ∑ 𝑛(௜,௝)(௜,௝)∈ோೈ

= 𝑊. The state space 
of the system, denoted by 𝑅ௌ, encompasses all possible states of the system defined by these ten tuples, 
constrained by the total number of workstations and the inventory replenishment policy. 
 Initially, the system operates under a standard static base-stock policy and we denote the base-stock 
level by 𝑆. Additional inventory policies will be investigated in Section 4.4. Using base-stock policies im-
plies a maximum inventory level, denoted by 𝐼௠௔௫ which depends on the base-stock level 𝑆 as well as on 
the last five elements of system state 𝑟. For clarity, we introduce the notation 𝑟ᇱ that denotes the nine-tuple 
system state such that 𝑟 = (𝐼; 𝑟ᇱ) . Thus, we have that 𝐼௠௔௫

௥ᇲ
= 𝑆 + 𝑛(଴,ସ)

௥ᇲ
+ 𝑛(ଵ,ସ)

௥ᇲ
+ 𝑛(ଶ,ସ)

௥ᇲ
+ 𝑛(ଷ,ସ)

௥ᇲ
+

2𝑛(ସ,ସ)
௥ᇲ

. For convenience, we define by 𝑛௜
௥ᇲ

 the total number of machines in state 𝑖, both working and idle, 
when the system is in state 𝑟ᇱ. Thus 𝐼௠௔௫

௥ᇲ
= 𝑆 + 𝑛ସ

௥ᇲ
. Defining 𝑂௥ as the number of parts on order when the 

system is in state 𝑟, we have 𝑂௥ = 𝐼௠௔௫
௥ − 𝐼௥ = 𝑆 − 𝐼௥ᇲ

+ 𝑛ସ
௥ᇲ

.  
 When spare parts are limited and to help maintain workstation availability, machines are allocated spare 
parts according to a descending order of the state of the other machine at the workstation. That is, failed 
machines in workstations in state (4,4) will be given highest priority, failed machines in workstations in 
state (3,4) are at the next priority level and so on.  
 Our system continuous time Markov process is subject to three types of events:  

 
 Transition between states without using a spare part: A workstation can change states following the 

deterioration or adjustment of the working machine. The transition rate to the next event of this 
type is given by ൫𝑛(଴,଴) + 𝑛(଴,ସ)൯λ(0) + 𝑛ଵλ(1) + 𝑛ଶλ(2) + 𝑛ଷλ(3), where λ(𝑖) = ∑ λ௜௝௝ . 

 Machine repair: As explained above, machine repair is subject to the availability of spare parts. 
Each machine in state 4 is repaired at rate λସ଴ only if there is an available spare part for it. If there 
are no available spare parts for failed machines, their transition rates will be 0 until the arrival of a 
spare part. As such, the transition rate to the next event of this type is min{𝐼, 𝑛ସ}λସ଴. 

 Arrival of a spare part: Spare parts are supplied one at a time, with an exponential lead time and 
we denote by τ their average time of arrival i.e., the arrival rate of one spare part is 1/τ. The number 
of spare parts on order is (𝑂 = 𝑆 + 𝑛ସ − 𝐼). Thus, the arrival rate of the next spare part is 𝑂/𝜏. 
 

 When combining all the possible transition types, the total transition rate to the next event is equal to 
 

                               ൫𝑛(଴,଴) + 𝑛(଴,ସ)൯λ(0) + 𝑛ଵλ(1) + 𝑛ଶλ(2) + 𝑛ଷλ(3) + 𝑚𝑖𝑛{𝐼, 𝑛ସ}λସ଴ + 𝑂/τ.                 (1) 

3.4 Cost 

In this section, we detail the cost components that constitute the total yearly system cost in our spare parts 
inventory management model. We denote by 𝑝௥ the steady state probability of being in state 𝑟. Let X be 
the random variable representing the yearly cost of the system. The expected value of the yearly cost is 
𝐸[𝑋]. Our goal is to minimize the yearly expected cost 𝐸[𝑋] by identifying and implementing an effective 
spare parts replenishment policy.  The total yearly system cost is comprised of three components: 
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 The yearly inventory holding cost 𝑋௛ is incurred for holding spare parts in inventory that are not 

being used to repair a failed machine and is paid at a rate of ℎ dollars per unit per year. If all the 
spare parts on hand are being used to repair machines in state 4, then the system incurs a holding 
cost at a rate of 0. If, however, we have enough spare parts to repair all the machines in state 4, 
then at time 𝑡 the inventory cost is being incurred at a yearly rate of ℎ(𝐼௥ − 𝑛ସ

௥). Thus, the expected 
yearly inventory holding cost is given by 𝐸[𝑋௛] = ∑ ℎ(ூ,௥ᇲ)∈ோೄ

𝑝௥൫𝐼௥ − 𝑛ସ
௥ᇲ

൯
ା

. 
 The yearly major penalty cost 𝑋ெ arises when a workstation is in a complete failure state, leading 

to operational downtime. The penalty cost per workstation per unit time is denoted by 𝑀. The ex-
pected yearly major penalty cost 𝐸[𝑋ெ] is given by 𝐸[𝑋ெ] = ∑ 𝑀(ூ,௥ᇲ)∈ோೄ

𝑝௥𝑛(ସ,ସ)
௥ᇲ

. We note that 
part of this cost is unavoidable and we will exclude this unavoidable component from our objective 
function. 

 The yearly minor penalty cost  𝑋௠ is incurred when a machine fails and is not being repaired. This 
penalty cost per machine per unit time is denoted by 𝑚. This cost, which includes the stress on the 
system due to the temporary loss of redundancy, is generally much lower than the major penalty 
cost but much higher than the holding cost. The yearly expected minor penalty cost is given by 
𝐸[𝑋௠] = ∑  (ூ,௥ᇲ)∈ோೄ

𝑚𝑝௥൫𝑛ସ
௥ᇲ

− 𝐼௥൯
ା

. 
 

Recall that a yearly major penalty cost is incurred when a workstation is in a complete failure state. 
Part of this major penalty cost 𝑋ெ is unavoidable in the sense that even in a situation with unlimited spare 
parts, workstations still fail. We denote by 𝑀ௌ→∞ the expected yearly unavoidable major penalty cost, i.e., 
the major penalty cost with an infinite base-stock level. We determine the value of  𝑀ௌ→∞ by utilizing the 
stationary vector of the workstation Markov chain. When spare parts are always available, nothing is left 
to link the different workstations, thus a single system of 𝑊 workstations can be viewed as 𝑊 workstations 
operating independently. Using standard methods, we calculate the stationary probability of a workstation 
being in state (4,4) and denote it by π(ସ,ସ). Finally, to calculate 𝑀ௌ→∞—the long-term average yearly una-
voidable major penalty cost for the entire system—we multiply π(ସ,ସ) by the number of workstations in the 
system (𝑊) and the major penalty cost per unit time (𝑀): 𝑀ௌ→∞ = π(ସ,ସ)𝑊𝑀.  

We denote by 𝑋ெ
ᇱ  the yearly average avoidable major cost, that is  X୑

ᇱ = X୑ −  Mୗ→∞, and by 𝑋ᇱ the 
average yearly total cost excluding this expected yearly unavoidable major cost  𝑀ௌ→∞. As such the total 
yearly expected system cost 𝐸[𝑋ᇱ] is the sum of these three components: 

𝐸[𝑋ᇱ] = 𝐸[𝑋௛] + 𝐸[𝑋ெ
ᇱ ] + 𝐸[𝑋௠]. 

Our goal is to determine the spare parts ordering policy that will minimize 𝐸[𝑋ᇱ]. 
 
3.5       Determining the Ordering Policy 

 
If we could find the stationary distribution of the system Markov chain, then we would first determine the 
best base-stock level by evaluating the system cost for every reasonable base-stock level 𝑆. We would then 
look at dynamic policies of the type described below. These dynamic policies offer the potential to over-
come the rigidity of static approaches by adapting to system changes in real time. While this approach is 
computationally feasible for very small instances of our system, it becomes impractical for medium-sized 
instances due to the rapid growth of the state space which renders exact solutions computationally intrac-
table, as shown in Table 1. To address these limitations, we utilize simulation techniques. 

Table 1:State space size, |𝑅ௌ| for various values of 𝑊 and 𝑆. 
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4 SIMULATION STUDY 

In this section we detail our methodology and findings of the simulation process, aiming to evaluate various 
ordering policies. We begin by detailing the sequence of events in the simulation. We then define the re-
quired inputs, including both problem and simulation parameters, followed by a step-by-step explanation 
of the simulation procedure. We present the various policies tested—static, dynamic, and more complex 
rules—, with one approach achieving a notable 29% cost reduction. Finally, we describe sensitivity analysis 
we completed to assess the robustness of these results under varying conditions, ensuring the reliability and 
practical applicability of the findings. 

4.1 Order of Events 

The simulation order of events is as follows. (1) At the start of each cycle, a system state transition type 
and time is determined using the rates detailed earlier. (2) The system cost is updated based on the current 
state and the time that will pass until the transition. (3) The state of the system is updated. If a part arrives, 
the inventory is increased by one and the number of parts on-order is decreased by one; if a machine is 
repaired, the inventory is decreased by one and the number of workstations in each state is updated; if a 
machine deteriorates or improves, only the number of workstations in each state is updated. (4) Based on 
this updated system state, the new required stock level is determined, and as such the number of parts on 
order is updated. Following these updates, the system proceeds to the next state transition, marking the 
beginning of a new cycle. 

4.2 Simulation Input 

Before continuing to describe our simulation study, we specify the input parameters. We differentiate be-
tween problem parameters and simulation parameters. Later we discuss the sensitivity analysis performed 
on these problem parameters.  
 Simulation parameters: As discussed in the next section, we run the simulation for 𝑁 batches, all of 
equal duration, and this duration as well as the warm-up period duration are given in Table 2. 

Problem parameters: The problem parameters, as introduced in previous sections, are given in Table 2. 
Recall that Λ represents the workstation transition matrix. It is derived from a data set provided by Augury 
and is given below:  

 

4.3 Simulation Steps 

At each simulation step, given the current state, we generate a list of all possible events and calculate the 
total exponential rate to the next event, given by Equation (1). We then sample the time to the next event 
as an exponential random variable with this rate. Finally, we determine the next event using the roulette 
sampling method, a stochastic selection method where each option is chosen with a probability proportional 
to its relative weight (Muguruma 2014), and update the state accordingly, following which we decide 
whether to order more spare parts or not.  
 After the warm-up period, data collection begins using the batch means method.  Post simulation, we 
calculate the average yearly cost across all batches. For batch 𝑖, the average total yearly cost is denoted 𝑥௜. 

Table 2: Problem and simulation parameters. 
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We define 𝑋ത as the average yearly cost across all batches. We also calculate the sample standard deviation 
σ௫ as well as the standard error of the mean σ௑ത . In addition, we define 𝑋ത௛, 𝑋ത′ெ and 𝑋ത௠, respectively, as 
the average yearly inventory, major and minor costs across all batches. 

4.4 Simulation Investigation 

In this section we explore inventory management policies aimed at minimizing total costs in a dynamic 
production environment. We first analyze static base-stock policies, followed by state-dependent dynamic 
policies, which adapt inventory levels in real-time based on system conditions and achieve significant cost 
reductions compared to static policies. Finally, we introduce more complex dynamic policies that incorpo-
rate proactive adjustments while addressing practical constraints like order cancellation and more than dou-
ble the cost savings achieved by simpler dynamic strategies. Through simulation, we assess the effective-
ness of these approaches and their potential for improved cost efficiency and operational responsiveness. 

4.4.1 Calculation of Unavoidable Cost Through Simulation 

As explained earlier, there is a certain proportion of our expected annual major penalty cost 𝐸[𝑋ெ], that we 
denote by 𝑀ௌ→∞, that will be incurred even with unlimited inventory, and it can be evaluated by using the 
steady-state probability vector of our workstation Markov chain model. Solving the system of equations 
described in Section 4.4.5. with the problem instance defined above, we find that 𝑀ௌ→∞ = 19.87/year. 
We corroborate this result by running our simulation for a very large value of 𝑆. For example, for 𝑆 =
100,000 we find an average yearly major penalty cost 𝑋തெ across all batches of $20.37 with a $2.75 stand-
ard error. This finding is in line with the value of 𝑀ௌ→∞ computed analytically, a simple statistical test—
one-sided t-test—confirmed. 
 We evaluate policies' effectiveness by comparing their cost after deducting this unavoidable expected 
yearly major penalty cost 𝑀ௌ→∞ from the average yearly major penalty cost 𝑋തெ. We note that due to the 
randomness of our simulation, when scenarios present a very low amount of downtime, we might observe 
a small negative average yearly avoidable major penalty cost 𝑋തெ − 𝑀ௌ→∞. We opted to display this small 
negative amount in the subsequent result tables for transparency. We denote by 𝑋തெ

ᇱ  the average yearly 
avoidable major cost, that is  𝑋തெ

ᇱ = 𝑋തெ − 𝑀ௌ→∞, and by 𝑋തᇱ the average yearly total cost excluding this 
expected yearly unavoidable major cost 𝑀ௌ→∞: 𝑋തᇱ = 𝑋ത௛ + 𝑋ത௠ + 𝑋തெ − 𝑀ௌ→∞ = 𝑋ത௛ + 𝑋ത௠ + 𝑋തெ

ᇱ .   

4.4.2 Static Policies 

We start by testing static base-stock policies to determine which value of the base-stock level 𝑆 would lead 
to the lowest average yearly total cost. Table 3 presents the results of these static policies. We note that the 
average yearly major and minor penalty costs are both monotonically decreasing in 𝑆 while the average 
yearly inventory holding cost is monotonically increasing in 𝑆. Balance is achieved at the optimal base-
stock level denoted by 𝑆∗ = 3. This intermediate base-stock level strikes the best balance between mini-
mizing penalties and managing inventory holding costs. We also note that beyond 𝑆∗, the average yearly 
inventory holding cost increases by ℎ for every unit added to the base-stock level 𝑆, since it is rarely needed 
to repair failed machines. From now on, for this problem instance, we use a static policy with 𝑆∗ = 3 and 
average yearly total cost 𝑋തᇱ = 33.61 as our baseline, and we test various dynamic policies against this 
baseline.  

Table 3: Static policy results for base-case. 
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One advantage of having information regarding machine health is that it allows us to make decisions in real 
time according to the actual system state. Unlike the static policy, a dynamic policy can alternate between 
different order-up-to levels according to the current system state—maintaining enough inventory to avoid 
paying penalty costs yet not over-stocking. 

 4.4.3 State-Dependent Dynamic Policies 

We tested several dynamic policies, in which order-up-to quantities are determined as a function of the 
system state 𝑟ᇱ see Kaufman (2023) for details. We introduce the notation 𝑆௥ᇲ

 which denotes a state-de-
pendent base-stock level that can deviate up or down from the optimal static policy according to the system 
state, using the base-stock level 𝑆∗ as a starting point. That is, for the optimal static policy, 𝑆௥ᇲ

= 𝑆∗ for all 
𝑟ᇱ. For example, dynamic policy #1 increases the base-stock level based on the number of machines in state 
3, allowing for a more responsive inventory system that adapts to changes in machine conditions, that is 
𝑆௥ᇲ

= 𝑆∗ + ඃ𝑛ଷ
௥ᇲ

/2ඇ, where ⌈𝑥⌉ = min{ 𝑛 ∈ ℤ: 𝑛 ≥ 𝑥}. Recall that the static policy already orders spare 
parts for any machine in state 4. All the dynamic policies we investigated through simulation are given in 
the Table 4, together with the simulation results. 
 Dynamic policy #1 surpasses the static approach by 12.2%. Using a one-sided t-test we verify that this 
result is statistically significant (with a p-value less than 0.05). Overall, the most effective dynamic policies 
feature adaptive mechanisms that fine-tune inventory levels in response to operational fluctuations, thereby 
reducing the average yearly total cost. 
 We note that up to now, the only dynamic policies developed and tested were those that do not cause 
order cancellation. For example, in Dynamic Rule #2 we have 𝑆௥ᇲ

= 𝑆∗ + 𝑛ଷ
௥ᇲ

 so when a machine in state 
4 in a workstation in state (3,4) is repaired, 𝑛ଷ

௥ᇲ
 remains unchanged and so does 𝑆௥ᇲ

. However, because of 
this constraint, we observe that even the best of these dynamic policies (#1) lead to excess inventory when 
machines do not fail for long periods. To design more efficient policies, we decided to open our study to 
ordering policies that would, without any added mechanism, allow order cancellation, and we implement a 
no-order cancellation mechanism, as explained next.  

4.4.4 More Complex Dynamic Policies: 

 
Building upon the insights derived from the previously discussed Dynamic Rules results, we developed a 
more advanced set of dynamic rules. In this section, we outline the components of these newly formulated 
rules and present an analysis of the simulation outcomes when they are implemented in our system. 
 In our new rules we use a different decision variable. Up to now, the various ordering policies deter-
mined the base-stock levels, 𝑆௥ᇲ

, based on the current state. We now use the number of parts on order 𝑂 as 
our decision variable. We also define the desired quantity of spare parts to order, denoted as 𝑂෠, which plays 
a crucial role in the implementation of our no-order cancellation mechanism. We note that in certain situa-
tions, for example when a single workstation is in state (4,4) (𝑛(ସ,ସ)

௥ᇲ
= 1) and there are no spare parts in 

inventory (𝐼௥ = 0), one might decide to order a large quantity of spare parts to maximize the chances of 
receiving one quickly, only to cancel the remaining orders for spare parts once one arrives, thereby saving 
on inventory holding costs. However, this scenario is unrealistic, as suppliers would be unable to depend 
on orders. We therefore restrict ourselves to policies that do not cancel orders, by setting the new number 
of parts on order to be the maximum between the current number of parts on order and the desired number 
of parts to order 𝑂෠. With this added mechanism, we update step (4) of the simulation order of events as 
follows: (4’) based on the updated system state, the desired number of parts to order is updated. If this 
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desired number of parts to order is greater than the outstanding number of parts on order, then the number 
of parts on order is increased accordingly. Otherwise, the number of parts on order is unchanged.  
 We define Lack (𝐿) as the number of spare parts needed to cover all machines in states 3 or 4, and 
Excess (𝐸) as the surplus inventory beyond this requirement, that it 𝐿 = max(𝑛ଷ + 𝑛ସ − 𝐼, 0) and 𝐸 =
max(0, 𝐼 − 𝑛ଷ − 𝑛ସ). When 𝐸 = 𝐿 = 0, the inventory is perfectly aligned with the number of machines in 
states 3 and 4.  When 𝐿 > 0, additional spare parts are required and we are willing to risk added inventory 
costs by ordering more parts than required, reducing lead time and increasing the chance of parts arrival 
before failures occur. However, when 𝐸 > 0, there is an excess of 𝐸 parts beyond short-term needs and we 
ideally wish to order less parts. We introduce ℓ and 𝑒, adjustable parameters that give a weight to, respec-
tively, 𝐿 and 𝐸. The desired order quantity 𝑂෠, is then given by 𝑂෠ = 𝑆 + ℓ𝐿 − 𝑒𝐸. Such policies are de-
signed to ensure that orders are appropriately adjusted to reflect shortfalls or excesses, while also ensuring 
that orders, once placed, do not get canceled.  

We tested these policies for various values of 𝑆, 𝑒 and ℓ on our simulation model and compiled the 
results in Table 5. We observe that the average yearly total cost is lower for (𝑒, ℓ) policies using 𝑆 = 3 as 
a basis. Table 6 summarizes results for various values of 𝑒 and ℓ with the base case  𝑆 = 3. The results 
demonstrate significant enhancements in managing the spare parts inventory by reducing unnecessary stock 
levels, enhancing response times to machine failures, and ultimately decreasing overall operational costs. 
The most effective configuration was identified as 𝑆 = 3, 𝑒 = 2 and ℓ = 3 which balances inventory, min-
imizing average yearly costs and ensuring availability for necessary repairs, achieving 29.1% reduction in 
average yearly total cost when compared to our baseline static policy. These findings highlight the need for 
adaptable inventory policies to meet dynamic production demands. The simulations offer key insights into 
policy effectiveness, guiding more efficient inventory strategies. 

 

 
 

Table 4: Dynamic rules and simulation results. 

Table 5: Summary of 𝑋ത′ for various 
values of 𝑆, 𝑒 and ℓ. 

Table 6:Top non-Markovian dynamic policies results for 
base-case 𝑆 =  3. 

 

554



Kruman, Kaufman, and Herer 

 

4.4.5 Sensitivity Analysis 

 
We now apply the same methodology across different scenarios to evaluate the robustness of our method-
ology. We selected five scenarios to provide a balanced representation of different system characteristics, 
chosen to encompass a wide range of system sizes, lead times, and levels of penalty costs, ensuring a com-
prehensive analysis across diverse operational conditions. Unless otherwise specified, the problem param-
eters are as stated in Table 2. The simulation parameters are unchanged. For each scenario, we first ran our 
simulation under the standard base-stock policies with various values of our base-stock level 𝑆, 𝑆∗. We then 
ran the same dynamic policies as with our base case scenario, using 𝑆∗ for each scenario, and finally tested 
the more complex dynamic policies to find the optimal vales for 𝑒 and ℓ. We summarize the parameters of 
our five alternative scenarios and sensitivity analysis results in Table 7. 
 The results of the sensitivity analysis demonstrate that the more complex policy with 𝑒 = 2 and ℓ = 3 
consistently outperforms both base-stock policies and the basic dynamic policies. Across all tested scenar-
ios, the (2,3) policy exhibits significantly higher efficiency, highlighting its robustness and effectiveness in 
managing varying conditions compared to the simpler alternative approaches.  

 
5. EXTENSION TO MULTIPLE-COMPONENT MODELING 

 
In this section, we extend our model to handle multiple independent components, introducing a capacity 
constraint and adapting the cost structure accordingly, allowing us to analyze more realistic scenarios. 
 We extend our model to include 𝐾 types of spare parts. We add superscript (𝑘) to refer to component 
𝑘 when modeling multi-components systems. For example, 𝑆(௞) is the base-stock level for component 𝑘. 
We introduce a storage constraint that takes into consideration a limited resource at the facility. This con-
straint only applies to spare parts that are not assigned to already failed machines. We denote by 𝑆௠௔௫ the 
maximum number of spare parts of all types that can be stored in inventory at any time: 
∑ ቀ𝑂(௞) + 𝐼(௞) − 𝑛ସ

(௞)
ቁ௄

௞ୀଵ ≤  𝑆௠௔௫. The incurred yearly total system cost can be written as: 𝑋ᇱ =
∑ ቀ𝑋௛

(௞)
+ 𝑋ெ

ᇱ(௞)
+ 𝑋௠

(௞)
ቁ௄

௞ୀଵ . As in the one-part model described earlier, the expected yearly total system 
cost, that we look to minimize, is given by:  
 
 
 

 
  
 
 
 
 
 
 
 

Table 5: Summary of alternative scenarios and results. 

555



Kruman, Kaufman, and Herer 

 

The overall optimization model can be formulated as follows:  
 

min 𝔼[𝑋ᇱ] 
 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ ቀ𝑂(௞) + 𝐼(௞) − 𝑛ସ
(௞)

ቁ௄
௞ୀଵ ≤  𝑆௠௔௫  

 
 When the storage constraint is active, we need to ensure we first order the most critically needed spare 
parts. We do so by comparing the criticality level of each type of spare parts. There are various ways to 
represent the criticality level and for this first exploration of the 𝐾-part model we define it as the difference 
between the number of machines in state 4 and the level of on-hand inventory—excluding spare parts as-
signed to already failed machines. If we have enough inventory to fix all the machines in state 4, we set the 
criticality level to 0. We denote as 𝑐(௞)  the criticality level of type 𝑘  spare part, that is, 𝑐(௞) =
max ቀ0, 𝑛ସ

(௞)
− 𝐼(௞)ቁ. This criticality rule is a simple one and does not take into consideration the state of 

the machine's workstation. We use it here to verify that our methodology works in the multi-part model, 
and we will explore more complex criticality rules in the future.  
 The order of events for the 𝐾-part model is as follows. Steps (1) through (4) remain unchanged. If we 
can update all the number of parts on order without going over 𝑆௠௔௫, we do so. If not, we order in decreas-
ing criticality level. In case of a criticality level tie between two or more spare parts, we choose randomly 
which part to order next. Following these updates, the system proceeds to the next state transition, marking 
the beginning of a new cycle.  
 In our simulation we focused on systems with two (𝐾 = 2) independent components. Our system is 
composed of 𝑊(ଵ) workstations with machines depending on spare parts of type 1 and 𝑊(ଶ) workstations 
with machines depending on spare parts of type 2. System parameters for spare parts of type 1 and spare 
parts of type 2 are set to be the same as for the one-part model described earlier. We employ the same 
methodology as for the one-part model: we already know that the optimal base-stock level for static policies 
is 𝑆∗ = 3. As such we decide to run the simulation with an inventory constraint 𝑆௠௔௫ = 5 so that the joint 
constraint is active even in the optimal static policy.  We first run the simulation with the static policy to 
which we add both the constraint and criticality-based allocation mechanism. We then run the simulation 
with the same Markovian dynamic rules as with the one-part model, again integrated with our constraint 
and allocation mechanism. Finally, we test the (𝑒, ℓ) dynamic policy with 𝑒 = 2 and ℓ = 3. The results of 
these simulations are given in Table 8. We note that, as for the one-part model, the more complex (𝑒, ℓ) 
rule results in the greatest savings, with an average yearly total cost 26.40% lower than with the static 
policy.  

 

 
CONCLUSION 
 
This paper highlights the potential of integrating advanced inventory management with machine health 
monitoring for spare parts provisioning. Future research will explore more complex systems, including 
multiple identical or varied parts and interdependent components managed across multiple locations by a 
3PL. Machine learning could further enhance predictive capabilities, enabling adaptive policies for real-
time decision-making. These advancements support robust, scalable inventory frameworks applicable 

Table 8: Top Policies Results for 2-Parts Model for 𝑆௠௔௫ =5. 
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across diverse contexts. Addressing these challenges will lay the groundwork for innovative solutions that 
enhance operational efficiency and resilience in complex industrial environments. 
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