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ABSTRACT

This research presents a novel approach to spare parts inventory management by integrating real-time ma-
chine health data with dynamic, state-dependent inventory policies. Traditional static models overlook the
evolving conditions of industrial machinery. Leveraging advanced digital technologies, such as those pio-
neered by Augury, our framework dynamically adjusts inventory levels, reducing costs and improving ser-
vice. Using Markov chain modeling, simulation, and industry collaboration, we demonstrate up to 29% cost
savings with state-dependent policies over static base-stock models. Sensitivity analysis confirms the ro-
bustness of these strategies.

1 INTRODUCTION

Effective spare parts inventory management is essential for continuous industrial operations. This research
introduces a dynamic framework that leverages real-time machine health data, surpassing static models
with fixed failure rate assumptions. By integrating real-time analytics, it improves inventory policies, re-
ducing downtime and holding costs. Augury, a leader in machine health diagnostics, demonstrates how Al
and IoT enable 24/7 monitoring for predictive maintenance, though these technologies remain underutilized
in spare parts inventory management.

This study focuses on developing and testing dynamic policies for systems comprised of several ma-
chines organized in workstations—pairs of identical machines operating in a standby protocol—with one
or two replaceable parts, demonstrating how real-time data integration enhances inventory management.
Our system incurs both inventory holding costs and penalty costs. Through Markov chain modeling and
simulation, we report up to 29% cost reduction when using state-dependent ordering policies compared to
static policies. Future research will extend this model to third-party logistics (3PL) scenarios, incorporating
machine learning to enhance decision-making.

The paper is organized as follows. It begins with the Literature review, followed by the Markov chain
model introduction. A simulation study follows, followed by an extension to multiple component modeling,
demonstrating the framework's scalability and broader applicability.

2 LITERATURE REVIEW

Our paper contributes to the literature on spare parts inventory management and the integration of machine
health data, two important areas of research whose intersection has rarely been examined. We address this
gap by leveraging live sensor data to model spare parts demand based on machine health state evolution
within a Markov Decision Process (MDP) framework.

Spare parts inventory management poses unique challenges due to high demand variability and severe
consequences of stock-outs; spare parts can constitute on average up to 2.5% of the equipment purchase
price annually over a 30-year lifecycle (Zhang and Zeng 2017). Capital goods spare parts often experience
irregular demand dictated by the health of the machines. Addressing these challenges requires integrating
inventory management with predictive analytics and condition monitoring to ensure system reliability
(Pinciroli et al. 2023; Van der Auweraer et al. 2019). Technological advancements have enabled real-time
spare parts optimization in multi-echelon supply chains. IoT and Al tools now allow for dynamic
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programming and reinforcement learning to address uncertainty in parts needs and maintenance scheduling
(Pinciroli et al. 2023). Industry 4.0 technologies such as predictive maintenance algorithms further enhance
efficiency by reducing downtime and costs. However, practical applications remain limited, necessitating
further research into their implementation (de Jonge and Scarf 2020). Despite these advancements, most
current models are constrained by their reliance on static policies or simplified frameworks that do not fully
exploit live machine health data for dynamic decision-making. This gap highlights the need for integrated
models that dynamically adjust inventory policies based on real-time machine conditions.

The integration of machine health monitoring with spare parts inventory management has emerged as
a transformative approach for limiting production downtime and reducing costs (Kritzinger et al. 2018).
Condition-Based Maintenance (CBM) uses real-time condition monitoring to trigger maintenance actions
based on signs of degradation. This minimizes unnecessary interventions while improving machine relia-
bility. Remaining Useful Life (RUL) predictions further support preemptive maintenance actions like re-
pairing machines or ordering spare parts (Dendauw et al. 2021). The integration of CBM with inventory
management controls stock levels by incorporating RUL predictions into decision-making processes. Poli-
cies like the critical level policy prioritize corrective over preventive maintenance by reserving inventory
for urgent repairs (Dendauw et al. 2021). Joint optimization models, such as Markov decision processes,
synchronize maintenance scheduling with spare parts provisioning at the system level. These approaches
account for dependencies between components in multi-unit systems, enabling cost-effective strategies like
condition-based opportunistic preventive maintenance during corrective actions (Olde Keizer MCA et al.
2017; Zhang and Zeng 2017). While these studies illustrate the potential benefits of integrating CBM with
inventory management, they often fall short of utilizing live sensor data to model machine health state
evolution dynamically at the service of spare part inventory management. Filling this gap, our model uti-
lizes machine health data from sensors to design efficient spare parts dynamic ordering policies that signif-
icantly reduce operations costs.

3 MODEL BUILDING

We begin by detailing our Markov chain model, which is based on the manufacturing operations of an oil
refinery. We build our Markov chain model in three stages: we start with a model of a single machine, and
then we expand our model to encompass workstations, defined as pairs of identical machines operating
under a cold standby protocol. This configuration enhances operational continuity and introduces interde-
pendencies between the active and standby machines. Next, we integrate these components into a system-
wide model that includes multiple workstations and spare parts inventory management and incurs costs that
we wish to minimize.

3.1 Machine

Our research is based on a model for a single machine using a five-state Markov chain, each state
representing a distinct condition of the machine: (0) perfect condition, (1) needs monitoring, (2) needs
adjustments, (3) imminent failure, and (4) failure. These states are mapped in a continuous time framework,
reflecting real-world settings where machine conditions evolve over time. We define the state space of our
continuous time Markov process to be Ry, = {0,1,2,3,4}.

Each machine's state transitions were parameterized using real data, capturing the practical dynamics
observed in operational environments. As illustrated in Figure 1, a machine in a perfect state (state 0) can
deteriorate, requiring monitoring and adjustments until it inevitably fails. Notably, not all transitions are
possible. At any given time, a machine’s health can degrade from state i to any state j where j > i.
Additionally, it can transition from state i € {1,2} to state j € {0,1} when j < i without requiring a
spare part, possibly due to an adjustment or routine maintenance. A machine can only transition from state
(3) to state (4) since no adjustments can improve the situation once a machine reaches state (3). Finally, a
machine can only transition from state (4) to state (0), since a repaired machine returns to perfect condition.
This transition requires a spare part, which will be incorporated into the model in Section 3.3. We assume
that the transition times between states i and j follow an exponential distribution with rate (A;;) for (i #

547



Kruman, Kaufman, and Herer

State 0 State 1 State 2 State 3 State 4

§0

ojelelolo
LEEE

A Asq

Figure 1: Transition rates for a single machine.

j). This rate depends on the machine's current state and its potential subsequent states. The possible
transitions labeled with their rates are presented graphically in Figure 1.

3.2 Workstation

Building on the Markov chain model of a single machine introduced in the previous section, we define a
second Markov chain model for a pair of identical machines following a cold standby protocol, with one
machine operating actively while its counterpart remains idle, ready to take over operations if the first
machine fails. We call this pair of machines a workstation. The workstation's dynamics, as illustrated in
Figure 2, aim to maintain continuity of operations to the extent possible. The figure also illustrates interde-
pendencies between the active and standby machines. This system allows for a seamless switch in opera-
tions without downtime, since the idle machine, if operational, activates immediately if and only if the
working machine fails. Both machines, when active, are subject to the same probabilistic transition dynam-
ics modeled by the machine Markov chain.

We represent the state of each workstation by an ordered pair (i, j) denoting the state of the active
machine i followed by the state of the idle or failed machine j. The state (4,4), where both machines require
repair, represent a total operational shutdown, which the system aims to avoid. Notably, the idle machines
can only be in state O or state 4, and that states (4,0) and (0,4) denote the same situation since once the
active machine fails the back-up machine takes over immediately. We define the state space of the Markov
chain associated with a workstation as
Ry, = {(0,0),(1,0),(2,0),(3,0),(0,4),(1,4),(2,4),(3,4),(4,4)}. The state transitions in the workstation
setting and the rates at which they occur are illustrated in Figure 3, providing a comprehensive view of how
workstations react to changes in machine states. Note that the transition rate from state (4,4) to state (0,4)
is 2149 as both machines in the workstation are being repaired, even though only the first of the two being
repaired is recorded in the next transition. We denote by A the transition rate matrix of our workstations'
Markov chain, where each element A;; for i # j represents the transition rate of a workstation from state i
to state j, and Ay; = — X;5; A;;. The matrix Ais a9 X 9 square matrix, since the workstations can be in
nine possible states.
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Figure 2: Workstation dynamics. Figure 3: Workstation transition rates.
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3.3 System

Building on the workstation Markov chain model detailed earlier, we define a comprehensive Markov chain
model for our system, including managing spare parts inventory under a static policy and integrating the
dynamics of multiple workstations. We introduce the notation W, which represents the number of work-
stations in our system and /, which represents the on-hand spare parts inventory and, by convention, in-
cludes the spare parts currently being used to repair machines. In addition, n; represents the total number
of machines, both working and idle, in state i for all i € Ry, and n; j), which represents the number of
workstations in state (i, j) for all (i,j) € Ry,. Recall that Ry, has nine elements.

We denote by r the state of the system that is represented by the ordered ten tuple comprising the in-
ventory level and the number of workstations in each state. We denote by I” the inventory level when the
system is in state r and by n(l ;) the number of workstations in state (i,j) when the system is in state 7.
That is, 7 = (I"; s 10,00 {10 H2,0) TH(3,0)» TH{0.4)> n(l 4 (2.4 (3.4 T 44)) For simplicity, we often refer
to the elements of this ten tuple without the superscript 7. We note that ),(; jyer,, (i, j) = W. The state space
of the system, denoted by Rg, encompasses all possible states of the system defined by these ten tuples,
constrained by the total number of workstations and the inventory replenishment policy.

Initially, the system operates under a standard static base-stock policy and we denote the base-stock
level by S. Additional inventory policies will be investigated in Section 4.4. Using base-stock policies im-
plies a maximum inventory level, denoted by I,,,,, which depends on the base stock level S as well as on
the last five elements of system state r. For clarity, we 1ntroduc,e the notation r’ that denotes the nine-tuple
system state such that r = ([;7'). Thu,s we have that [, =S + n(o ot n(l ot n(z ot NGyt
Zn(4 4)- For convenience, We define by n] the total number of machines in state i, both working and idle,
when the system is in state r'. Thus Dhax = S + n4 Deﬁmng 0" as the number of parts on order when the
system is in state r, we have 0" = I}, — " =S —1" +nj .

When spare parts are limited and to help maintain workstation availability, machines are allocated spare
parts according to a descending order of the state of the other machine at the workstation. That is, failed
machines in workstations in state (4,4) will be given highest priority, failed machines in workstations in
state (3,4) are at the next priority level and so on.

Our system continuous time Markov process is subject to three types of events:

e Transition between states without using a spare part: A workstation can change states following the
deterioration or adjustment of the working machine. The transition rate to the next event of this
type is given by (n(o,o) + n(0’4))?\(0) + n;A(1) + n,A(2) + ngA(3), where A(D) = X A;5.

e Machine repair: As explained above, machine repair is subject to the availability of spare parts.
Each machine in state 4 is repaired at rate A4, only if there is an available spare part for it. If there
are no available spare parts for failed machines, their transition rates will be 0 until the arrival of a
spare part. As such, the transition rate to the next event of this type is min{/, n,}A,,.

e Arrival of a spare part: Spare parts are supplied one at a time, with an exponential lead time and
we denote by T their average time of arrival i.e., the arrival rate of one spare part is 1/t. The number
of spare parts on order is (O = S + n, — I). Thus, the arrival rate of the next spare part is 0/7.

When combining all the possible transition types, the total transition rate to the next event is equal to
(n(0,0) + M(0.4) )A0) + 13 A(1) + nuA(2) + n3A(3) + min{l, ny}yo + O/7. (1)

34 Cost

In this section, we detail the cost components that constitute the total yearly system cost in our spare parts
inventory management model. We denote by p,. the steady state probability of being in state r. Let X be
the random variable representing the yearly cost of the system. The expected value of the yearly cost is
E[X]. Our goal is to minimize the yearly expected cost E[X] by identifying and implementing an effective
spare parts replenishment policy. The total yearly system cost is comprised of three components:
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e The yearly inventory holding cost X}, is incurred for holding spare parts in inventory that are not
being used to repair a failed machine and is paid at a rate of h dollars per unit per year. If all the
spare parts on hand are being used to repair machines in state 4, then the system incurs a holding
cost at a rate of 0. If, however, we have enough spare parts to repair all the machines in state 4,
then at time t the inventory cost is being incurred at a yearly rate of h(I" — ng). Thus, the expected
yearly inventory holding cost is given by E[X,] = X1 r)erg h Dr (I"=n}) .

e The yearly major penalty cost X, arises when a workstation is in a complete failure state, leading
to operational downtime. The penalty cost per workstation per unit time is denoted by M. The ex-
pected yearly major penalty cost E[X),] is given by E[Xy] = X1 ,1erg M Pr1(y,q)- We note that
part of this cost is unavoidable and we will exclude this unavoidable component from our objective
function.

e The yearly minor penalty cost X,, is incurred when a machine fails and is not being repaired. This
penalty cost per machine per unit time is denoted by m. This cost, which includes the stress on the
system due to the temporary loss of redundancy, is generally much lower than the major penalty
cost but much higher than the holding cost. The yearly expected minor penalty cost is given by

E[Xm] =Z(1,r’)ER5 mPr("Z _Ir) .

Recall that a yearly major penalty cost is incurred when a workstation is in a complete failure state.
Part of this major penalty cost Xj, is unavoidable in the sense that even in a situation with unlimited spare
parts, workstations still fail. We denote by Ms_, the expected yearly unavoidable major penalty cost, i.e.,
the major penalty cost with an infinite base-stock level. We determine the value of Ms_ .. by utilizing the
stationary vector of the workstation Markov chain. When spare parts are always available, nothing is left
to link the different workstations, thus a single system of W workstations can be viewed as W workstations
operating independently. Using standard methods, we calculate the stationary probability of a workstation
being in state (4,4) and denote it by Tt(4 4y. Finally, to calculate Mg_,..—the long-term average yearly una-
voidable major penalty cost for the entire system—we multiply T, 4) by the number of workstations in the
system (W) and the major penalty cost per unit time (M): Mg_,co = T4 o)W M.

We denote by X}, the yearly average avoidable major cost, that is Xy, = Xy — Mg_, and by X' the
average yearly total cost excluding this expected yearly unavoidable major cost Ms_,... As such the total
yearly expected system cost E[X'] is the sum of these three components:

E[X'] = E[X,] + E[Xy] + E[X,,,].
Our goal is to determine the spare parts ordering policy that will minimize E[X'].

3.5 Determining the Ordering Policy

If we could find the stationary distribution of the system Markov chain, then we would first determine the
best base-stock level by evaluating the system cost for every reasonable base-stock level S. We would then
look at dynamic policies of the type described below. These dynamic policies offer the potential to over-
come the rigidity of static approaches by adapting to system changes in real time. While this approach is
computationally feasible for very small instances of our system, it becomes impractical for medium-sized
instances due to the rapid growth of the state space which renders exact solutions computationally intrac-
table, as shown in Table 1. To address these limitations, we utilize simulation techniques.

Table 1:State space size, |Rg| for various values of W and S.

S=0 S=1 S =2 S =4 S=8 S =16
W =4 1,815 2,310 2,805 3,795 5,775 9,735
W =38 81,510 94,380 107,250 132,990 184,470 287,430
W =16 | 8,580,495 9,315,966 10,051,437 11,522,379 14,464,263 20,348,031
W=32| 1.72x10° 1.79x10° 1.87x10° 2.03x10° 2.33x10° 2.95x 10°
W =64 | 523 x 1011 5.35 x 10'' 547 x 10'* 571 x 10'*  6.18 x 101 7.14 x 10!
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4 SIMULATION STUDY

In this section we detail our methodology and findings of the simulation process, aiming to evaluate various
ordering policies. We begin by detailing the sequence of events in the simulation. We then define the re-
quired inputs, including both problem and simulation parameters, followed by a step-by-step explanation
of the simulation procedure. We present the various policies tested—static, dynamic, and more complex
rules—, with one approach achieving a notable 29% cost reduction. Finally, we describe sensitivity analysis
we completed to assess the robustness of these results under varying conditions, ensuring the reliability and
practical applicability of the findings.

4.1 Order of Events

The simulation order of events is as follows. (1) At the start of each cycle, a system state transition type
and time is determined using the rates detailed earlier. (2) The system cost is updated based on the current
state and the time that will pass until the transition. (3) The state of the system is updated. If a part arrives,
the inventory is increased by one and the number of parts on-order is decreased by one; if a machine is
repaired, the inventory is decreased by one and the number of workstations in each state is updated; if a
machine deteriorates or improves, only the number of workstations in each state is updated. (4) Based on
this updated system state, the new required stock level is determined, and as such the number of parts on
order is updated. Following these updates, the system proceeds to the next state transition, marking the
beginning of a new cycle.

4.2 Simulation Input

Before continuing to describe our simulation study, we specify the input parameters. We differentiate be-
tween problem parameters and simulation parameters. Later we discuss the sensitivity analysis performed
on these problem parameters.

Simulation parameters: As discussed in the next section, we run the simulation for N batches, all of
equal duration, and this duration as well as the warm-up period duration are given in Table 2.

Problem parameters: The problem parameters, as introduced in previous sections, are given in Table 2.
Recall that A represents the workstation transition matrix. It is derived from a data set provided by Augury
and is given below:

Table 2: Problem and simulation parameters.

(0,0) (1,0) (2,0) (3,00 (0,4) (L,4) (2,4 (3,4) (4.4
-1 0.8 008 003 0001 0 0 0 O
15 -2 036 01 004 0 0 0 0

18 14 -4 064 016 0 0 0 0 w :
0 0 0 -6 6 0 0 0 0 M 1,000,000 w5 year
m
h

Parameter Value
T 0.25 years (3 months)
15 workstations

W N - O W O
BB R R O O O O
N AN NS AN AN AN NN

$
% 0 0 0 —27 088 008 003 001 10,000 757 vear

iy R R s s

' 0 26 0 0 15 —28 036 01 004 10 +

, 0 0 2 0 18 14 -30 064 0.6 N 0 ‘{)';tc{fé’s‘

' 0 J . ; e = & Warm-up period 10,000 years
' 0 0 0 0 52 0 0 0 52 Batch duration 100,000 years

4.3 Simulation Steps

At each simulation step, given the current state, we generate a list of all possible events and calculate the
total exponential rate to the next event, given by Equation (1). We then sample the time to the next event
as an exponential random variable with this rate. Finally, we determine the next event using the roulette
sampling method, a stochastic selection method where each option is chosen with a probability proportional
to its relative weight (Muguruma 2014), and update the state accordingly, following which we decide
whether to order more spare parts or not.

After the warm-up period, data collection begins using the batch means method. Post simulation, we
calculate the average yearly cost across all batches. For batch i, the average total yearly cost is denoted x;.
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We define X as the average yearly cost across all batches. We also calculate the sample standard deviation
o, as well as the standard error of the mean ox. In addition, we define X,,, X ,; and X,,,, respectively, as
the average yearly inventory, major and minor costs across all batches.

4.4 Simulation Investigation

In this section we explore inventory management policies aimed at minimizing total costs in a dynamic
production environment. We first analyze static base-stock policies, followed by state-dependent dynamic
policies, which adapt inventory levels in real-time based on system conditions and achieve significant cost
reductions compared to static policies. Finally, we introduce more complex dynamic policies that incorpo-
rate proactive adjustments while addressing practical constraints like order cancellation and more than dou-
ble the cost savings achieved by simpler dynamic strategies. Through simulation, we assess the effective-
ness of these approaches and their potential for improved cost efficiency and operational responsiveness.

4.4.1 Calculation of Unavoidable Cost Through Simulation

As explained earlier, there is a certain proportion of our expected annual major penalty cost E[X,,], that we
denote by Ms_, ., that will be incurred even with unlimited inventory, and it can be evaluated by using the
steady-state probability vector of our workstation Markov chain model. Solving the system of equations
described in Section 4.4.5. with the problem instance defined above, we find that Mg ,.. = 19.87 /year.
We corroborate this result by running our simulation for a very large value of S. For example, for § =
100,000 we find an average yearly major penalty cost X, across all batches of $20.37 with a $2.75 stand-
ard error. This finding is in line with the value of Ms_,., computed analytically, a simple statistical test—
one-sided t-test—confirmed.

We evaluate policies' effectiveness by comparing their cost after deducting this unavoidable expected
yearly major penalty cost Mg_,., from the average yearly major penalty cost X,,. We note that due to the
randomness of our simulation, when scenarios present a very low amount of downtime, we might observe
a small negative average yearly avoidable major penalty cost X,; — Mg_,... We opted to display this small
negative amount in the subsequent result tables for transparency. We denote by X}, the average yearly
avoidable major cost, that is Xj; = Xy — Mg_,, and by X' the average yearly total cost excluding this
expected yearly unavoidable major cost Mg_,co: X' = Xp, + X; + Xy — Mg 0o = X + X + X1y

4.4.2 Static Policies

We start by testing static base-stock policies to determine which value of the base-stock level S would lead
to the lowest average yearly total cost. Table 3 presents the results of these static policies. We note that the
average yearly major and minor penalty costs are both monotonically decreasing in S while the average
yearly inventory holding cost is monotonically increasing in S. Balance is achieved at the optimal base-
stock level denoted by S* = 3. This intermediate base-stock level strikes the best balance between mini-
mizing penalties and managing inventory holding costs. We also note that beyond S*, the average yearly
inventory holding cost increases by h for every unit added to the base-stock level S, since it is rarely needed
to repair failed machines. From now on, for this problem instance, we use a static policy with $* = 3 and
average yearly total cost X' = 33.61 as our baseline, and we test various dynamic policies against this
baseline.

Table 3: Static policy results for base-case.

X' o ox Xy Xm Xhn
5,820.30 76.56 2421 2,033.39 3,786.91 0.00
838.76 1929 6.10 216.29 615.64 6.83
10490 561 1.78 20.11 68.51 16.28
33.61 2.60 0.82 1.82 5.57 26.22
37.11 274 0.87 0.51 0.38 36.21
46.71 275 0.87 0.48 0.02 46.21
56.69 275 0.87 0.48 0.00 56.21

AWV A WD = On
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One advantage of having information regarding machine health is that it allows us to make decisions in real
time according to the actual system state. Unlike the static policy, a dynamic policy can alternate between
different order-up-to levels according to the current system state—maintaining enough inventory to avoid
paying penalty costs yet not over-stocking.

4.4.3 State-Dependent Dynamic Policies

We tested several dynamic policies, in which order-up-to quantities are determined as a function of the
system state r’ see Kaufman (2023) for details. We introduce the notation S " which denotes a state-de-
pendent base-stock level that can deviate up or down from the optimal static policy according to the system
state using the base-stock level S* as a starting point. That is, for the optimal static policy, S ' = §* forall
r'. For example, dynamic policy #1 increases the base-stock level based on the number of machines in state
3, allowing for a more responsive inventory system that adapts to changes in machine conditions, that is
S v =S5"+ [ng / 2] where [x] = min{n € Z:n > x}. Recall that the static policy already orders spare
parts for any machine in state 4. All the dynamic policies we investigated through simulation are given in
the Table 4, together with the simulation results.

Dynamic policy #1 surpasses the static approach by 12.2%. Using a one-sided t-test we verify that this
result is statistically significant (with a p-value less than 0.05). Overall, the most effective dynamic policies
feature adaptive mechanisms that fine-tune inventory levels in response to operational fluctuations, thereby
reducing the average yearly total cost.

We note that up to now, the only dynamic policies developed and tested were those that do not cause
order cancellation. For example, in Dynamic Rule #2 we have S = S* + n3 so when a machine in state
4 in a workstation in state (3,4) is repaired, n} remains unchanged and so does S ' However, because of
this constraint, we observe that even the best of these dynamic policies (#1) lead to excess inventory when
machines do not fail for long periods. To design more efficient policies, we decided to open our study to
ordering policies that would, without any added mechanism, allow order cancellation, and we implement a
no-order cancellation mechanism, as explained next.

4.4.4 More Complex Dynamic Policies:

Building upon the insights derived from the previously discussed Dynamic Rules results, we developed a
more advanced set of dynamic rules. In this section, we outline the components of these newly formulated
rules and present an analysis of the simulation outcomes when they are implemented in our system.

In our new rules we use a different decision variable. Up to now, the various ordering policies deter-
mined the base-stock levels, S v’ , based on the current state. We now use the number of parts on order O as
our decision variable. We also deﬁne the desired quantity of spare parts to order, denoted as O, which plays
a crucial role in the implementation of our no-order cancellation mechanism. We note that in certain situa-
tions, for example when a single workstation is in state (4,4) (n(4 4) = 1) and there are no spare parts in
inventory (I" = 0), one might decide to order a large quantity of spare parts to maximize the chances of
receiving one quickly, only to cancel the remaining orders for spare parts once one arrives, thereby saving
on inventory holding costs. However, this scenario is unrealistic, as suppliers would be unable to depend
on orders. We therefore restrict ourselves to policies that do not cancel orders, by setting the new number
of parts on order to be the maximum between the current number of parts on order and the desired number
of parts to order 0. With this added mechanism, we update step (4) of the simulation order of events as
follows: (4”) based on the updated system state, the desired number of parts to order is updated. If this
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Table 4: Dynamic rules and simulation results.

7 = —

Rule S” S X' oy ox X'um Xm Xa % Improv.
Dynamic rule #1 | S7 = S* + [n} /2] 3 295 25 08 -02 17 280 12.2
Dynamic rule #2 | §™ = S* +nj} 3 297 19 06 02 14 281 11.8
Dynamic rule #3 | if ng‘;m >0:8" =8*—1 3 306 30 10 09 1.8 2795 9.02

else: S7' = S* —2

Dynamic rule #4 | S” = max{S*,n} + [S*/2]} 3 314 32 10 10 40 264 6.6
Dynamic rule #5 | 8™ = 8* + |nj} /2] 3 319 30 10 14 41 264 52
Dynamic rule #6 | S”' = max{S*,n} + |S*/2]} 3 331 24 08 16 53 262 15
Dynamic rule #7 | S"" = max{S*,nf; o } 3 336 27 09 18 55 262 0.1
Dynamic rule #8 | S” = max{S*,n} } 3 336 27 09 18 55 262 0.1
Dynamicrule #9 | 8 = §* —1+4n} 3 466 13 08 50 234 18.1 (38.6)
Dynamic rule #10 | if nfz o) > S*+1:8" =85*+1 3 521 41 13 64 278 180 (55.0)

else ifn(Té:O) > 8% 8" = 8"
else: 8™ =S* -1

desired number of parts to order is greater than the outstanding number of parts on order, then the number
of parts on order is increased accordingly. Otherwise, the number of parts on order is unchanged.

We define Lack (L) as the number of spare parts needed to cover all machines in states 3 or 4, and
Excess (E) as the surplus inventory beyond this requirement, that it L = max(nz + n, —1,0) and E =
max(0,] — n3; —ny). When E = L = 0, the inventory is perfectly aligned with the number of machines in
states 3 and 4. When L > 0, additional spare parts are required and we are willing to risk added inventory
costs by ordering more parts than required, reducing lead time and increasing the chance of parts arrival
before failures occur. However, when E > 0, there is an excess of E parts beyond short-term needs and we
ideally wish to order less parts. We introduce £ and e, adjustable parameters that give a weight to, respec-
tively, L and E. The desired order quantity 0, is then given by O = S + £L — eE. Such policies are de-
signed to ensure that orders are appropriately adjusted to reflect shortfalls or excesses, while also ensuring
that orders, once placed, do not get canceled.

We tested these policies for various values of S, e and £ on our simulation model and compiled the
results in Table 5. We observe that the average yearly total cost is lower for (e, #) policies using S = 3 as
a basis. Table 6 summarizes results for various values of e and £ with the base case S = 3. The results
demonstrate significant enhancements in managing the spare parts inventory by reducing unnecessary stock
levels, enhancing response times to machine failures, and ultimately decreasing overall operational costs.
The most effective configuration was identified as S = 3, e = 2 and £ = 3 which balances inventory, min-
imizing average yearly costs and ensuring availability for necessary repairs, achieving 29.1% reduction in
average yearly total cost when compared to our baseline static policy. These findings highlight the need for
adaptable inventory policies to meet dynamic production demands. The simulations offer key insights into
policy effectiveness, guiding more efficient inventory strategies.

Table 5: Summary of X' for various Table 6:Top non-Markovian dynamic policies results for
values of S, e and ¥. base-case S = 3.

¢ S et X [ Oy Major  Minor Inventory Percentage
S e 1 2 3 4 penalty penalty holding  improvement

311 2965 192 061 0.5 1.39 28.11 11.8

21 46.57 33.42 27.40 26.55
22 | 77.62 4694 3510 31.9 313 2020 168 08 04 0%  asos 129
NI 2R R
32 ] 2846 2580 23.83 25.06 322 258 147 047 077 416 2087 232
3 3 | 3617 30.67 28.49 28.47 323 2383 154 049 -057 291 2150 29.1
sy opmome wm 321 e m O W8 gn BR 5
42 | 2651 2599 2548 25.54 332 3067 202 038 247 802 2017 88
4 3 | 2562 2490 2493 25.54 333 2849 167 053 158 562  21.29 15.2
4 4 30.99 28.12 28.73 29.35 334 2847 211 067 164 415 22.68 153
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4.4.5 Sensitivity Analysis

We now apply the same methodology across different scenarios to evaluate the robustness of our method-
ology. We selected five scenarios to provide a balanced representation of different system characteristics,
chosen to encompass a wide range of system sizes, lead times, and levels of penalty costs, ensuring a com-
prehensive analysis across diverse operational conditions. Unless otherwise specified, the problem param-
eters are as stated in Table 2. The simulation parameters are unchanged. For each scenario, we first ran our
simulation under the standard base-stock policies with various values of our base-stock level S, S*. We then
ran the same dynamic policies as with our base case scenario, using S* for each scenario, and finally tested
the more complex dynamic policies to find the optimal vales for e and £. We summarize the parameters of
our five alternative scenarios and sensitivity analysis results in Table 7.

The results of the sensitivity analysis demonstrate that the more complex policy with e = 2 and £ = 3
consistently outperforms both base-stock policies and the basic dynamic policies. Across all tested scenar-
i0s, the (2,3) policy exhibits significantly higher efficiency, highlighting its robustness and effectiveness in
managing varying conditions compared to the simpler alternative approaches.

Table 5: Summary of alternative scenarios and results.

Scenario T M m h W Transition RatesS* X’ X' %o X’ %
Base  Dynamic (2,3)
Stock  Policy Policy
0: Baseline 3 IM 10K 1015 A 3 336 295 122 238 29.1
1: Shrunk 2508M 75K 8 12 A-10% 3 237 203 143 17.6 25.5
2: Inflated 3512M 125K 1218 A+10% 4 438 436 03 363 17.0
3: Larger System 2 09M 9K 9 20 Adjusted rates 3 276 263 48 209 24.2
4: Smaller System 4 1.5M 5K 1510 Adjusted rates 3 449 429 43 329 26.8
5: Scalability 1 2M 2K 5 25 Adjusted rates 3 14.8 14.0 5.3 12.6 14.6

5. EXTENSION TO MULTIPLE-COMPONENT MODELING

In this section, we extend our model to handle multiple independent components, introducing a capacity
constraint and adapting the cost structure accordingly, allowing us to analyze more realistic scenarios.

We extend our model to include K types of spare parts. We add superscript (k) to refer to component
k when modeling multi-components systems. For example, S® is the base-stock level for component k.
We introduce a storage constraint that takes into consideration a limited resource at the facility. This con-
straint only applies to spare parts that are not assigned to already failed machines. We denote by S, 4, the
maximum number of spare parts of all types that can be stored in inventory at any time:
YK | 0t 4 ) _ k) < Snax-The incurred yearly total system cost can be written as: X'
YK | X, (k) + Xy (k) 4 X x¢ . As in the one-part model described earlier, the expected yearly total system
cost, that we look to minimize, is given by:

E[X'] = i (E[X;(Lk)] + JE[X’S\’})] + ]E[X,(,If)]) , where:

k=1
k k T, rre(k
E[XY) = BOR(ID - n®) ) = 3 hOpOI® —nir )7,
rER(k)
(k) k) k (k) (k) T>(k) )
E[X'}/] = M®E[n (44] Mé(lz)_m Z M®)pf n(4(4) Mé(l)w_,oo and
rER(k)
'r k) .
EX®] = mPE[(n{ — 10)] = 3 m®p®(mny® — oy,
reR(k)
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The overall optimization model can be formulated as follows:
min E[X']
subject to YX_; (0(") + 100 — nf}k)) < Smax

When the storage constraint is active, we need to ensure we first order the most critically needed spare
parts. We do so by comparing the criticality level of each type of spare parts. There are various ways to
represent the criticality level and for this first exploration of the K-part model we define it as the difference
between the number of machines in state 4 and the level of on-hand inventory—excluding spare parts as-
signed to already failed machines. If we have enough inventory to fix all the machines in state 4, we set the
criticality level to_0. We denote as ¢ the criticality level of type k spare part, that is, ) =
max (0, nf}k) — 1)), This criticality rule is a simple one and does not take into consideration the state of
the machine's workstation. We use it here to verify that our methodology works in the multi-part model,
and we will explore more complex criticality rules in the future.

The order of events for the K-part model is as follows. Steps (1) through (4) remain unchanged. If we
can update all the number of parts on order without going over S,,,4,, we do so. If not, we order in decreas-
ing criticality level. In case of a criticality level tie between two or more spare parts, we choose randomly
which part to order next. Following these updates, the system proceeds to the next state transition, marking
the beginning of a new cycle.

In our simulation we focused on systems with two (K = 2) independent components. Our system is
composed of W@ workstations with machines depending on spare parts of type 1 and W) workstations
with machines depending on spare parts of type 2. System parameters for spare parts of type 1 and spare
parts of type 2 are set to be the same as for the one-part model described earlier. We employ the same
methodology as for the one-part model: we already know that the optimal base-stock level for static policies
is §* = 3. As such we decide to run the simulation with an inventory constraint S,,,, = 5 so that the joint
constraint is active even in the optimal static policy. We first run the simulation with the static policy to
which we add both the constraint and criticality-based allocation mechanism. We then run the simulation
with the same Markovian dynamic rules as with the one-part model, again integrated with our constraint
and allocation mechanism. Finally, we test the (e, #) dynamic policy with e = 2 and £ = 3. The results of
these simulations are given in Table 8. We note that, as for the one-part model, the more complex (e, ¥)
rule results in the greatest savings, with an average yearly total cost 26.40% lower than with the static
policy.

Table 8: Top Policies Results for 2-Parts Model for S,,,,, =5.

Policy X' o0 ox X'm Xm Xp Improvement%
Base-Stock 1300 82 26 176 70.0 425 -
Dynamic Rule #4 1284 7.5 24 166 69.3 425 1.26
Dynamic Rule #5 1284 73 23 167 69.2 425 1.26
Dynamic Rule #9 1127 43 14 16.1 61.0 35.6 13.31
Dynamic Rule #10 1126 49 1.6 157 613 357 13.35
(e,6) = (2,3) 957 66 21 112 469 37.6 26.4

CONCLUSION

This paper highlights the potential of integrating advanced inventory management with machine health
monitoring for spare parts provisioning. Future research will explore more complex systems, including
multiple identical or varied parts and interdependent components managed across multiple locations by a
3PL. Machine learning could further enhance predictive capabilities, enabling adaptive policies for real-
time decision-making. These advancements support robust, scalable inventory frameworks applicable
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across diverse contexts. Addressing these challenges will lay the groundwork for innovative solutions that
enhance operational efficiency and resilience in complex industrial environments.
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