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ABSTRACT 

Effective decision-making for autonomous drones relies on timely belief updating, yet the mechanisms 
governing this process in AI under uncertainty are poorly understood. This study presents a framework 
integrating Bayesian inference, evidence accumulation theory, and Dynamic Time Warping to analyze 
belief updating in autonomous agents. In simulated urban search and rescue scenarios, we demonstrate that 
drones consistently prioritize key environmental variables like wind conditions. We also find the duration 
of belief updates is inversely related to the magnitude of environmental change, mirroring adaptive human 
cognition. A novel dual-threshold model separates internal belief shifts from observable actions, offering a 
clearer interpretation of the agent’s internal state. Our approach contributes to developing more transparent, 
adaptive, and cognitively aligned AI for complex, high-stakes environments. 

1 INTRODUCTION 

Agent based simulations are widely utilized across various domains including disaster response, 
autonomous navigation, infrastructure management, and industrial systems due to the inherent complexity 
of real-world scenarios and the necessity of robust decision-making (Chen et al. 2022, Binz and Schulz 
2023, Hagendorff et al. 2023). Such simulations uniquely enable the capture of agent behaviors under 
uncertainty and partial observability, offering insights often missed by traditional methods. However, 
current analytical approaches largely overlook the internal cognitive processes of simulated agents, 
particularly their belief updating mechanisms (Gunning and Aha 2019). Belief updating refers to an agent’s 
continuous internal revision of its understanding of the environment based on incoming data, profoundly 
influencing its decisions. Existing analytical methodologies predominantly emphasize observable agent 
outcomes or external performance metrics, thus inadequately capturing the complexity of these internal 
cognitive dynamics (Kawato and Cortese 2021). 

With advancements in computational capabilities, breakthroughs in deep reinforcement learning and 
cognitive modeling, along with progress in high-performance simulation platforms and multi-source data 
acquisition methods, agent-based simulations have rapidly advanced, achieving substantial improvements 
in complexity and realism. Nevertheless, a critical gap remains in methodologies explicitly designed to 
analyze internal agent cognition. Current analytical approaches primarily focus on observable agent 
outcomes, often neglecting systematic investigation into the timing and triggers of internal belief 
transitions. This lack of transparency may undermine trustworthiness, reliability, and the effectiveness of 
human-AI interactions, particularly within safety-critical applications (Rago and Martinez 2024). 

This study proposes a simulation based analytical methodology explicitly targeting the hidden belief 
updating processes within agent based simulations. The proposed method integrates Bayesian inference to 
quantify uncertainty, Dynamic Time Warping (DTW) to analyze temporal relationships between 
environmental stimuli and agent responses, and evidence accumulation modeling using Ornstein-
Uhlenbeck process (Pisauro et al. 2017). Additionally, a dual threshold Bayesian calibration informed by 
human subject experimental data effectively differentiates observable behavior changes from subtle internal 
cognitive recalibrations. 
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We present a framework that uncovers how AI agents update beliefs, focusing on when internal shifts 
occur and how they relate to observed actions and environment. To do this, we apply DTW to reveal hidden 
delays between environmental changes and agent responses, showing when cognitive states start to shift. 
We also use evidence accumulation modeling with dual Bayesian thresholds to distinguish subtle internal 
recalibrations from clear behavioral changes. Validated through drone simulations in urban search and 
rescue scenarios, this approach can improve the clarity of agent based simulations by making formerly 
inaccessible belief processes more visible. It also increases robustness and reliability in complex 
environments and supports deeper human AI alignment in high-stakes operational settings. Figure 1 shows 
the overall framework of our metacognitive calibration research, the paper mainly focuses on belief update 
stage. 

 

Figure 1: Overview of metacognitive calibration framework. 

 

2 RELATED WORK 

Belief updating is a fundamental component of decision making in both human cognition and artificial 
intelligence (AI), enabling agents to adjust their internal understanding in response to new information 
(Anderson 1991). Humans accomplish this by intuitively integrating prior knowledge, heuristics, and 
cognitive biases, which allows effective adaptation under uncertainty (Frömer and Nassar 2023). However, 
translating such human-like flexibility into AI systems is difficult because AI relies on explicit algorithms, 
lacks innate intuitive reasoning, and must manually incorporate contextual information (Adadi and Berrada 
2018). Bayesian inference offers a rigorous way to model belief updating by combining prior beliefs with 
incoming evidence (Bissiri et al. 2016, Khalvati et al. 2021), yet it frequently encounters computational 
challenges in high dimensional environments. Approximate methods such as variational inference or 
Markov Chain Monte Carlo can mitigate these challenges but may introduce errors (Charniak 1991, Korb 
and Nicholson 2010), and accurately defining prior distributions remains challenging, especially in 
scenarios characterized by sparse or noisy data (Murphy 2012). 

In dynamic and uncertain environments, belief updating becomes even more demanding. Humans 
employ heuristics and contextual cues effectively but can experience performance declines under cognitive 
overload (Byyny 2016). Traditional AI approaches, such as Kalman and particle filters, are useful for state 
estimation yet often require complete and accurate models of the environment, a condition seldom realized 
in real world scenarios (Thrun 2002, Simon 2006). These methods are also computationally intensive and 
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tend to be algorithmically rigid, limiting their adaptability compared to human intuition (Kaelbling et al. 
1996). Explainable AI (XAI) methods aim to enhance transparency in AI decision making processes, but 
current techniques like feature attribution, saliency mapping, and rule extraction focus on static or post-hoc 
explanations (Adadi and Berrada 2018, Rudin 2019). Although recent “chain-of-thought” methodologies 
illustrate intermediate reasoning steps, they remain primarily descriptive and do not quantitatively capture 
how beliefs change over time (Kojima et al. 2022). 

Conceptualizing AI agents as cognitive entities capable of continuous belief formation, updating, and 
revision enhances transparency and adaptability, particularly within critical application domains such as 
USAR mission (Hassabis et al. 2017, Lake et al. 2017). By grounding AI methodologies in cognitive theory, 
researchers can refine real time belief tracking and enhance the interpretability of AI decision making, 
ultimately leading to more robust human AI collaboration in complex, rapidly evolving scenarios. In the 
following section, we build upon these perspectives by introducing a framework that systematically 
captures belief updates over time, leveraging Bayesian inference, temporal alignment, and evidence 
accumulation to address the limitations identified in previous research. 
 

3 METHODOLOGY 

This paper introduces a methodology aimed at analyzing and interpreting internal cognitive belief updating 
processes of autonomous agents operating within dynamic, partially observable environments through 
agent-based drone simulations. The approach integrates several quantitative techniques: Bayesian inference 
for uncertainty quantification, Dynamic Time Warping (DTW) for temporal alignment analysis, and 
evidence accumulation modeling via Ornstein-Uhlenbeck processes (Pisauro  et al. 2017). Additionally, a 
dual-threshold Bayesian calibration technique informed by empirical human-subject experimental data is 
applied to differentiate observable behavioral shifts from latent cognitive recalibrations. 

3.1 Environmental Score Formulation 

The first step of our methodology involves defining an Environmental Score (ES), a quantitative measure 
representing the environmental conditions perceived by the agent at any given time. The ES encapsulates 
multiple environmental features such as wind intensity and obstacle density. It is calculated through a linear 
combination of normalized environmental factors: 
 

𝐸𝑆(𝑡) =  𝜆ଵ

Δ𝑣⃗௪௜௡ௗ
௧  ∙  𝑣⃗ௗ௥௢௡௘

௧

𝑅𝑒𝑓ଵ
+  𝜆ଶ

|Δ𝑣⃗௪௜௡ௗ
௧  ×  𝑣⃗ௗ௥௢௡௘

௧ |

𝑅𝑒𝑓ଶ
−  𝜆ଷ

|𝑠௕௟ௗ
௧ |

𝑅𝑒𝑓ଷ
. (1) 

𝜆ଵ measures how significantly crosswind influences drone perception of the environment,  𝜆ଶ 
measures the effect of tailwind, 𝜆ଷ measures the drone’s perceived importance of distance from buildings. 

Belief updates are triggered when the environmental score surpasses a predefined threshold (𝜀௘): 

 

𝐵௧ା ୼௧ − 𝐵௧  ≠ 0, 𝑤ℎ𝑒𝑛 න (𝐸𝑆௧ା୼௧ − 𝐸𝑆௧) 𝑑𝑡 ≥
௧ା୼௧

௧

 𝜀௘ . (2) 

3.2 Bootstrapping and Environment Score Fitting 

To obtain the threshold value of epsilon corresponding to the environmental score triggering AI behavior 
change, we first determine a set of coefficients  𝜆ଵ, 𝜆ଶ, 𝜆ଷ. These coefficients correspond to when a change 
in the drone’s behavior is detected. By substituting them into 𝐸𝑆(𝑡), the functional trend of 𝐸𝑆(𝑡) should 
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align with the drone behavior function. In other words, when a behavior change (BC) occurs, it must 
correspond to a significant change in the environment. 

Before proceeding, both 𝐵𝐶(𝑡) and 𝐸𝑆(𝑡) are normalized to ensure consistency in scale and remove 
any bias due to magnitude differences. The normalization is performed by transforming each function 𝑓(𝑡) 
(both 𝐵𝐶(𝑡)and 𝐸𝑆(𝑡)) as follows: 

 

𝑓௡௢௥௠(𝑡) =  
𝑓(𝑡)  −  𝑓௠௜௡

𝑓௠௔௫ − 𝑓௠௜௡
. (3) 

Next, we detect the significant change in AI decisions. In the context of autonomous drone control for 
USAR, this corresponds to noticeable changes in the drone’s navigation behaviors, specifically the change 
in heading between consecutive timestamps (denoted ∆𝜃௧). A behavior change is recorded if ∆𝜃௧ ≥ 𝜀௕, 
where 𝜀௕ is the direction angle threshold (derived from the mean value plus or minus twice the standard 
deviation). Once all significant heading changes are identified, 20% of these points are randomly sampled 
(𝑁௦ = 0.2 𝑁, where 𝑁 is the total number of significant change points) to ensure a representative subset for 
coefficient fitting. 

As part of the fitting process, we adjust 𝜆ଵ, 𝜆ଶ, 𝜆ଷ so that the normalized 𝐸𝑆(𝑡) curve matches the 
normalized 𝐵𝐶(𝑡)curve at each sampled point. Formally, this is achieved by minimizing: 

 

min
ఒభ ఒమ ఒయ

    ൬ ෍ ൫𝐵𝐶ᇱ(𝑡) − 𝐸𝑆ᇱ(𝑡)൯
ଶ

௧∈௦
+ 𝛼 ∙ (|𝜆ଵ| + |𝜆ଵ| +  |𝜆ଵ|)     ൰.    (4) 

Where S is the set of sampled points, 𝐵𝐶ᇱ(𝑡) 𝑎𝑛𝑑 𝐸𝑆ᇱ(𝑡) are the normalized results of 𝐵𝐶(𝑡) and 
𝐸𝑆(𝑡), 𝛼 is regularization strength, controlling the impact of L1 regularization, penalize large coefficients 
to prevent overfitting. After 𝜆ଵ, 𝜆ଶ, 𝜆ଷ for each sampled point, the final values are computed by averaging 
over all samples:  

 

𝜆ଵ
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1
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෍ 𝜆ଵ(𝑡)

௧∈௦

;       𝜆ଶ
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=  
1
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=  
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. (5) 

3.3 Evidence Accumulation Estimation 

According to evidence accumulation theory, even small, instantaneous environmental changes can be 
sufficient to update a decision maker’s belief (Drugowitsch et al. 2015, Forstmann et al. 2016, Friston et al. 
2017). We model this accumulation of evidence (AE) using an Ornstein-Uhlenbeck process (Pisauro  et al. 
2017) to estimate the time 𝑡 at which AE leads to a behavior change 𝐵𝐶(𝑡). Formally: 
 

𝐴𝐸(𝑡) − 𝐴𝐸(𝑡 − 1) = ൣ𝜆 ∙ 𝐴𝐸(𝑡 − 1) +  𝑘 ∙ ൫𝐸𝑆(𝑡) − 𝐸𝑆(𝑡 − 1)൯൧ ∙ 𝑑𝑡 + 𝑁(0, 𝜎). (6) 

Where 𝜆 represents the leak strength of the process, 𝑘 modulates the input from 𝐸𝑆(𝑡), and 𝑁(0, 𝜎) is 
Gaussian noise. Whenever a behavior change occurs, we reset 𝐴𝐸(𝑡) to zero and reapply (6) until |𝐴𝐸(𝑡) −
𝐴𝐸(𝑡 − 𝛥𝑇)| > 𝜀௘ . Then the time duration of evidence accumulation is 𝑙௧ = ∆T . 𝜀௘  is the threshold to 
determine the amount of 𝐴𝐸 those triggers 𝐵𝐶 in our idealized scenario (The action will change once the 
belief has changed). We use (7) to quantify 𝜀௘. It provides a measure of how different the aligned curves 
are over time. Where 𝑡଴ is the start time point of vertical segment in DTW best path line, the lag is the 
duration of the vertical segment of the best path in the DTW figure (Figure 2), which means the phase 
difference of the 𝜃௧ curve advance to 𝑠𝑐 curve. Integer 𝑖 is the index of each vertical segment in DTW best 
path. 
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𝜀௘  =  
1
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Figure 2: Schematic representation of lag periods in dynamic time warping analysis. 

3.4 Bayesian Threshold Adjustment 

The threshold 𝜀௘ , which determines when the AI updates its belief and makes a decision, was estimated 
using a Bayesian model. Given that not all belief updates lead to observable changes in the drone’s actions, 
the Bayesian approach assumes that the conditional probability of a belief update leading to a change in 
action 𝐴(𝑡), denoted by 𝐴(𝑡)|𝐵(𝑡), is analogous to how humans update beliefs. Through human subject 
experiments, participants were asked to verbalize their belief updates during decision making scenarios. 
From these observations, we estimated the AI’s probability of belief update 𝑃(𝐵(௧))as follows: 

  𝑃൫𝐵(௧)൯ =
𝑃൫𝐴(௧)𝐵(௧)൯

𝑃൫𝐴(௧)ห𝐵(௧)൯
.    (8) 

Finally, the true value of  𝜀௘ was adjusted based on the calculated probability of belief update: 
 𝜀௘

ᇱ = 𝜀௘𝑃൫𝐵(௧)൯.    (9) 
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4 EXPERIMENT  

4.1 Simulation Environment 

We developed a sophisticated Unity based simulation environment, featuring a detailed DJI Mavic 2 Pro 
drone navigating a realistically modeled urban landscape of Manhattan based on our previous studies (Sun 
et al. 2025, Wu et al. 2025). The simulation accurately represents drone physics, including mass, velocity, 
and aerodynamic interactions, and incorporates dynamic environmental conditions such as variable wind 
fields and complex urban obstacles. Specifically, wind fields were simulated using a simplified 
aerodynamic representation method derived from computational fluid dynamics (CFD) models. This 
approach quantifies wind interactions around urban structures by creating distinct wind zones with varying 
intensities based on proximity to buildings, enabling efficient simulation of realistic wind scenarios. 
Reinforcement learning methods, specifically utilizing Physics Informed Neural Networks (PINN), were 
integrated into the simulation to enable autonomous drone navigation and generate robust and realistic 
interaction data for analysis. 

4.2 Autonomous Drone Control and Perception Modules 

The drone’s autonomous navigation capabilities were developed using a Multi-Objective Reinforcement 
Learning approach based on the Proximal Policy Optimization (PPO) algorithm. This approach optimizes 
the drone’s decision making by integrating real time environmental feedback to balance multiple conflicting 
objectives such as path efficiency, obstacle avoidance, and wind resistance. To enhance human drone 
interaction, we incorporated a Perception Sharing (PS) module using virtual reality (VR) and haptic 
feedback systems. This allowed human operators to intuitively perceive the drone’s environmental 
conditions, such as wind strength and direction, facilitating real time informed decision making and 
interactive control adjustments during drone operations. 

4.3 Human Experiment 

A diverse sample of 30 participants interacted with the simulation, marking environmental changes, and 
influencing drone strategies, thus contributing to threshold estimation (𝜀௘′) based on human cognitive 
patterns. 

 

Figure 3: Experimental setup and experimental equipment. 
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The demographic information presented in Table 1 illustrates the diversity and composition of our 
participant sample, ensuring transparency about the subject population involved. Although demographics 
were not explicitly analyzed as influencing factors in belief updating, clearly reporting these details 
demonstrates the representativeness and robustness of our experimental procedure. 

Table 1: Demographic information about the subjects. 

 Number Percentage 

Gender 
Male 22 73.33% 
Female 8 26.67% 

Age Group 
18-24 8 26.67% 
25-30 21 70.00% 
31 and older 1 3.33% 

Major 
Civil, Transportation, Construction 18 60.00% 
Computer Science, Computer Engineering 7 23.33% 
Psychology 5 16.67% 

  

5 RESULTS 

This section investigates the AI’s internal belief update mechanism by examining how Environmental 
Scores (ES) relate to observable Drone Behavior Changes (BC). Experimental data were collected from a 
drone agent pre-trained via the Multi-Objective Reinforcement Learning (MORL) framework within a 
Unity based simulation environment. The drone was tasked with navigating to a target location in a highly 
detailed, 1:1 scale simulated urban environment of Manhattan, chosen specifically for its complexity and 
realistic representation, which requires effective obstacle avoidance and adaptability to severe conditions, 
especially strong wind. Each drone trajectory was repeated 30 times across four distinct testing scenarios 
to ensure statistical stability and consistency in AI behavioral responses. The subsequent analysis aims to 
elucidate the temporal dynamics of the AI’s belief updating, clarify the relationship between environmental 
perception (ES) and action decisions (BC), and provide detailed statistical insights into these cognitive 
processes. 

5.1 Data Preprocessing and Preliminary Results 

Environmental and behavioral data were recorded at a frequency of 50 Hz in Unity and underwent 
preprocessing to enhance analytical clarity. Initially, drone behavioral change (BC) and environmental 
interaction variables in (1) were smoothed using the Savitzky-Golay filter to mitigate high frequency noise 
while preserving essential data trends. Subsequently, the data were Min-Max normalized within a [0,1] 
range to standardize magnitude variations. 

We optimized a linear combination model of environmental scores (ES) using L1 regularization, 
determining optimal weight coefficients (𝜆ଵ, 𝜆ଶ, 𝜆ଷ) to best fit ES to BC.  Figure 4 presents comparison 
between environment score and drone behavior Change. L1 regularization prevented over fitting, ensuring 
model stability across diverse scenarios. Figure 5 presents the optimized coefficients for ES across all 
trajectories, indicating stable coefficients within a certain range (mean values: 𝜆ଵ=0.51, 𝜆ଶ=0.33, 𝜆ଷ=0.23). 
𝜆ଵ exhibited the greatest influence (47.9%), followed by 𝜆ଶ (30.6%), and 𝜆ଷ (21.5%). The dominance of 𝜆ଵ 
suggests that sidewind speed significantly influences the ES, overshadowing obstacle complexity and other 
environmental factors. 

The temporal relationship between ES and BC (after optimization and normalization) revealed that 
peaks in ES consistently precede significant behavioral changes. This pattern underscores the AI’s 
capability to recognize environmental shifts before making behavioral adjustments, highlighting a reaction 
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lag between environmental perception and behavior change. To clarify the dynamics of this lag, DTW 
analysis was conducted. DTW adeptly handles temporal misalignment analysis, identifying the optimal 
alignment path between ES and BC. The method also emphasizes “lag periods”, time intervals in which the 
AI accumulates evidence but does not immediately change its behavior, suggesting that there is a phase of 
evidence accumulation before action is taken. 

 

Figure 4: Example of comparison between environment score and drone behavior change. 

 

Figure 5: Distribution of optimal weight coefficients (λ1, λ2, λ3) and lagged periods indicated by DTW 
analysis on given weight coefficients. 

5.2 Statistical Analysis and Threshold Determination 

Statistical properties of vertical segments (as lagged periods indicated by DTW analysis) are presented in 
Figure 5. Length of segments had mean values of 1.55s, mean value of net area of the corresponding 
segments length in ES is 0.2672, respectively. Most segments clustered near these means, suggesting typical 
lag durations around 1.55 seconds. However, some segments extended beyond 7 seconds, reflecting 
variability in the AI’s responsiveness to diverse environmental challenges. 

5.3 Evidence Accumulation 

To investigate how environmental change affects belief update process, we analyzed segments in which 
drones begin to accumulate evidence until a behavioral change occurs. Figure 6 illustrates this process, 
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labeling the different starting points of the evidence accumulation period (T0), the belief update point (T’) 
and the end point (T), with the dashed shaded area quantifying the total amount of accumulated evidence. 
The blue dashed shaded area represents the total amount of evidence required to update the beliefs, and 
the green dashed shaded area indicates that the beliefs are updated and continue to accumulate evidence 
until the agent makes an action, which is directly represented as a dramatic change in the drone behavior 
curve BC. The analysis shows that changes in accumulation duration correlate with the intensity of 
environmental change. Shorter durations were associated with more significant environmental change, 
indicating faster evidence accumulation and behavioral adjustment.

 

Figure 6: Evidence accumulation and belief update. 

5.4 Regression Analysis and Corrections of Belief Updates 

By categorizing evidence accumulation fragments and comparing their duration (ΔT) to the strength of 
environmental changes (ES Diff), an inverse relationship was identified (Figure 7). Specifically, stronger 
environmental disturbances correspond to faster evidence accumulation, resulting in more rapid belief 
updating. Initially, a linear regression was applied to the original dataset (red line). Subsequently, outliers 
were identified and excluded through threshold correction using the 𝜀௘ parameter, calibrated from human 
experimental data. The corrected dataset (blue dots) provided an enhanced linear regression fit (blue line), 
demonstrating improved accuracy and robustness. This refined model highlights the UAV’s capability to 
rapidly update its beliefs when faced with significant environmental changes, thereby reflecting effective 
adaptability. 

The Bayesian approach (9) also underscores that not all belief updates immediately lead to observable 
behavioral changes, mirroring human cognitive processes. The calibrated 𝜀௘′ threshold enhances the AI 
agent’s ability to discriminate effectively between significant and insignificant environmental changes, 
thereby balancing sensitivity with operational stability. 
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Moreover, as illustrated in Figure 6, evidence accumulation continues even after the belief has been 
updated (green shaded area), preparing the drone for subsequent behavioral adjustments. This two stage 
accumulation process, including intervals both before and after the belief update, emphasizes the necessity 
for dynamically adjusting the 𝜀௘′ threshold. Such dynamic calibration ensures timely and stable drone 
responses in rapidly changing scenarios. For instance, as demonstrated in Figure 7, when an environmental 
change of approximately 30% is detected within a given timeframe, the refined regression model provides 
guidance for accurately timing belief updates and associated behavioral responses, which is an essential 
aspect of successful mission accomplishment in complex operational environments, such as search and 
rescue scenarios. 

Figure 6: Inverse relationship between evidence accumulation duration and environmental change 
intensity with 𝜀௘

ᇱ   threshold correction. 

 

6 CONCLUSION 

This study investigates the belief update processes of autonomous AI systems, particularly drones 
navigating dynamic environments, by integrating Bayesian inference, evidence accumulation models, and 
Dynamic Time Warping (DTW) analysis. A critical finding is the consistent significance of the 
environmental score (ES) coefficient 𝜆ଵ, linked to wind conditions, underscoring the model’s robustness in 
prioritizing vital environmental factors. Such stability is indispensable for high risk scenarios like search 
and rescue, where accurate and timely decisions significantly enhance operational effectiveness. 
Furthermore, analysis of the evidence accumulation process revealed an inverse relationship between the 
intensity of environmental disturbances and the duration of belief updates. Specifically, substantial 
environmental changes triggered rapid belief updates, while minor disturbances resulted in slower, more 
measured evaluations, effectively balancing responsiveness and stability. Despite these strengths, outliers 
in the data exposed the AI’s limitations in managing abrupt or unfamiliar conditions, suggesting the need 
for improved generalization capabilities. 
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Addressing limitations inherent in single threshold models, this study introduced a dual threshold 
framework by incorporating a secondary threshold (𝜀௘

ᇱ ) calibrated with human experimental data. This 
innovative approach differentiates internal belief updates from externally observable behaviors, thus 
aligning AI cognitive patterns more closely with human reasoning processes. By clearly distinguishing 
significant environmental changes, the calibrated dual threshold framework enhances the AI system’s 
ability to respond efficiently without unnecessary or premature actions, which is crucial for maintaining 
operational stability and effectiveness. 

Despite its promising outcomes, the study’s reliance on simulation environments and human derived 
calibration data introduces limitations regarding real world generalizability. Therefore, future research 
should prioritize empirical validation in diverse, real world settings, further refine adaptive threshold 
mechanisms, and expand the framework to multi-agent systems for improved scalability and reliability. 
Overall, this research significantly advances our understanding of AI belief update mechanisms by 
explicitly capturing the distinction between internal cognitive processes and observable actions. The 
proposed framework establishes a strong foundation for developing intelligent, transparent, and trustworthy 
AI systems, enhancing their capability for meaningful and effective collaboration in complex, dynamic, 
and uncertain environments. 
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