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ABSTRACT

Effective decision-making for autonomous drones relies on timely belief updating, yet the mechanisms
governing this process in Al under uncertainty are poorly understood. This study presents a framework
integrating Bayesian inference, evidence accumulation theory, and Dynamic Time Warping to analyze
belief updating in autonomous agents. In simulated urban search and rescue scenarios, we demonstrate that
drones consistently prioritize key environmental variables like wind conditions. We also find the duration
of belief updates is inversely related to the magnitude of environmental change, mirroring adaptive human
cognition. A novel dual-threshold model separates internal belief shifts from observable actions, offering a
clearer interpretation of the agent’s internal state. Our approach contributes to developing more transparent,
adaptive, and cognitively aligned Al for complex, high-stakes environments.

1 INTRODUCTION

Agent based simulations are widely utilized across various domains including disaster response,
autonomous navigation, infrastructure management, and industrial systems due to the inherent complexity
of real-world scenarios and the necessity of robust decision-making (Chen et al. 2022, Binz and Schulz
2023, Hagendorff et al. 2023). Such simulations uniquely enable the capture of agent behaviors under
uncertainty and partial observability, offering insights often missed by traditional methods. However,
current analytical approaches largely overlook the internal cognitive processes of simulated agents,
particularly their belief updating mechanisms (Gunning and Aha 2019). Belief updating refers to an agent’s
continuous internal revision of its understanding of the environment based on incoming data, profoundly
influencing its decisions. Existing analytical methodologies predominantly emphasize observable agent
outcomes or external performance metrics, thus inadequately capturing the complexity of these internal
cognitive dynamics (Kawato and Cortese 2021).

With advancements in computational capabilities, breakthroughs in deep reinforcement learning and
cognitive modeling, along with progress in high-performance simulation platforms and multi-source data
acquisition methods, agent-based simulations have rapidly advanced, achieving substantial improvements
in complexity and realism. Nevertheless, a critical gap remains in methodologies explicitly designed to
analyze internal agent cognition. Current analytical approaches primarily focus on observable agent
outcomes, often neglecting systematic investigation into the timing and triggers of internal belief
transitions. This lack of transparency may undermine trustworthiness, reliability, and the effectiveness of
human-Al interactions, particularly within safety-critical applications (Rago and Martinez 2024).

This study proposes a simulation based analytical methodology explicitly targeting the hidden belief
updating processes within agent based simulations. The proposed method integrates Bayesian inference to
quantify uncertainty, Dynamic Time Warping (DTW) to analyze temporal relationships between
environmental stimuli and agent responses, and evidence accumulation modeling using Ornstein-
Uhlenbeck process (Pisauro et al. 2017). Additionally, a dual threshold Bayesian calibration informed by
human subject experimental data effectively differentiates observable behavior changes from subtle internal
cognitive recalibrations.
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We present a framework that uncovers how Al agents update beliefs, focusing on when internal shifts
occur and how they relate to observed actions and environment. To do this, we apply DTW to reveal hidden
delays between environmental changes and agent responses, showing when cognitive states start to shift.
We also use evidence accumulation modeling with dual Bayesian thresholds to distinguish subtle internal
recalibrations from clear behavioral changes. Validated through drone simulations in urban search and
rescue scenarios, this approach can improve the clarity of agent based simulations by making formerly
inaccessible belief processes more visible. It also increases robustness and reliability in complex
environments and supports deeper human Al alignment in high-stakes operational settings. Figure 1 shows
the overall framework of our metacognitive calibration research, the paper mainly focuses on belief update
stage.
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Misalignments happen during perception Ac (observing the environment), belief Af (guessing the state
of the environment), valuation Ay (assigning importance weights to conflicting sub-objectives), and
metacognitive calibration AG. Human-Al mistrust 6 = f (Ac, AB, Ay, A6).

Figure 1: Overview of metacognitive calibration framework.

2 RELATED WORK

Belief updating is a fundamental component of decision making in both human cognition and artificial
intelligence (Al), enabling agents to adjust their internal understanding in response to new information
(Anderson 1991). Humans accomplish this by intuitively integrating prior knowledge, heuristics, and
cognitive biases, which allows effective adaptation under uncertainty (Fromer and Nassar 2023). However,
translating such human-like flexibility into Al systems is difficult because Al relies on explicit algorithms,
lacks innate intuitive reasoning, and must manually incorporate contextual information (Adadi and Berrada
2018). Bayesian inference offers a rigorous way to model belief updating by combining prior beliefs with
incoming evidence (Bissiri et al. 2016, Khalvati et al. 2021), yet it frequently encounters computational
challenges in high dimensional environments. Approximate methods such as variational inference or
Markov Chain Monte Carlo can mitigate these challenges but may introduce errors (Charniak 1991, Korb
and Nicholson 2010), and accurately defining prior distributions remains challenging, especially in
scenarios characterized by sparse or noisy data (Murphy 2012).

In dynamic and uncertain environments, belief updating becomes even more demanding. Humans
employ heuristics and contextual cues effectively but can experience performance declines under cognitive
overload (Byyny 2016). Traditional Al approaches, such as Kalman and particle filters, are useful for state
estimation yet often require complete and accurate models of the environment, a condition seldom realized
in real world scenarios (Thrun 2002, Simon 2006). These methods are also computationally intensive and
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tend to be algorithmically rigid, limiting their adaptability compared to human intuition (Kaelbling et al.
1996). Explainable Al (XAI) methods aim to enhance transparency in Al decision making processes, but
current techniques like feature attribution, saliency mapping, and rule extraction focus on static or post-hoc
explanations (Adadi and Berrada 2018, Rudin 2019). Although recent “chain-of-thought” methodologies
illustrate intermediate reasoning steps, they remain primarily descriptive and do not quantitatively capture
how beliefs change over time (Kojima et al. 2022).

Conceptualizing Al agents as cognitive entities capable of continuous belief formation, updating, and
revision enhances transparency and adaptability, particularly within critical application domains such as
USAR mission (Hassabis et al. 2017, Lake et al. 2017). By grounding Al methodologies in cognitive theory,
researchers can refine real time belief tracking and enhance the interpretability of Al decision making,
ultimately leading to more robust human Al collaboration in complex, rapidly evolving scenarios. In the
following section, we build upon these perspectives by introducing a framework that systematically
captures belief updates over time, leveraging Bayesian inference, temporal alignment, and evidence
accumulation to address the limitations identified in previous research.

3 METHODOLOGY

This paper introduces a methodology aimed at analyzing and interpreting internal cognitive belief updating
processes of autonomous agents operating within dynamic, partially observable environments through
agent-based drone simulations. The approach integrates several quantitative techniques: Bayesian inference
for uncertainty quantification, Dynamic Time Warping (DTW) for temporal alignment analysis, and
evidence accumulation modeling via Ornstein-Uhlenbeck processes (Pisauro et al. 2017). Additionally, a
dual-threshold Bayesian calibration technique informed by empirical human-subject experimental data is
applied to differentiate observable behavioral shifts from latent cognitive recalibrations.

3.1 Environmental Score Formulation

The first step of our methodology involves defining an Environmental Score (ES), a quantitative measure
representing the environmental conditions perceived by the agent at any given time. The ES encapsulates
multiple environmental features such as wind intensity and obstacle density. It is calculated through a linear
combination of normalized environmental factors:

>t >t -t >t 2t
AVying * Varone + 2 |Avwind X vdronel _ 2 |Sbld (1)
Ref; 2 Ref, 3 Refy

A, measures how significantly crosswind influences drone perception of the environment, A,
measures the effect of tailwind, A3 measures the drone’s perceived importance of distance from buildings.

ES(t) = A

Belief updates are triggered when the environmental score surpasses a predefined threshold (&,):

t+At
Bt+tAt — Bt =+ 0,when f (EStHAt —ESH) dt > e,. (2)

t
3.2 Bootstrapping and Environment Score Fitting

To obtain the threshold value of epsilon corresponding to the environmental score triggering Al behavior
change, we first determine a set of coefficients A;,1,, 5. These coefficients correspond to when a change
in the drone’s behavior is detected. By substituting them into ES(t), the functional trend of ES(t) should
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align with the drone behavior function. In other words, when a behavior change (BC) occurs, it must
correspond to a significant change in the environment.

Before proceeding, both BC(t) and ES(t) are normalized to ensure consistency in scale and remove
any bias due to magnitude differences. The normalization is performed by transforming each function f(t)
(both BC(t)and ES(t)) as follows:

f(t) - fmin
fmax - fmin '

Next, we detect the significant change in Al decisions. In the context of autonomous drone control for
USAR, this corresponds to noticeable changes in the drone’s navigation behaviors, specifically the change
in heading between consecutive timestamps (denoted A8%). A behavior change is recorded if AG¢ > &,
where g, is the direction angle threshold (derived from the mean value plus or minus twice the standard
deviation). Once all significant heading changes are identified, 20% of these points are randomly sampled
(Ng = 0.2 N, where N is the total number of significant change points) to ensure a representative subset for
coefficient fitting.

As part of the fitting process, we adjust 14,4, A3 so that the normalized ES(t) curve matches the
normalized BC (t)curve at each sampled point. Formally, this is achieved by minimizing:

fnorm(t) = 3)

min (Zte (BC'(®) —ES'®) +a - (] + 1Al + 144]) ) 4)

A1 2 23

Where S is the set of sampled points, BC'(t) and ES'(t) are the normalized results of BC(t) and
ES(t), a is regularization strength, controlling the impact of L1 regularization, penalize large coefficients
to prevent overfitting. After A4, 4,, A3 for each sampled point, the final values are computed by averaging
over all samples:

' 1 . 1 . 1
A{lnal _ FZ M(D); Aglnal _ EZ L0); ﬂgmal — EZ A3(t). (5)

Stes tes tes

33 Evidence Accumulation Estimation

According to evidence accumulation theory, even small, instantaneous environmental changes can be
sufficient to update a decision maker’s belief (Drugowitsch et al. 2015, Forstmann et al. 2016, Friston et al.
2017). We model this accumulation of evidence (AE) using an Ornstein-Uhlenbeck process (Pisauro et al.
2017) to estimate the time t at which AE leads to a behavior change BC(t). Formally:

AE() —AE(t—1) = [1-AE(t— 1) + k- (ES(t) —ES(t — 1))] - dt + N(0,0).  (6)

Where A represents the leak strength of the process, k modulates the input from ES(t), and N(0, o) is
Gaussian noise. Whenever a behavior change occurs, we reset AE (t) to zero and reapply (6) until |AE (t) —
AE(t — AT)| > &,. Then the time duration of evidence accumulation is [* = AT . &, is the threshold to
determine the amount of AE those triggers BC in our idealized scenario (The action will change once the
belief has changed). We use (7) to quantify &,. It provides a measure of how different the aligned curves
are over time. Where t, is the start time point of vertical segment in DTW best path line, the lag is the
duration of the vertical segment of the best path in the DTW figure (Figure 2), which means the phase
difference of the 8¢ curve advance to sc curve. Integer i is the index of each vertical segment in DTW best
path.
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Figure 2: Schematic representation of lag periods in dynamic time warping analysis.

3.4  Bayesian Threshold Adjustment

The threshold €, , which determines when the Al updates its belief and makes a decision, was estimated
using a Bayesian model. Given that not all belief updates lead to observable changes in the drone’s actions,
the Bayesian approach assumes that the conditional probability of a belief update leading to a change in
action A(t), denoted by A(t)|B(t), is analogous to how humans update beliefs. Through human subject
experiments, participants were asked to verbalize their belief updates during decision making scenarios.
From these observations, we estimated the AI’s probability of belief update P(B®)as follows:

p(A(t)B(t))

Oy = 7
P(BW) P(AD[50)’ (8)
Finally, the true value of &, was adjusted based on the calculated probability of belief update:
ey = g, P(BD). (9)
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4 EXPERIMENT

4.1 Simulation Environment

We developed a sophisticated Unity based simulation environment, featuring a detailed DJI Mavic 2 Pro
drone navigating a realistically modeled urban landscape of Manhattan based on our previous studies (Sun
et al. 2025, Wu et al. 2025). The simulation accurately represents drone physics, including mass, velocity,
and aerodynamic interactions, and incorporates dynamic environmental conditions such as variable wind
fields and complex urban obstacles. Specifically, wind fields were simulated using a simplified
aerodynamic representation method derived from computational fluid dynamics (CFD) models. This
approach quantifies wind interactions around urban structures by creating distinct wind zones with varying
intensities based on proximity to buildings, enabling efficient simulation of realistic wind scenarios.
Reinforcement learning methods, specifically utilizing Physics Informed Neural Networks (PINN), were
integrated into the simulation to enable autonomous drone navigation and generate robust and realistic
interaction data for analysis.

4.2 Autonomous Drone Control and Perception Modules

The drone’s autonomous navigation capabilities were developed using a Multi-Objective Reinforcement
Learning approach based on the Proximal Policy Optimization (PPO) algorithm. This approach optimizes
the drone’s decision making by integrating real time environmental feedback to balance multiple conflicting
objectives such as path efficiency, obstacle avoidance, and wind resistance. To enhance human drone
interaction, we incorporated a Perception Sharing (PS) module using virtual reality (VR) and haptic
feedback systems. This allowed human operators to intuitively perceive the drone’s environmental
conditions, such as wind strength and direction, facilitating real time informed decision making and
interactive control adjustments during drone operations.

4.3  Human Experiment

A diverse sample of 30 participants interacted with the simulation, marking environmental changes, and
influencing drone strategies, thus contributing to threshold estimation (&,') based on human cognitive
patterns.

Application
Menu Hair Trigger

Touchpad

System
Menu

Axis

Grip

Figure 3: Experimental setup and experimental equipment.
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The demographic information presented in Table 1 illustrates the diversity and composition of our
participant sample, ensuring transparency about the subject population involved. Although demographics
were not explicitly analyzed as influencing factors in belief updating, clearly reporting these details
demonstrates the representativeness and robustness of our experimental procedure.

Table 1: Demographic information about the subjects.

Number Percentage
Gender Male 22 73.33%
Female 8 26.67%
18-24 8 26.67%
Age Group | 25-30 21 70.00%
31 and older 1 3.33%
Civil, Transportation, Construction 18 60.00%
Major Computer Science, Computer Engineering 7 23.33%
Psychology 5 16.67%
5 RESULTS

This section investigates the Al’s internal belief update mechanism by examining how Environmental
Scores (ES) relate to observable Drone Behavior Changes (BC). Experimental data were collected from a
drone agent pre-trained via the Multi-Objective Reinforcement Learning (MORL) framework within a
Unity based simulation environment. The drone was tasked with navigating to a target location in a highly
detailed, 1:1 scale simulated urban environment of Manhattan, chosen specifically for its complexity and
realistic representation, which requires effective obstacle avoidance and adaptability to severe conditions,
especially strong wind. Each drone trajectory was repeated 30 times across four distinct testing scenarios
to ensure statistical stability and consistency in Al behavioral responses. The subsequent analysis aims to
elucidate the temporal dynamics of the Al’s belief updating, clarify the relationship between environmental
perception (ES) and action decisions (BC), and provide detailed statistical insights into these cognitive
processes.

5.1 Data Preprocessing and Preliminary Results

Environmental and behavioral data were recorded at a frequency of 50 Hz in Unity and underwent
preprocessing to enhance analytical clarity. Initially, drone behavioral change (BC) and environmental
interaction variables in (1) were smoothed using the Savitzky-Golay filter to mitigate high frequency noise
while preserving essential data trends. Subsequently, the data were Min-Max normalized within a [0,1]
range to standardize magnitude variations.

We optimized a linear combination model of environmental scores (ES) using L1 regularization,
determining optimal weight coefficients (44,1,,43) to best fit ES to BC. Figure 4 presents comparison
between environment score and drone behavior Change. L1 regularization prevented over fitting, ensuring
model stability across diverse scenarios. Figure 5 presents the optimized coefficients for ES across all
trajectories, indicating stable coefficients within a certain range (mean values: 1,=0.51, 1,=0.33, 15=0.23).
A, exhibited the greatest influence (47.9%), followed by 4, (30.6%), and A3 (21.5%). The dominance of 1;
suggests that sidewind speed significantly influences the ES, overshadowing obstacle complexity and other
environmental factors.

The temporal relationship between ES and BC (after optimization and normalization) revealed that
peaks in ES consistently precede significant behavioral changes. This pattern underscores the Al’s
capability to recognize environmental shifts before making behavioral adjustments, highlighting a reaction
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lag between environmental perception and behavior change. To clarify the dynamics of this lag, DTW
analysis was conducted. DTW adeptly handles temporal misalignment analysis, identifying the optimal
alignment path between ES and BC. The method also emphasizes “lag periods”, time intervals in which the

Al accumulates evidence but does not immediately change its behavior, suggesting that there is a phase of
evidence accumulation before action is taken.

100% .
— Environmental Score
80% — Drone Behavior Change
o
60%
40%

20%
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10s 20s 30s 40s 50s
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Figure 4: Example of comparison between environment score and drone behavior change.
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Figure 5: Distribution of optimal weight coefficients (A1, A2, A3) and lagged periods indicated by DTW
analysis on given weight coefficients.

5.2 Statistical Analysis and Threshold Determination

Statistical properties of vertical segments (as lagged periods indicated by DTW analysis) are presented in
Figure 5. Length of segments had mean values of 1.55s, mean value of net area of the corresponding
segments length in ES is 0.2672, respectively. Most segments clustered near these means, suggesting typical
lag durations around 1.55 seconds. However, some segments extended beyond 7 seconds, reflecting
variability in the AI’s responsiveness to diverse environmental challenges.

5.3 Evidence Accumulation

To investigate how environmental change affects belief update process, we analyzed segments in which
drones begin to accumulate evidence until a behavioral change occurs. Figure 6 illustrates this process,
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labeling the different starting points of the evidence accumulation period (T0), the belief update point (T”)
and the end point (T), with the dashed shaded area quantifying the total amount of accumulated evidence.
The blue dashed shaded area represents the total amount of evidence required to update the beliefs, and
the green dashed shaded area indicates that the beliefs are updated and continue to accumulate evidence
until the agent makes an action, which is directly represented as a dramatic change in the drone behavior
curve BC. The analysis shows that changes in accumulation duration correlate with the intensity of
environmental change. Shorter durations were associated with more significant environmental change,

indicating faster evidence accumulation and behavioral adjustment.
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Figure 6: Evidence accumulation and belief update.

5.4 Regression Analysis and Corrections of Belief Updates

By categorizing evidence accumulation fragments and comparing their duration (AT) to the strength of
environmental changes (ES Diff), an inverse relationship was identified (Figure 7). Specifically, stronger
environmental disturbances correspond to faster evidence accumulation, resulting in more rapid belief
updating. Initially, a linear regression was applied to the original dataset (red line). Subsequently, outliers
were identified and excluded through threshold correction using the £, parameter, calibrated from human
experimental data. The corrected dataset (blue dots) provided an enhanced linear regression fit (blue line),
demonstrating improved accuracy and robustness. This refined model highlights the UAV’s capability to
rapidly update its beliefs when faced with significant environmental changes, thereby reflecting effective
adaptability.

The Bayesian approach (9) also underscores that not all belief updates immediately lead to observable
behavioral changes, mirroring human cognitive processes. The calibrated &,’ threshold enhances the Al
agent’s ability to discriminate effectively between significant and insignificant environmental changes,

thereby balancing sensitivity with operational stability.
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Moreover, as illustrated in Figure 6, evidence accumulation continues even after the belief has been
updated (green shaded area), preparing the drone for subsequent behavioral adjustments. This two stage
accumulation process, including intervals both before and after the belief update, emphasizes the necessity
for dynamically adjusting the €.’ threshold. Such dynamic calibration ensures timely and stable drone
responses in rapidly changing scenarios. For instance, as demonstrated in Figure 7, when an environmental
change of approximately 30% is detected within a given timeframe, the refined regression model provides
guidance for accurately timing belief updates and associated behavioral responses, which is an essential
aspect of successful mission accomplishment in complex operational environments, such as search and
rescue scenarios.
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Figure 6: Inverse relationship between evidence accumulation duration and environmental change
intensity with &, threshold correction.

6 CONCLUSION

This study investigates the belief update processes of autonomous Al systems, particularly drones
navigating dynamic environments, by integrating Bayesian inference, evidence accumulation models, and
Dynamic Time Warping (DTW) analysis. A critical finding is the consistent significance of the
environmental score (ES) coefficient 44, linked to wind conditions, underscoring the model’s robustness in
prioritizing vital environmental factors. Such stability is indispensable for high risk scenarios like search
and rescue, where accurate and timely decisions significantly enhance operational effectiveness.
Furthermore, analysis of the evidence accumulation process revealed an inverse relationship between the
intensity of environmental disturbances and the duration of belief updates. Specifically, substantial
environmental changes triggered rapid belief updates, while minor disturbances resulted in slower, more
measured evaluations, effectively balancing responsiveness and stability. Despite these strengths, outliers
in the data exposed the Al’s limitations in managing abrupt or unfamiliar conditions, suggesting the need
for improved generalization capabilities.
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Addressing limitations inherent in single threshold models, this study introduced a dual threshold
framework by incorporating a secondary threshold (&) calibrated with human experimental data. This
innovative approach differentiates internal belief updates from externally observable behaviors, thus
aligning Al cognitive patterns more closely with human reasoning processes. By clearly distinguishing
significant environmental changes, the calibrated dual threshold framework enhances the Al system’s
ability to respond efficiently without unnecessary or premature actions, which is crucial for maintaining
operational stability and effectiveness.

Despite its promising outcomes, the study’s reliance on simulation environments and human derived
calibration data introduces limitations regarding real world generalizability. Therefore, future research
should prioritize empirical validation in diverse, real world settings, further refine adaptive threshold
mechanisms, and expand the framework to multi-agent systems for improved scalability and reliability.
Overall, this research significantly advances our understanding of Al belief update mechanisms by
explicitly capturing the distinction between internal cognitive processes and observable actions. The
proposed framework establishes a strong foundation for developing intelligent, transparent, and trustworthy
Al systems, enhancing their capability for meaningful and effective collaboration in complex, dynamic,
and uncertain environments.
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