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ABSTRACT

The cyber vulnerability terrain is largely amplified in critical infrastructure systems (CISs) that attract
exploitative (nation-state) adversaries. This terrain is layered over an IT and IoT-driven operational
technology (OT) network that supports CIS software applications and underlying protocol communications.
Usually, the network is too large for both cyber adversaries and defenders to control every network resource
under budget constraints. Hence, both sides strategically want to target ’crown jewels’ (i.e., critical network
resources) as points of control in the IT/OT network. Going against traditional CIS game theory literature
that idealistically (impractically) model attacker-defense interactions, we are the first to formally model
real-world adversary-defender strategic interactions in CIS networks as a simultaneous non-cooperative
network game with an auction contest success function (CSF) to derive the optimal defender strategy at
Nash equilibria. We compare theoretical game insights with those from large-scale Monte Carlo game
simulations and propose CIS-managerial cyber defense action items.

1 INTRODUCTION

The modern critical infrastructure systems (CISs) such as an electric power grid, and a manufacturing planet
are equipped with IT and IoT/CPS driven operational technology (OT) to promote increasingly proactive
and data-driven approach to managing industrial operations. The primary (overlapping) benefits for CIS
management to invest in such technology include: (a) real-time monitoring, response, and (automated)
decision control of industrial and business processes, (b) improved operational visibility and asset tracking
complementing remote work environments, (c) predictive sensor data driven maintenance to improve system
reliability and equipment/process quality control, (d) data-driven energy optimization for reduced business
operation costs, and (e) improved environmental, operational, and equipment safety to mitigate hazard
externality and physical damage to people and equipments. It is not surprising then that the global IoT/CPS
driven CIS market is projected (by Statista) to reach USD 275 billion by 2025, and to USD 450 billion by
2029 at a high CAGR of around 13.5%.

1.1 Cybersecurity Challenges in CISs

While on one hand, the IT and OT technology convergence brings in a large number of systems management
benefits, it opens up a huge cyber vulnerability terrain spanned by hundreds and thousands of sensor and
actuator devices. More specifically, large and complex (distributed) communication networks formed
by sensor/actuator equipped CIS physical equipment have multiple critical vulnerable points in them.
Research in applied computer science theory on systems networks have shown that in the worst case it is
computationally infeasible to decipher all these critical points within practical time constraints (Pal et al.
2023; Pfleeger and Cunningham 2010; Pal et al. 2021; Pal et al. 2024). Add to this, budget constrained
CIS managements (Dewri et al. 2007) in general are yet to invest a sufficient amount in cyber protection
solutions and processes - partly because of their lack of awareness on cyber (increasing but insufficient) for
a relatively new digitally new CIS industry. Moreover, there is a lack of seamless and easy-to-understand
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cyber risk KPIs across top-down CIS management to enable the board and upper management to approve
increased expenditure on cybersecurity improvement and cyber risk management. As a consequence a
CIS is exposed to a considerable exploitation risk of zero-day or other unknown-known vulnerabilities.
As examples (Stamp et al. 2009; Ten et al. 2011; Wang et al. 2013), adversaries could exploit such
vulnerabilities to (a) gain root access of Human Machine Interface (HMI) devices in smart grid LANs
operators to destabilize various aspects and critical parameters of the electrical system, including voltage
levels, power flow, and circuit breaker status, (b) launch man-in-the-middle (MiTM) attacks to modify or
falsify control data flow on communication links.

1.2 Cyber Risk Management Challenges in CISs

The fundamental requirement for CIS management en route effective and practically deployable cyber risk
management (CRM) is to understand the series of sequential steps that adversaries use to launch different
types of cyber attacks on ICS infrastructure. Such knowledge is usually obtained (a) from domain experts in
the ICS industry, and/or (b) a well documented central database (designed) and maintained by organizations
such as MITRE through their popular MITRE ATT&CK for ICS database that is leading database of tactics,
techniques, and procedures (TTPs) populated from real-world observations over multiple ICS industries
around the USA and the world.

Having gathered such information, an important step for both adversaries and defenders is to identify
which resources within a CIS to target and how much budget to expend on them to execute the above-
mentioned cyber attacks so as to gain high attack/defense impact in the CIS. This step is a challenge to both
the cyber attack and the defense sides of a CIS because they are budget constrained - more so, the defender
side. Alternatively, there is no sufficient budget to attack/defend all the possible resources of a CIS, and
investing too little a budget to all resources may not serve the purpose in gaining control of the resource.
Hence, the important strategic challenge question: how should cyber risk managers allocate cyber defense
(protection) budgets to CIS resources, i.e., the ‘crown jewels’ so as to maximize cybersecurity within a
CIS, given that CIS adversaries will also deploy a similar allocation mindset?

The answer to this question has implications to cyber risk management in general as it provides (a) a
systematic recipe for engineering management of a CIS to spend its cyber protection budget on the most
important resources, and (b) a simple quantitative and comparative way for the engineering management of
a CIS to communicate with the upper management of to what extent different resource allocation strategies
(i.e., strategic versus non-strategic) translate to business KPI in cyber adversarial environments, (c) a
contribution to a more streamlined system-dependent (in contrast to being general) questionnaire (when
compared to the status quo) cyber insurance companies provide their (potential) clients before deciding on
coverage/pricing contractual parameters for CIS cyber risk management (CRM).

1.3 Research Motivation and Contributions

In this section we state our research motivation and lay down our contributions.

Research Motivation - Resource prioritization to make CIS more cyber resilient is not new in the
practical industry. It is common knowledge from IT/OT consulting leaders such as Dragos that ‘crown
jewels’ prioritization for improved cyber defense is popular in modern critical infrastructure settings.
However, even for such systems the challenge is to ensure that cyber defense (protection) investments
are apt, specifically in the presence of adversarial strategies - the logic behind such aptness has not been
documented in industry reports. Alternatively, it is common knowledge that IT/OT cyber risk managers
will protect certain critical CIS resources, but so will the adversaries. What is not clear is how does
such a ‘fist fight’ between a defender and an adversary over CIS resources drive the optimal defender
investments in cyber defense? - after all one could defend certain resources, but could be out-defended
on the same resources by adversaries. In addition, in existing I'T/OT cybersecurity literature the above-
mentioned aptness logic has not been exhibited over the cyber vulnerability terrain that is layered over
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an IT and operational technology (OT) network that supports CIS software applications and underlying
protocol communications. In other words, how does an underlying CIS network topology play a role in the
amount of cyber defense investments under adversarial settings? It is evident that successfully defending
certain topologically ‘important’ nodes will have a variable, non-linear, and non-monotonic effect on the
overall cybersecurity of the network, when compared to some other network nodes. In this paper, we are
motivated to answer these two questions.

Research Contributions - We make the following research contributions in the paper.

*  We propose a simultaneous, non-cooperative, and single shot adversary-defender game over an IT/OT
CIS network topology where we assume that (a) the adversary is able to get sufficient leverage
even if it successfully compromises one node in the network - such a scenario is common to
malware-driven cyber attacks on critical infrastructure (e.g., ICSs) where a single-node compromise
(e.g., such as in the Colonial Pipeline cyber incident of 2021) is enough to cause significant business
service disruptions over time, and (b) the defender is interested to protect all nodes in the network
- however may not have sufficient budget to protect all the nodes with success (i.e., an adversary
might win control in a node battle despite a defender investing in cyber protection on the same
node). The game is modeled over the practically realistic auction contest success function (CSF)
that determines (as a function of adversary-defender investments on nodes) whether the adversary
or the defender wins control over any network node (see Section 3).

*  We analyse our proposed game in theory to derive and understand the Nash equilibria with respect to
the amount of cyber defense investments on network nodes. Our closed form analysis on arbitrary
network topologies (applicable on networks with no K4 subgraph embeddings) reveals that the
optimal and single cyber attack strategy at a mixed strategy Nash equilibria (that always exist for
any non-cooperative game with closed and bounded strategy spaces) is always to spend resources
on a single network node - except that this node is unknown to the defender and randomizes with
the attacker (due to the mixed nature of Nash equilibria), and the defender needs to distribute its
cyber protection (defense) resources to all nodes in the network. This type of game representing
a randomized guerilla warfare strategy outcome is very practical based on multiple studies by the
authors on how adversaries compromise CISs (see Section 4).

* The analysis in Section 4 showcases the insight on what is the best strategy for the adversary and
defender in the game of CIS network control - however it does not state the impact of the network
type and the player strategies on the degree of network cybersecurity. In Section 5, we design an
extensive Monte Carlo simulation framework to understand how attacker and defender strategies in
tandem affect the cybersecurity strength of a CIS IT/OT network that is defined as the number of
network nodes that are compromised in an adversary-defender contest of control over the network.
We assume (based on inputs from industry reports and personnel) that the randomized guerilla
warfare strategy as the Nash equilibrium attacker strategy is spread across a few central nodes,
i.e., ‘crown jewels’, of the CIS network, and the defender allocates its budget to a (overlapping)
subset of central nodes of the CIS network. We study the influence of (a) the CIS network topology
and (b) attack-defense investments on central network nodes, on network cybersecurity, and draw
action items for CIS managers for effective strategic cyber defense (see Section 5).

We discuss related work in Section 2 and summarize our paper in Section 6.

2 RELATED WORK

In this section we briefly discuss existing work related to the game-theoretic setting in our research: (i)
type of the non-cooperative network game fitting our CIS cybersecurity environment, (ii) sequence of game
play between the players of the CIS network game, and (iii) decision logic on how control over a network
node can be won by a player.
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Type of Non-Cooperative Network Game - We start with emphasizing that the adversary-defender
game on CIS networks is not an interdependent security game on networks, for which there is a huge
amount of literature available (Laszka et al. 2014). In such games, each network node is a player whose
selfish non-cooperative motive to invest in its own cyber protection influences such investments of other
interdependent players in the network and the cybersecurity of the entire network. In contrast, in our
research the CIS network is owned by a single enterprise (player) and is the target of an adversary, i.e.,
our research deals with a two-player game, unlike that in an interdependent network security game. In our
game, each player aims to gain control over some (or all) nodes of the network. Such games have been
modeled for critical infrastructure in the form of Blotto games, that have appeared in (Dziubinski 2013; Hart
2008; Macdonell and Mastronardi 2015; Roberson 2006; Thomas 2018; Weinstein 2012). These games
aptly model the budget constraints of the two players on attack/defense investments in system resources -
however, unlike this work, they do not model the (CIS) network and its not feasible in cyber space to know
budget of one player in practice by the other.

Sequence of Play - Even for such two-player games, it is often the case that academic models
in CIS networks (and in general overall) represent the adversary-defender interactions as a sequential
game, where the defender (leader) moves first with the intention to maximize cyber protection, and the
attacker (follower) moves second to maximize the damage atop this defender move. This results in the
sequential game being formalized as a multi-level mathematical optimization problem (Arroyo and Galiana
2005; Salmeron et al. 2009; Yao et al. 2007; Acemoglu et al. 2016; Goyal and Vigier 2014; Pal and
Prasanna 2016). In our opinion this is an highly idealized setting for CISs, with no empirical or corporate
evidence that cyber adversaries want to maximize damage and defenders want to minimize damage (as their
intention). Moreover, sequential two-player games in cyber settings are ones with incomplete and imperfect
information, and (approximably) optimizing player strategies in such games is computationally intractable
as the network scale grows (Daskalakis et al. 2009; Daskalakis 2013; Daskalakis and Papadimitriou 2015).
Hence, it is not even clear that the outcome of trying to solve such computationally difficult problems in
informationally uncertain adversarial CIS environments is useful enough when compared to the resource
cost needed to solve such problems. Finally, and most importantly, based on multiple industry reports and
communication with industry, this is not the way CIS defenders are strategically protecting their IT/OT
networks. In practice, defender strategy (led by an enterprise cyber risk management team) strategically
invests in cyber defense of certain ‘crown jewels’ in the CIS network whose information is incomplete to
the adversary, and the latter having some CIS environment knowledge (e.g., when adversary is launching an
APT attack) decides to attack an overlapping set of such ‘crown jewels’, whose knowledge is incomplete to
the defender. This sequence repeats in rounds with feedback. In this paper we study a single game round.

Decision Logic of Player Node Control - Auction based node control has typically been one popular
method of deciding resource (node) control among players of an attack-defense game. Winner-pay, chopstick-
pay, and all-pay auctions for such a decision task has been proposed in (Ewerhart 2017; Ewerhart 2022;
Szentes and Rosenthal 2003a; Szentes and Rosenthal 2003b; Siegel 2009). The auction winning success
functions, popularly known as contest success functions (CSFs) are either deterministic or randomized. In
the deterministic case, a player wins control of a resource (node) if its investments are greater than that of
the opponent (Kovenock and Roberson 2018). In the randomized case (Clark and Konrad 2007), a player
wins control of a resource (node) with a probability proportional to the ratio between its investment and
the sum of the investments of both the players. However, for CIS settings that are equipped mostly with
basic cybersecurity measures (according to status quo) it is more reasonable to assume the deterministic
CSF (based on communication with corporates in the CIS industry).

3 A REALISTIC CYBER STRATEGIC GAME MODEL FOR CIS NETWORKS

In this section, we propose the setup of a realistic cyber strategic game of control and defense played
between a defender of a CIS network and an adversary aiming to get control of certain critical network
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Figure 1: IEEE 39-bus system of New England (left). The IEEE 39-bus network via pandapower (right).

resources, i.e., CIS ‘crown jewels’. We leave it to Section 4 to analyze the game at a Nash equilibrium to
develop practical insights of cost effective and optimal cyber defense of CIS network ‘crown jewels’.

The cyber strategic game setup consists of the description of (a) the CIS network structure, (b) the
availability of strategic information to the defender and the adversary as applicable in reality, (c) the player
utility/payoff functions that adhere to surveyed CIS industry leader inputs on how adversaries and defenders
view game payoffs, and (d) the sequence of play between the adversary and the defender of a CIS network.

(a) The CIS Network Structure - We assume a mesh topological structure of an underlying CIS
network. An example of a real world mesh network (without loss of generality) for a power grid CIS is
shown in Figure 1. This is the standard IEEE 39 bus system that represents a simplified form of the New
England power grid. Figure 1a. showcases the engineering diagram of the grid, whereas Figure 1b. is the
network structure of the IEEE 39-bus system converted from Figure la. using the pandapower software
that pipes in the IEEE 39-bus system data into the NetworkX Python-based software to output the system
in an undirected network form.

A strong reason to model a mesh network for analysis as a ‘universal’ network is that most practical
CIS topologies such as the tree and cluster topologies are special instances of a mesh network. In addition,
most mesh networks can be decomposed into a series-parallel network structure (that is useful for graphical
models to study the degree of network resiliency to component failures akin to flow of electricity in series-
parallel circuits) on which our game theory analysis will be based upon in Section 4. A series-parallel
network transformation of a given undirected graph G is possible in linear time (in the number of network
nodes) via the seminal algorithm by the authors of (Valdes et al. 1979) if G does not have a K4 clique
embedded within it (Hassin and Tamir 1986). Consequently, it is important to know what is the likelihood
of a K4 being embedded in any graph in the family of connected mesh networks. In this paper, we show
(as a novel contribution) via the following theorem the probability of a K4 graph being embedded in any
connected undirected graph (that subsumes the family of connected mesh networks) - with a low probability
improving the generality of our results in our paper.

Theorem 1 Given any undirected connected graph G € 9, , of n nodes representing a CIS network that
is randomly generated using the popular Erdos-Renyi random process (Bollobds and Bollobds 1998)
generating family %, ,. The probability that G consists of an embedded K4 converges to 0 with n — oo if

p << n_%; and converges to 1 with n — oo if p >> n=3. Hence 3 threshold p(n) (i.e., a measure of the
degree of sparsity) that dictates the existence of a K4 subgraph in G.
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Figure 2: An illustration of a managerial portfolio of security investments on IEEE 39-bus network resources.

Proof Sketch - Define a random variable K = number of instances of K4 in G and equals Y X, where
C ranges over the set of all 4-node subgraph of G, and X takes value of 1 if all pairs of vertices in C have

an edge between them and takes a value O otherwise. The case of p << n73 s proved via the application

of Markov’s inequality. The case of p >> n=3 is proved via applying the Chebyshev’s inequality.

Theorem Implications - If a connected CIS network is relatively sparse with respect to the number of
nodes (as is shown in Figure 1b) then there is a high likelihood of no K4 subgraph embeddings in G. Many
CIS networks exhibit this structure and hence a series-parallel network analysis suffices as a representative
of a mesh network analysis.

(b) The Availability of Strategic Information - We assume the realistic setting where an external
adversary has partial information about the CIS network topology. This is obtained, for example, when
it launches an APT whose first step is to stealthily penetrate and laterally move inside the CIS network.
Hence, the adversary can attack a list of critical network nodes, i.e., ‘crown jewels’, it perceives to be
important. The defender is assumed to have complete view of the CIS network. The adversary does not have
prior knowledge of the list of critical network nodes that the defender is going to protect (and vice-versa).
However, for theoretical tractability, the players are assumed to know each other’s payoff functions, and
the range of investments each player makes to gain network resource control. Moreover, the players do
not know each other’s investment portfolio.

(¢) The Player Utility/Payoff Functions - As a pre payoff mention context, the adversary has a
portfolio of investments that is used to compromise the nodes of the mesh network by investing from its
attack budget and so does the CIS network defender who has its own cyber defense portfolio that it uses
in protecting the nodes of the same network (see Figure 2 adopted from industry studies). We assume in
this paper that they allocate these investments in proportion to a network centrality metric (e.g., degree
centrality, betweenness centrality, eigenvector centrality) that might be different for the adversary and the
defender. Section 5 simulates in a Monte Carlo fashion these strategy mappings between the adversary
and the defender for multiple graph topology types to derive the preferred strategy for the players that they
can adhere to (as an outcome of investment strategy learning) in order to achieve a network game play
equilibrium. The question here is: what is the player payoff structure of this game play?
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We assume a weakest-link and best shot (series-parallel) network setting where the compromise of any
resource, i.e., CIS network node, on the path of service from a source node to the destination node renders
the path ineffective for service (the weakest-link part of the network). In cyber settings, this holds true as
comprising a resource on a path is often enough to compromise the path (e.g., in APTs and DDoS attacks).
We take for granted that any input undirected CIS network is first transformed into a series-parallel structure
before this path compromise judgment is done. Consequently, for any path A — B — C note that a node B
could be a part of parallel sub-network (with all nodes, like B connected to C) where all nodes of that
sub-network needs to be compromised in order to render a path from a service source A to the destination C
to be ineffective (the best-shot part of the network). This parallel sub-network usually indicates CIS resource
redundancy and/or manually operable network components that backup the failure of similar functioning
digital components. The series-parallel design of the CIS network promotes resiliency-by-design on part
of the network administrator.

We assume, as in practical reality, imperfect attack and defense on part of the adversary and the defender.
Our version of imperfectness implies that an investment in a CIS network resource for gaining control does
not guarantee control access. A player gains control of a network resource only if its investment on that
resource is greater than that of the opponent. While this might not exactly be the case in reality, in scenarios
when neither player is knowledgeable about the other’s strategic investment amount it is prudent to be
investing with the belief that more is better (a point endorsed by some CIS industry leaders). Moreover,
often times in cyber settings that certain perceived critical network targets demand more control resources
of the adversary and the defender. This is because critical resources are exposed to measures such as
greater access control, being part of I'T/OT segmented (virtual) networks, that make control takers invest
more maintain/regain control. This is the guerrilla warfare strategy where an adversary tries to focus its
efforts on a few important targets that the defender is unaware of (Kovenock and Roberson 2018).

In relation to utility/payoff functions for the players, let us initially define the variable ClAeW =1 (for
weakest-link sub-networks 7 in %) if for sub-network 7 in a series-parallel network G, the adversary
investment x‘,‘"k on any node k of I to gain/maintain control should be greater than xID_k - the defender
investment on / to gain/maintain control. The value of C?e?// = 0, otherwise, i.e., CIDGW = 1. Ties are broken
in favor of the defender (without loss of generality) if x’,“ = xfk for any node k of /. Similarly, define the
variable c’}‘e 2 = 1 (for best-shot sub-networks %) if for sub-network / in a series-parallel network G, the
adversary investment x‘l“  on every node k of I to gain/maintain control should be greater than x? . - the
defender investment on / to gain/maintain control. The value of C?GW = 0, otherwise, i.e., C?e@ = 1. Ties
are broken in favor of the defender (without loss of generality) if xﬁk = x?k for every node k of I. We
re-emphasize here that a sub-network in a series-parallel network is either a series connection of single nodes
(the weakest-link reflection), or a parallel network of multiple nodes (the best-shot reflection). The payoff
function for adversary A is given as PFa (X*,X”) = vamax ({¢j 5}, {¢/cy }) — Ly Lke ) %) 4 Where A is the
set of best-shot sub-networks in G; 7 is the set of weakest-link sub-networks in G; v4 is the per sub-network
payoff if the adversary gains control; and |/| is the number of nodes of sub-network J in G. Alternatively,
the payoff function of the defender is PFp(¥*,3°) = vp (1 —max ({c. 4}, {c)cyy})) — Xs ):kemxfk, where
vp is the payoff to the defender if it control of all the sub-networks.

(d) The Sequence of Play Between Adversary and Defender - The game between the adversary
and defender is one of incomplete information, where only the structure of the payoff function is public
knowledge and all other strategic information is private knowledge. In such a scenario, a simultaneous
game is equivalent to a sequential game of incomplete information. This is more so the case in realistic CISs
where the adversary and defender usually do not continually monitor each other’s actions due to lack of
sufficient resources (an agenda set by most CIS upper managements who handle cybersecurity budgeting)
to monitor the entire network. Hence, we assume a one-shot simultaneous game of network node control
between the adversary and the defender adhering with much of reality. In this regard, we assume that in
the one-shot game, where each player allocates a portfolio of attack/defense efforts on the various nodes
of the CIS network, and a node target is won by the player who invests more in the target.
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4 ANALYSIS OF GAME EQUILIBRIA

In this section, we analyze the game equilibria, and draw practical implications of such equilibria. We
have the following result on the game equilibria strategies and their payoffs, when the defender (adversary)
has a relative effort advantage over the adversary (defender) with respect to a stronger portfolio of effort
allocation over the nodes of the CIS network. The proof of the result directly applies from the theory (and
we omit it in this paper due to lack of space) in (Kovenock and Roberson 2018) that shows how n-variate
investment distributions influence the scale of targets adversaries will invest in, and how much (based on
the series-parallel structure of the CIS network). The specific nature of the game equilibria in the presence
of a specific structure-dependent (e.g., investment on some central CIS network nodes) player strategy will
be discussed in Section 5 with the help of Monte Carlo simulations (as a complement to the theorem result).

Theorem 2 Let there be a set Ijcp of best-shot sub-networks j in a CIS network. Similarly, let there be a
set set ljcy of weakest-link sub-networks j in a CIS network. Let ap denote the normalized relative effort
of the CIS defender on the various best-shot and weakest-link sub-networks. Then, for op > 1, we have
the following mixed strategy Nash equilibrium for the adversary:

PA(R) =1+ jer Liei X, | LjewMiniey I"},

VD VD

n
where X € [] ey [0,va]" X [1jcn [0, :ﬂ s nj|j € % being the number of best-shot sub-networks, nj|j € W

being the number of weakest-link sub-networks, and op = Yo —. Under such a mixed strategy
(alZjer njt+Lies 7;))

Nash equilibrium (there are many for X satisfying lying in the domain), the adversary payoff is zero.
Similarly, for ap > 1, we have the following mixed strategy Nash equilibrium for the defender:

(i) = Z min({x7}i € Uje“/ﬂlja{”jxg(m))}jet@v

me Ay valljezn;

where My is the set of all possible | 2| tuples of best-shot CIS network targets with exactly one target i
from each best-shot network j € B. Under such a mixed strategy Nash equilibrium (there are many for X
satisfying lying in the domain), the defender payoff is vp(1 — é) In the case when ap < 1, we have the
following mixed strategy Nash equilibrium for the adversary:

Yiew Yier, X} Yjepminies {x}}
— J J + J

VD VD

Py(#)

.
where X € [] ;e [0,va]" X [1je [0, ;—ﬂ s nj|j € % being the number of best-shot sub-networks, nj|j € ¥

being the number of weakest-link sub-networks, and op = Yo —. Under such a mixed strategy
(va D:je“// ”j"’Zje.@ @])

Nash equilibrium (there are many for X satisfying lying in the domain), the adversary payoff is va(l — ap).
Similarly, for ap > 1, we have the following mixed strategy Nash equilibrium for the defender:

min({x?}i € Uje%/l_p{”jxg(m))}jeﬂ

PD(fD) =l—-oap+
meMy valljezn;

Practical Implications - The theorem states that the Nash equilibrium is not unique, given there is
a mixed Nash equilibria for every strategy pair of the defender and the attacker indicating a portfolio of
efforts on each node of a CIS network. Non-uniqueness here implies that a multivariate distribution of
control investments over nodes is not node-specific, but all such allocation permutations result in the same
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expected payoff to the player. For ap > 1, the expected payoff to the adversary is a constant zero in all
these strategies at the Nash equilibrium. The defender gets a constant non-varying positive expected payoff
(increasing in vp and op) at any Nash equilibrium. For ap < 1, the expected payoff to the defender is a
constant zero in all these strategies at the Nash equilibrium. The adversary gets a constant non-varying
positive expected payoff (increasing in v4 and decreasing in ¢p) at any Nash equilibrium. Hence, the
defender/adversary only needs to ensure their strategies lie in the domain mentioned in the theorem (an
action item), and for every such mixed strategy (invariant of node allocation permutations) the expected
payoff is the same. The normalized relative effort of the defender «p is increasing in the relative valuation
of the defender when compared to that of the adversary (%)’ and is decreasing in the size of the number
of weakest-link and best-shot sub-networks - this indicating the size of the CIS network increasing the
cyber-risk exposure for a limited security investment budget. As an action item, defenders should design
CIS networks with lower weakest-link sub-networks and higher best-shot sub-networks (therby increasing
the cost to compromise for the adversary). Given a defense portfolio by the defender, the rational adversary
will focus on control efforts on the most critical (weakest-link) targets, and not invest enough in the other
nodes of the CIS network. Such targets structurally map to various graph/network central CIS network
nodes - something we will study in detail in Section 5 via Monte Carlo simulations. The analysis of such
targets will be of interest to cyber insurance companies. The defender should (as an action item) invest
more in the security of weakest-link network nodes under a limited security investment budget.

5 SIMULATION EVALUATION

In this section, we simulate a strategic CIS network game to observe the effect of network structure/topology
dependent strategies on defense payoffs. The distinction between simulations and proposed theory is that
the latter does not model specific graph centrality driven strategies by the players. While the theory
shows existence of game equilibria, the simulations microscopically showcases how strategies influenced
by network structure impacts equilibria payoffs.

5.1 Simulation Setup

We conduct experiments on (un)weighted graphs to compare how structural connectivity alone influences
attack-defense dynamics, as well as how incorporating varying edge strengths and node vulnerabilities
impacts strategic outcomes. We ran these simulations on three different (without loss of generality) graph
topologies: Erdos-Renyi random mesh graphs, star graphs, and tree graphs. All graphs were generated
using the NetworkX library. Additionally, two lower benchmark control strategies were included (for a
comparative purpose): a O-defense strategy to observe unrestricted attacker behavior and an “unintelligent"
defense strategy to compare against more strategic allocations.

Each node in the CIS graph has simulation data structure attributes that track attack/defense status,
including attack/defense investment units, centrality values, and whether the node has been attacked or
compromised. Heterogeneous defense units practically map to tougher/lighter access control strategies. link
segmentations (e.g., links and devices being part of virtual LANs) at application levels, and sophisticated/naive
cryptography induced link/node protection solution costs. In weighted graphs, edges are statistically assigned
weights representing context that effect the cost of attacks and defenses. As an example tougher access control
strategies, link segmentations (e.g., links/devices on virtual LANSs) at application levels, and cryptography
induced link/node protection solution costs contribute to heterogeneous weights in a CIS graph.

A Monte Carlo simulation approach is used, conducting 1000 iterations per network configuration.
The simulations are performed on 500-node graphs, as this size extrapolates effectively to larger network
structures while remaining computationally feasible. The purpose of using Monte Carlo simulations is to
capture variability in attack and defense outcomes. The attacker budget is fixed at 75 units, while the
defense budget is fixed at 35 units (without loss of generality) - usually adversaries are more resourceful
than the defenders. These values ensure a competitive dynamic where neither the attacker nor the defender
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has an overwhelming advantage, allowing for meaningful strategic analysis. In weighted graphs, the cost of
attacking or defending a node is modified to be proportional to its edge weights or aggregated vulnerability
score. The attacker must consider the cost-effectiveness of targeting specific nodes, while the defender
must allocate resources strategically to high impact resources.

We explore three centrality-based strategies to inform attack and defense behavior in our simulations: -
degree centrality (in CIS networks, these are nodes with the highest number of connections represent critical
access points, such as routers, servers, or influential users in a social network), betweenness centrality
(in CIS networks such nodes act as key intermediaries in data flow, such as firewalls, gateway servers,
or organizational liaisons), and eigenvector centrality (in CIS networks such nodes act as high-traffic
servers). We also utilized a random non-centrality player strategy in order to represent a less centrality
concentrated, baseline security investment approach. The experiments test various combinations of attack
and defense strategies, including degree versus degree, betweenness versus betweenness, eigenvector versus
eigenvector, and random versus random. Cross-strategy pairs (adhering to practical reality), such as degree
versus betweenness or eigenvector versus random, are also explored.

Attack strategies consist of two phases: direct and indirect attacks. In the direct attack phase, the top
5% (without loss of generality and adhering to reality where adversaries usually target atmost 10% of
system resources) of highest centrality nodes are attacked first, with each direct attack costing 1 unit per
node. Once a node is infiltrated, adjacent nodes are targeted in the indirect attack phase, with each indirect
attack costing 0.5 units per node (in adherence to practice where indirect compromises are cheaper). If
an attack fails, re-attacking that node is not attempted. In the weighted graphs, direct attacks prioritize
nodes with the highest centrality adjusted by weight, and indirect attacks consider edge weights when
determining expansion targets. In weighted graphs, defense allocation is prioritized based on the centrality-
weight product, and defense cost scales with edge weight, making strategic allocation more critical. The
probability of successful node compromise in unweighted graphs varies based on the attack and defense
allocations. Direct attacks have a 10% success rate if the node has 1 defense unit and 90% if it has O defense
units. This is without loss of generality. Indirect attack success rates depend on the defense allocations
of both the attacking and target nodes, with probabilities ranging from 25% to 90% (wlog). In weighted
graphs, the probability of compromise is proportional to both the node status and edge weights, making
certain attack paths more or less viable depending on link strength and node vulnerability.

5.2 Simulation Results Reflecting CIS Management Action Items

Our control strategies validated the experimental setup. The intelligent topology-dependent defense strate-
gies consistently outperformed (see Figures 3(a), 3(d)) both the random and no-defense strategies (by
approximately at least 20% and at most 80% respectively in median statistics). This, given that adversaries
in practice usually have enough CIS information to target selected critical network nodes; otherwise defender
performance on intelligent defense would be significantly higher. The best performance was observed in
networks employing intelligent defense, followed by those using the random defense strategy, with the
no-defense strategy resulting in the highest level of infiltration. This confirms that strategic allocation
of defense resources is crucial for network security. Our findings also indicate that strategy selection
significantly impacts network resilience. However, attacker infiltration was relatively more influenced by
the underlying topology of the network rather than the specific attack-defense strategy pairing in use (see
Figures 3(b), 3(e)). The median percentage of the network infiltrated remained consistent across all strategy
mappings within a given topology, but it varied significantly between different topologies (see Figures
3(c), 3(f)). Tree topologies showed considerably higher resistance (by around 50%) to malicious CIS
network node infiltration when compared to that in star and mesh topologies (in order). Mesh networks
have maximum connectivity that renders them vulnerable to higher node compromise counts, whereas star
networks are exposed to single points of failure. This suggests (for CIS managers) that some network
structures inherently provide stronger defense mechanisms, regardless of strategic allocation.
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Figure 3: Simulation plots to study strategic topology-driven attack/defense control games in CIS networks.

6 PAPER SUMMARY

In this paper, we are the first to align with real world practice of formally modeling strategic adversarial
interaction in a CIS (IT/OT) network as a simultaneous non-cooperative network game with an auction
contest success function (CSF). We compare theoretical insights from game analysis with those from
large-scale Monte Carlo simulations and propose CIS-managerial cyber defense action items. While theory
promises an existence of game Nash equilibria, the simulations microscopically showcase how strategies
influenced specifically by network structure impacts equilibria payoffs from strategic cyber defense actions.
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