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ABSTRACT

The Information Universe (IU) communicates with the Material Universe (MU) to create and repair atoms.
This is required because quarks and bosons that make up atoms have a relatively short life and must be
replaced. The communication messages are described by a context-sensitive language specified using
message generating rules. The SUSY (Supersymmetric) inversion model is a process defined by these rules
that describes how subatomic particles are made and combined to create or repair atoms; indeed, there is a
language message (a sequence of process actions) for every IU/MU system regulatory problem. An
OpEMCSS (Operational Evaluation Model for Complex Sensitive Systems) simulation model of the
IU/MU system can learn these rules to gain an understanding of the SUSY messaging process. The [U/MU
system simulation model will also be used to learn and generate messages that result in the LENR (Low
Energy Nuclear Reaction) system producing useful new physics.

1 INTRODUCTION

1.1 Entropy

In Shannon’s information theory, entropy is a measure of information content for a set of messages such as
between the Information Universe (IU) and Material Universe (MU). The IU/MU system model consists
of a network of IU intelligent agents, that cover the MU on the Planck scale and communicate globally,
such that several agents contribute to solving some MU regulatory problems. The agent communication
messages are described by a context-sensitive language specified using message generating rules. The
SUSY (Supersymmetric) inversion model is a timed process defined by these rules that describes how
subatomic particles are made and combined to create or repair atoms; indeed, there is a language message
(a sequence of process actions that occur at critical times) for every IU/MU system regulatory problem
required to be solved by intelligent agents. The goal of the [U/MU system regulatory process is to maintain
global charge balance and minimize energy consumption throughout the MU while creating or repairing
atoms or solving other disturbances.

If all messages in a system are equally likely, then entropy is maximum. In a system under regulation
such as the [U/MU system, most messages cannot occur, and entropy is low. The result of the [U/MU
system regulatory process is low entropy (Clymer 2009). An example OpEMCSS (Operational Evaluation
Model for Complex Sensitive Systems) simulation demonstrates entropy reduction during the regulatory
operation of a fuzzy traffic control system (Clymer et al. 2017).

1.2 OpEMCSS Systems Design Model

The OpEMCSS system design model (Clymer 2009) allows alternative system design concepts to be
visualized as solutions to the systems design problem. The model is expressed using a diagramming method
that describes a set of process threads (a sequence of states and events) that communicate and interact to
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implement system operation. These process threads are described using a set of graphical icons that can
specify all concurrent, parallel processing operations; indeed, this graphical diagramming method defines
What the system does to achieve system design goals.

To make this model executable to explore system behavior in its operational environment, an
OpEMCSS system simulation program is required. The model icons are implemented using a set of program
blocks (Clymer 2009) that eliminate most of the programming effort required to create an executable model.
The blocks also allow executable models of alternative physical system designs that simulate the details of
How the system may achieve system design goals.

1.3 Applying the OpEMCSS Simulation Process Diagram to the IU/MU system

Applying the OpEMCSS simulation program (Clymer 2009) to implement the OpEMCSS systems design
model of the IU/MU system, intelligent agents are required to learn and execute regulatory actions. A
sequence of agent actions is called a process. The agents are simulated using the OpEMCSS, Classifier
System block. There is one agent for each 3D point in the MU. Each agent has multi-dimensional and
instantaneous information channels with other agents throughout the IU (Clymer 2009). During ITU/MU
system operation, intelligent agents communicate and interact; indeed, the SUSY inversion model describes
the subatomic particle creation and regulation process to produce stable atoms and solve other regulatory
problems.

1.4  IU/MU System Design Diagram

Examining the OpEMCSS system design diagram of the [IU/MU system in Figure 1, the Classifier System
block learns the rules needed for IU intelligent agents to communicate to regulate the MU. Such regulation
is a sequence of timed actions (a process) where agents communicate and interact with other agents using
rule-based language as discussed above. Rule learning requires a utility function that is a measure of
performance for the agent regulatory actions, often involving a sequence of such timed actions requiring
the Classifier System to perform reinforcement learning.

1.5 LENR System Design

The LENR (Low Energy Nuclear Reaction) “physical” system, described later in this paper, consists of a
computer, a controllable information wave (Franceschetti 2018) light signal source to generate SUSY timed
process messages, and quantum state sensors to measure the effects of LENR system control actions on
achieving system goals. The LENR system goal is to maintain continuous LENR system operation to
produce desired new physics such as reduced gravity, electric current, photon production, or temperature
control. To achieve these goals, the LENR system computer sends regulatory messages to target MU matter,
based on learned SUSY timed process rules, to create disturbances that destabilize local [U/MU system
operation. Non-stable isotopes are created and maintained that have the desired properties of the new
physics. It is important to understand the IU/MU system regulatory process before trying to safely create
LENR system disturbances in the MU to produce new physics. Therefore, LENR system experiments are
envisioned to demonstrate these effects can be safely produced.

The SUSY (Supersymmetric) inversion model is a process defined by message rules that describe how
subatomic particles are made and combined to create or repair atoms; indeed, there is a language message
(a sequence of timed process actions) for every regulatory problem. An OpEMCSS (Operational Evaluation
Model for Complex Sensitive Systems) simulation model of the [U/MU system can learn these rules to gain
an understanding of the SUSY messaging process. For the Classifier System to learn such rules, features
defining current system state and utility function values that measure how well the rules achieve system
goals are required. These are discussed in the next section.

LENR system physical operation will provide the quantum state sensor data: (1) to measure the effects
of LENR system control actions needed to provide the utility function and (2) rule features defining current
subatomic state of the message process. Initial experiments will explore the creation of hydrogen atoms
where the SUSY inversion model is best understood. Future experiments will explore more complex atoms
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as further understanding of SUSY inversion model is gained. The goal of the LENR system is to produce
desired new physics as discussed above.

1.6  Summary

Described in this paper is an OPEMCSS (Operational Evaluation Model for Complex Sensitive Systems)
simulation model of IU/MU system operation that learns rules that can select regulatory actions in response
to quantum level disturbances in the MU. The OpEMCSS simulation program also supports the design and
development of the LENR physical system to maintain regulatory actions in the MU that achieve continuous
production of desired new physics.

2 OPEMCSS IU/MU SIMULATION AND RESULTS

2.1 Overview of the IU/MU System Process

Reference (Meijer 2020) is an outstanding tutorial of a large body of research on the nature of quantum
physics, human brain consciousness, and fabric of physical reality as related to the [lU/MU system. For this
paper, the Information Universe (IU) is described as a collection of concurrent, communicating process
threads executed by a network of intelligent agents where each thread decides the next quantum state of a
local particle of matter in the MU. Each one of 1000 duplicates (Clymer 2009) of the quantum process
threads, shown in figure 1, is a sequence of states and events that model the [U/MU interface to the 3D MU
space.

Viewing the IU/MU system operation, OpEMCSS diagram in Figure 1, only one thread is shown, but
itis duplicated 1000 times, making the number of threads in a process very flexible. Each duplicate quantum
process thread determines the current quantum state of matter under its control. Next, rules that are global
to the entire universe, are applied to determine the next quantum state regulatory action. Finally, all quantum
process threads synchronize and share information globally to learn new rules. In IU quantum time, this
quantum state processing is called a “blink.” Paper (Meijer 2020) discusses many ideas about how these
processes might be implemented. However, in this paper, an OpEMCSS simulation program is used to
explore the learning of global decision-making rules for the [lU/MU system. The results show that entropy
is reduced while atomic, quantum particles are turned into mostly hydrogen atoms given the utility function
described in (Meijer 2020).
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Figure 1: OpEMCSS simulation model diagram
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2.2 OpEMCSS Blocks Used

Figurel shows the OpEMCSS simulation model diagram that plots entropy as rules are learned. The Wiley
Systems Engineering and Management text (Clymer 2009) provides a detailed description of what all the
OpEMCSS blocks do and how they are connected. Basically, the connected blocks describe a simulation
program where 99% of simulation programming is performed by the blocks and only process thread logic
and other operational details must be coded. Coding operational details is required to create an executable
system design model instead of just a non-executable system diagram (Clymer 2009).

The Begin block on the left side of the diagram creates the initial process thread and loads variable
values provided in the block dialog. The next block splits the initial process thread into a 1000 duplicate,
concurrent process threads that all execute the process diagram shown. The quantum state, as shown in
Figure 2, is represented by two feature facts (Meijer 2020), obtained from the MU, each having 10 possible
values. The LENR system simulation program will have feature facts based on the SUSY inversion model
which requires a sequence of messages and reinforcement rule learning discussed below. Figure 2 shows
part of the agent’s rule definition file that is loaded into the Classifier System block at the beginning of a
simulation run. Given the feature space shown, a quantum state could be one of 100 possible combinations
of Featurel and Feature2.

LegalConditionVals(Feature1)=A(0:0),B(1:1),C(2:2),D(3:3),E(4:4),F(5:5),G(6:6),H(7:7),1(8:8),J(9:9)
LegalConditionVals(Feature2)=A(0:0),B(1:1),C(2:2),D(3:3),E(4:4),F(5:5),G(6:6),H(7:7),1(8:8),J(9:9)
LegalActionVals(DecisionFigl)=IncFIG1(1:1),DecFIG1(2:2),FIG1(3:3)
LegalActionVals(DecisionFig2)=IncFIG2(1:1),DecFIG2(2:2),FIG2(3:3)

Figure 2: Agent rule definition file.

Figure 3 shows one of the ten initial rules to begin rule learning. There is one rule for each possible
value of Featurel. These rules are modified and expanded during rule learning by the Classifier System
block. When a rule fires (selected for action execution) the quantum state is changed according to the rule
action. If rule 1 in Figure 3 fired, Featurel value A (0) is incremented to value B (1).

Rule 1:IF
Featurel = A,
THEN
DecisionFIG1 = IncFIG1, CF=50.0%

Figure 3: An example of an initial rule to begin rule learning.

The Reward block applies the utility function, (PayoffOUT = 2* ABS(Feature2 — Featurel), to compute
a new value for the Confidence Factor (CF) of the fired rule (Clymer 2009). The CF value is part of the
calculation to decide which applicable rule is selected to fire. This utility function was provided in (Meijer
2020) which favors quantum states [0,9] or [9,0] for hydrogen.

The Wait Event block has logic that causes all concurrent process threads to synchronize so that they
all contribute to rule learning at the end of a “blink.” The Special entropy calculation block updates a 10 by
10 Memory matrix that counts the occurrence of each quantum state and counts each trial, NumTrials.
Probability of a quantum state occurrence P equals Memory][i][j] / NumTrials for each quantum state [i][j].
Entropy is summation of -P*Log10(P).

The Extract block obtains the value of entropy and sends it to the plotter block. A plot of entropy as
rule learning proceeds is shown in Figure 1. Entropy decreases as rule learning proceeds and quantum states
[0,9] or [9,0] become the most likely.

2.3 Disturbance Required for Rule Learning

A probability of disturbance (Pdisturbance = 0.25) was added to the simulation so that during the
synchronized global part of the “blink” period, each concurrent process thread is selected at random for
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change. If selected, Featurel and Feature2 are changed randomly to one of the possible 100 quantum state
values. Therefore, each quantum process thread has a 25% chance for a random change of quantum state at
the end of a “blink.” This was done to simulate chaotic conditions that constantly disturb the Material
Universe (MU) and thus require regulation. Shown in Figure 1 is one experiment where Pdisturbance started
at 0.25 and was reduced in steps of 0.001 until 0.01 was reached. The plot shows entropy reduction as a
function of number of “blinks” while Pdisturbance is reduced.

During model development it was observed that when probability of disturbance was zero, the rules
produced did not work, in subsequent runs, once rule learning was initially complete. This problem occurred
because the system would converge to quantum states [0,9] and [9,0] and no further change was possible
even though disturbances in the MU are ongoing. The lesson here is that some level of disturbance is
required to learn and maintain the permanent rules needed to achieve the desired quantum states in the
presence of MU tendency to disorder. The model version shown in Figure 1 includes the reduction of
Pdisturbance during rule learning. The smallest value entropy so far was achieved with this version: more
than in Figures 4 and 5, below.
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Figure 4: Pdisturbance of 0.2 Figure 5: Pdisturbance of 0.05

24 How to Learn to Regulate All Atoms

Suppose the learned regulatory rules for hydrogen are made (ConstraintRules) rules, in the Classifier system
block, that cannot change. Further, these ConstraintRules rules are used by the Classifier System in another
experiment. In this experiment, the simulation starts with initial quantum states of all process threads in
chaos. ConstraintRules do not take part in rule learning, but they always fire if eligible. New rules are
generated, but they do not persist because the ConstraintRules for hydrogen are sufficient. However, if
other atoms are included in the model plus the proper utility function, new rules that regulate these atoms
would persist. Therefore, rules for all atoms of interest to the LENR system design (neodymium) could be
obtained sequentially by adding to the ConstraintRules. Organizing the linear list of constraint rules into a
rule hierarchy results in rules that execute much faster.

3 EVOLUTIONARY OPTIMIZATION OF LEARNED RULES

3.1 Classifier System Rule Learning Algorithm

The Classifier System algorithm discussed in (Clymer 2009), contains a forward chaining, inference engine
that uses condition-action rules to transform condition attributes, obtained from feature facts, into action
attributes that change system state. A utility function is used to measure how close each rule action achieves
the goals of the system. These measurements are used to guide the evolutionary search algorithm to search
through an extremely large rule space to discover a minimal rule set to make the best decisions.
Evolutionary search algorithms are essential to ever reaching the goal of the LENR system design,
continuously producing desired new physics, because system design search space is astronomical. It is
important to distinguish the Classifier System algorithm used in the LENR physical system C++ software
from the Classifier System block used in the OpEMCSS simulation program; however, they both work the
same.
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The condition attributes are obtained from a process thread passing through the block. After inferencing
is complete, action attributes are added to the process thread before the item is sent to the next block. If
several different rules are implied by the condition attributes (i.e., several rules are eligible to fire in a
context), the best rule is selected based on either a maximum BID value or a rule selection probability.
Maximum BID value is a function of rule strength, specificity (number of features), and condition support
such that a more specific rule has a higher BID. Rule selection probability is a linear function of rule rank
which is based on rule strength times percentage positive reward. Probability is used during rule learning
and Maximum BID value is used when rule learning is turned off. Using a Maximum BID value, the result
is that the most general rule that covers all situations correctly emerges as the best rule.

3.2  Reinforcement Learning

The Classifier System algorithm can also perform reinforcement learning, related to dynamic programming,
to learn a sequence of rules that execute a plan. During reinforcement learning (Clymer 2009) to obtain a
sequence of control rules, either maximum BID value or rule selection probability can be used during the
generation of new rules. Rule selection probability allows all eligible rules a chance to specify the action
attributes, but the highest ranked rule is ten times as likely as the least ranked rule to do so. This allows
both exploitation of the current best rules and exploration for better future rules to occur concurrently. If
the decision remains ambiguous, Maximum BID allows evaluation of alternative rules to fine tune decision-
making performance. This can occur if the condition attributes are insufficient to unambiguously (Clymer
2009) classify all decision situations. Either maximum BID value or rule selection probability can be used
after rule learning is complete; however, the maximum BID value is recommended.

3.3  Fuzzy Control

In fuzzy control of a system, the inference engine requires a Confidence Factor (CF) for each condition fact
that depends on its value (Clymer 2009). If a condition fact has a ConditionFuzzySet definition command
at the beginning of the rule file, the CF is computed using this definition. Otherwise, the fact is assumed
crisp (CF is 100). The format of the ConditionFuzzySet command is as follows:

ConditionFuzzySet(AttributeName) = ValueName(A, B, C).

The fuzzy set function defined by A, B, and C has a trapezoidal shape. The top of the trapezoid ([B-
Al) is smaller than or equal to the base (length [[B-A]+2C]). At the top of the trapezoid, the CF is 100. The
A and B values define where the function begins a linear descent to zero. The C value defines the slope
(100/C) of the descent. Thus, if C is zero, the trapezoid becomes a rectangle. If A equals B and C is not
zero, the function has a triangular shape.

Fuzzy facts were used in the traffic model discussed in (Clymer 2017) to perform fuzzy control of a
vehicle traffic control network that allows a non-linear system control surface to be implemented. In the
operation of the LENR physical system, fuzzy control is an option to control the continuous production of
desired new physics.

4 OPEMCSS SIMULATION OF THE LENR SYSTEM

4.1 Modification of the OpEMCSS Simulation Model

The OpEMCSS simulation program discussed above was created to implement I[U/MU system operation
described in reference (Meijer 2020). This model must be expanded to simulate the IU/MU system
operation in support of the LENR physical system design.

The Information Universe (IU) communicates with the Material Universe (MU) to create and repair
atoms or regulate disturbances in the MU. The communication messages are described by a context-
sensitive language specified using message generating rules. The SUSY (Supersymmetric) inversion model
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is a process defined by these rules that describe how subatomic particles are made and combined to repair
or create atoms or regulate disturbances in the MU.

In the current simulation model, the next quantum state of a hydrogen atom is decided in a single step
given the current state. The time between message events is constant and the same for all agents; further,
the agent processes synchronize after all agent actions have completed and share information globally to
learn new rules, defining a “blink™ as discussed in section?2.

However, in the new model, a timed sequence of messages is required to make subatomic particles and
combined them to repair or create an atom or regulate disturbances in the MU. Thus, because the SUSY
message process proceeds in timed steps going from state to state where timing between events actions is
critical, the message rules must be learned in stages forming a sequence of timed process actions where not
only the action must be learned but also the timing of the action. To learn the sequence of message
generating rules, reinforcement learning may need to be applied using the existing capability of the
Classifier System.

Some of the model changes required are as follows. The agent rule definition file for the current
simulation model, shown in Figure 1, that only provides the current quantum state, will be expanded to
include six messages (feature facts), one from each of the closest agents in the three-dimensional space. An
additional feature fact defining the current stage of the sequence will also be added. Further, a utility
function based on the required quantum state and event timing for each stage will be included to guide the
rule generation process.

The LENR physical system must provide sensor information to guide the learning of the message
generating rules. First, this sensor information will be collected from the LENR physical system and
analyzed to provide the IU/MU system simulation program with a numerical or mathematical model
specifying values for the quantum state feature facts and utility function(s) for each stage needed to learn
message rules. Knowledge gained from the IU/MU system simulation program will aid in gaining an
understanding of the SUSY messaging process. Second, understanding gained through simulation will
assist in learning the actual SUSY message rules, during LENR system operation, that is needed to produce
new physics. The LENR system computer will apply the C++ version of the Classifier System program to
learn the message rules in a manner like simulation. It is expected that this iterative process between the
IU/MU system simulation program and LENR physical system operation will converge, providing working
message generating rules to produce useful new physics.

4.2  LENR System Design

An OpEMCSS (Operational Evaluation Model for Complex Sensitive Systems) simulation model of the
IU/MU system can learn the message generating rules to gain an understanding of the SUSY messaging
process. The IU/MU system simulation model will provide the rule definition structure discussed above.
This rule definition structure will be used in the LENR C++ version of the Classifier System program to
learn rules based on actual utility function and feature values obtained from quantum state sensors in the
LENR (Low Energy Nuclear Reaction) system that continuously produce useful new physics.

During LENR physical system operation, the rule learning utility function(s) will be derived based on
LENR system sensor measurements for each stage of rule learning; further, the current quantum state of
subatomic particle creation and combination is required at each stage to provide feature fact values. These
sensor measurements are input, via a numerical or mathematical equation, to provide the rule conditions,
feature facts, to the Classifier System inferencing process. The condition-action messaging rules are learned
and applied to implement rule actions that produce the next quantum state in the sequence. Guided by the
utility functions, rule learning will evolve the correct quantum state sequence that results in the creation or
repair of atoms or the regulation of other disturbances. The SUSY inversion model, message process is best
understood for hydrogen which will make learning the message rules easier. The goal of the LENR system
design is that the LENR system will eventually generate message sequences that result in the LENR (Low
Energy Nuclear Reaction) system producing useful new physics.
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5 MODEL OF SUSY INVERSION QUANTUM STATES

Supersymmetry (SUSY) is a model that suggests that every particle has an anti-particle that looks identical
in all properties except one, they have opposite charges. The most obvious example is the (Pushp 2025)
electron and the positron (Feynman 1949). The electron is the matter form, and the positron is the anti-
matter form. Supersymmetry “inversion” (Toptani 2023) is like supersymmetry except that the pairing of
matter and antimatter occurs in whole atoms. Atoms are half matter (proton and electron) and half anti-
matter (neutron and positron). Atoms demonstrate Baryonic symmetry (matter and anti-matter are in
balance) in the SUSY inversion model. The SUSY inversion model allows for the interchange of particles
to occur between the nucleus and the orbital layers of atoms. In this model the electron and positron can
become quarks in the nucleus of the atom. The electron negative can become the Down quark positive. The
Up quark negative in the nucleus can become the positron in the orbital layer. The quarks in the nucleus of
the atom can become an electron or positron in the LENR system process. This identity transformation
takes place during LENR processes such as beta plus and beta minus decay. This change of particle identity
involves the switching of charge. A positive charge becomes a negative charge, and a negative charge
becomes a positive charge. A positive charge in the nucleus transforms into a negative charge in the orbital
layer of the atom. A positive charge within the orbital layer of the atom converts into a negative charge in
the nucleus of the atom. Such charge switching makes the system dynamic and responsive to internal and
external charge distribution.

5.1 MODELLING USING SUSY INVERSION AND THE ATOMIC ISOELECTRIC POINT

The modelling of the LENR process of beta plus and beta minus decay looks at this exchange of charge
states between the nucleus and orbital layers in atoms in the SUSY inversion model. Like a good accountant,
the charge needs to be balanced. The overall charge of the atom prefers to be zero and this is the atoms
isoelectric point (AIP). The isoelectric point of the atom is its most stable state. The isoelectric point of the
atom is not the absence of charge, but a process where the atom reorganizes its structure to minimize charge
through balancing positive and negative charges achieving charge cancelation. The stable state of the atom
is achieved when the number of protons and electrons (matter charges) is equal, and the number of positrons
and neutrons (anti-matter charges) is equal.

5.2 SUSY Inversion and Revision of Quark Charge Calculations

The inclusion of positrons in atomic theory is a fundamental difference in the SUSY inversion theory
compared to standard atomic theory for charge. The positron inclusion is obtained by revising quark charges
to either plus one or negative one. The charge switching between the nucleus and the orbital layers in the
LENR systems modelling of processes can be followed more easily because of the revision of quark
charges. The use of whole numbers (+1 or -1) and multiplication in SUSY inversion quark charge
calculations compared to the usual approach of adding fractions (-1/3 or +2/3). Modifying the standard
model (neutrons = 0 and protons +1) for atomic theory enables greater investigatory power utilizing the
SUSY inversion quark charge calculation framework that corresponds to Baryonic symmetry.

5.3 SUSY Inversion and Baryonic Symmetry

The SUSY inversion model takes the fundamental position that Baryonic symmetry is the idealized
approach that the universe uses to maintain charge conservation. The generation of entangled pairs of
positrons and electrons is a charge conservation rule in SUSY inversion. An equal amount of matter and
antimatter is generated by the universe. Whereas Baryonic asymmetry (Johnson 2025) (matter and anti-
matter are not in balance) is our current standard understanding based on Big Bang hot nucleosynthesis
(Schramm 1998). Baryonic asymmetry is assumed because of the scientific methodology involving
measurement, and it is proposed to be an artefact of the biological observer and the basis for the observer’s
paradox in quantum mechanics. This limitation placed on matter comprising only 5% of the universe’s
composition restricts our ability to explain the initial structural features of the singularity at the beginning
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of time. This has hampered our understanding of the identity of dark energy (Carroll 2007) and dark matter
(Jungman et al. 1996) that makes up approximately 95% of the universe.

5.4  SUSY Inversion and the Mathematical Calculation of Charges

The SUSY inversion model approaches these unknowns using the revision of quark charge calculations for
protons (-1 x +1 x -1 =+1) and neutrons (+1 x -1 x +1 = -1). This approach sheds light on the unknown in
a theoretical way, accounting for the issue of the missing anti-matter in cosmology and the horizon problem
in cosmology (11). The features that arise from altering atomic theory (altered quark charge calculations),
provide the basis for seeing a way to introduce Baryonic symmetry along with SUSY inversion as the basic
framework for exploring the unknowns of the universe. By matching the revised atomic theory to the
universe’s composition, the identification of a process responsible for dark matter formation as its decay
into the creation of positrons entangled to neutrons was identified. This creates a theoretical model that
shifts the attention from the identified asymmetric state obtained through measurement into a symmetric
state based on theory.

5.5 SUSY Inversion and the He-BEC Singularity

The SUSY inversion framework in its current form offers a solution to the initial state of the universe (He-
BEC model (Pushp 2025) along with specific parameters that match atomic theory with the composition of
the universe given an alpha particle emission process linked to the simultaneous generation of dark energy
and dark matter (Johnson 2025). It also provides an explanation for cosmological inflationary parameters
(Schramm et al. 1998) and the identity of dark matter and dark energy and several other aspects of
subatomic features of atoms. It offers a way to explore the subatomic processes involved in LENR systems
and their functionality in biological living systems (Toptani 2023).

5.6 SUSY Inversion and the IU/MU system

The SUSY inversion theory suggests that the Information Universe (IU comprising dark energy and dark
matter made through alpha particle emission from the He-BEC isotropic singularity) implements a set of
functional criteria that precursor engineers the MU (matter component of the universe). The SUSY
inversion process and its initial characteristics such as radius, inner ground state wavelength, and alpha
particle half-life timings have produced the foundations of space and time and acts as a house in which the
MU matter universe may function. It explains how entanglement occurs connecting the [lU and MU through
the singularity at the center of the aromatic ring, surrounding the atomic nucleus, and why only a light
information wave signal can carry the information required through the IU/MU interface to regulate matter
in the MU. The rules of charge conservation and energy conservation provide a basis for the governance of
the MU by the IU as the IU comprises 95% of the composition of the universe. It’s form and function
through Lorenz symmetry breaking initially from the alpha particle emission process from the He-BEC
isotropic singularity offers an asymmetry whilst maintaining charge parity (+1 -1 = 0) and energy
conservation due to the balance of outward v/2 and inward (v v)"4 velocities.

6 CONCLUSIONS

The Information Universe (IU) communicates with the Material Universe (MU) to create and repair atoms
or regulate other disturbances. This is required because quarks and bosons that make up atoms have a
relatively short life and must be replaced. The communication messages are described by a context-sensitive
language specified using message generating rules. The SUSY (Supersymmetric) inversion model is a
process defined by these rules that describes how subatomic particles are made and combined to create or
repair atoms; indeed, there is a language message (a sequence of process actions) for every IU/MU system
regulatory problem. An OpEMCSS (Operational Evaluation Model for Complex Sensitive Systems)
simulation model of the IU/MU system can learn the rule definition structure needed to gain an
understanding of the SUSY messaging process. The IU/MU system simulation rule definition structure will
be used to learn and generate messages that result in the LENR (Low Energy Nuclear Reaction) system
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producing useful new physics. Initially, experiments to learn the rules to create hydrogen atoms will be
done because this process is best understood. More complex atoms will be considered as understanding
grows. The goal is for LENR system operation to be able to disturb IU/MU system processing to
continuously produce useful new physics

6.1 OpEMCSS Simulation-Based Design of the LENR System

The OpEMCSS simulation-based design methodology (Clymer 2009) as applied to IU/MU system
operation is a “way-of-thinking” about the conceptual operation of the [U/MU system required to solve the
IU/MU system regulatory problem. An icon-based diagram, that represents all process threads required for
concurrent, context-sensitive system operation, is created. The simulation program is developed from this
diagram, and each process thread executes the states and events of the [U regulatory process. The simulation
program includes intelligent agents, implemented using the OpEMCSS Classifier Block, that makes
regulatory decisions affecting the Material Universe (MU).

6.2 SUSY Inversion Theory

The SUSY (Supersymmetric) inversion model is a process defined by message rules that describe how
subatomic particles are made and combined to create atoms or regulate other disturbances. It explains how
entanglement occurs by connecting the IlU and MU messaging through the singularity at the center of an
atomic nucleus. It also explains why only a light information wave (Franceschetti 2018) signal can
communicate the information required through the IU/MU interface at the Planck scale to regulate matter
in the MU. The SUSY inversion model requires instantaneous connectivity among agents throughout the
IU to regulate disturbances in the MU. Further, time in the [U is an operator and proceeds in unequal steps
as discussed for the IU/MU simulation model such that time in the MU appears continuous and linear but
it approximates the U process.

6.3  LENR System Design

The LENR (Low Energy Nuclear Reaction) system design includes a computer, a controllable information
wave light signal source to transmit SUSY process messages, and quantum state sensors to measure the
current quantum state (rule features) and the effects of LENR system control actions on achieving system
goals (utility function values). The LENR system goal is to maintain continuous LENR system operation
to produce desired new physics such as reduced gravity, electric current or photon production, or
temperature control. To achieve these goals, LENR system operation requires computer generated message
sequences, based on learned SUSY process rules, to select a sequence of optimal regulatory actions or
messages to disturb the MU and produce useful new physics.

An OpEMCSS (Operational Evaluation Model for Complex Sensitive Systems) simulation model of
the IU/MU system can learn these rules to gain an understanding of the SUSY messaging process. LENR
system physical operation will provide sensor data, describing the SUSY inversion quantum states, to learn
the SUSY message generation rules: measures the effects of LENR system control actions needed to
provide rule utility function(s) and (Clymer 2009) feature facts defining the current quantum states of the
message sequence. Initial experiments will explore the creation of hydrogen atoms where the SUSY
inversion model is best understood. Future experiments will explore more complex atoms as further
understanding of SUSY inversion model is gained.
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