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ABSTRACT

We introduce a new simulation method to estimate customer-averaged service metrics in nonstationary
queueing systems with time-varying arrivals and staffing. Practical delay-based metrics—such as the
fraction of customers waiting under a threshold or the average waiting time—are difficult to estimate using
standard discrete-event simulation (DES) due to high implementation and variance complexity. We propose
a queue-based conditional estimator that models system performance based on the time-dependent queue-
length process. By conditioning on this process, our approach significantly reduces variance and simplifies
simulation. We further enhance accuracy by incorporating many-server heavy-traffic approximations.
Numerical experiments confirm that our estimator offers substantial computational gains over DES while
maintaining accuracy. This method provides a scalable solution for evaluating service-level metrics in
complex, time-varying environments.

1 INTRODUCTION

Customer waiting times are among the most commonly used performance metrics for evaluating service
quality in queueing systems. Beyond the mean waiting time, which reflects the average customer experience,
several delay-based service-level (SL) metrics are widely used in practice. One such metric is the probability
of delay (PoD), which represents the likelihood that an arriving customer cannot immediately enter service
and must wait. Another important metric is the probability of abandonment (PoA), defined as the probability
that a customer leaves the queue after exceeding their patience threshold. PoA is particularly relevant
in service systems like call centers (Liu and Whitt 2012c). The most prevalent SL metric is the tail
probability of delay (TPoD), that is the probability that a customer’s waiting time exceeds a designated
delay target w > 0. TPoD is a crucial performance target in various practical settings, particularly in
emergency departments. For instance, the Canadian Triage and Acuity Scale (Murray 2003) sets TPoD
targets for different patient severity levels, with class-dependent thresholds wi ranging from 15 to 120
minutes. Similarly, many call centers adopt TPoD targets, such as aiming to answer 80% of calls within
20 seconds (Preece et al. 2018), which translates to a TPoD target of 0.2 = 1−80% with w = 20 seconds.
See Liu (2018), Liu et al. (2022) for additional discussions on TPoD.

The prediction of wait-time SL metrics is relatively less challenging in stationary queueing models
with constant demand rate and staffing level, because customers have statistically similar waiting time
experiences. However, in real-world queueing systems, the demand function often exhibits significant
variability in time (Green et al. 2007). In order to alleviate the performance fluctuations in time, the staffing
level ought to be time-inhomogeneous to cope with the nonstationary demand. This gives rise to increased
complexity of the waiting-time analysis. In this paper, we propose new simulation methods to estimate the
customer-averaged wait-time metrics in nonstationary queueing systems.

1.1 Customer-averaged wait-time SL metrics

Prior research in the nonstationary queueing literature has primarily focused on predicting pointwise SL
metrics, such as the expected waiting time E[Wt ] and the tail probability P(Wt > τ) at each time t (Aras
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et al. 2018; Liu 2018; Liu et al. 2022; Liu and Whitt 2012a; Liu and Whitt 2014c; Garyfallos et al. 2024).
However, controlling these pointwise SL metrics can be either infeasible or prohibitively costly in practical
service systems. For instance, enforcing a stringent requirement like E[Wt ] ≤ w for all t over the course
of a day demands highly precise control of the staffing function. In contrast, a more practical and flexible
approach is to impose a customer-averaged SL constraint, e.g., requiring that the average waiting time of
all customers throughout the day does not exceed w. This relaxation accommodates natural fluctuations in
system performance over time and reduces the operational burden of strict pointwise control. These metrics
are widely used in real-world service systems, making them more meaningful for industrial applications
(Preece et al. 2018).

The present paper emphasizes customer-averaged SL metrics. Examples include the average waiting time
of all customers over a day or the daily fraction of customers who wait longer than a given threshold. These
metrics aggregate performance over time and across customers, providing a holistic view of system behavior.
In contrast, pointwise SL metrics, those evaluated at specific time points, are typically easier to analyze,
often leveraging approximation formulas from fluid or diffusion limits in heavy-traffic regimes. However,
customer-averaged SL metrics are significantly more challenging to study, particularly in nonstationary
queues, where time-varying dynamics prevent the use of steady-state performance measures that are often
available in stationary settings.

Consider a finite time interval [0,T ]. Given a arrival rate λ ≡ {λ (t), t ∈ [0,T ]} and a staffing plan (i.e.,
number of servers) n≡ {n(t), t ∈ [0,T ]}, our goal is to estimate the customer-averaged SL metric over a
finite time interval [0,T ] in the following form:

βu ≡ βu(T,n,λ )≡ E

[
1

N(T )

N(T )

∑
i=1

u(Wi)

]
, (1)

where N(T ) is the total number of customer arrivals in [0,T ], Wi is the waiting time of the ith customer, and
u(·) is a utility function that maps Wi to a designated SL metric. We refer to the general form defined in (1)
as the customer-averaged service experience (CASE). It is straightforward to realized that the generality
of u(·) enables CASE to cover all above-mentioned wait-time SL metrics. For example, CASE defined in
(1) reduces to (i) the average waiting time with u(x) = x, (ii) PoD with u(x) = 1{x>0}, and (iii) TPoD with
u(x) = 1{x>w} for w > 0, where 1A is the indicator for event A.

In queueing systems with customer abandonment (e.g., call centers and healthcare), the Wi in (1) can
represent different definitions of waiting time, depending on the context and intended use case. The most
commonly studied version in queueing theory is the potential waiting time (PWT), the offered waiting
time assuming a customer remains indefinitely patient. PWT is independent of a customer’s abandonment
behavior and serves as a key metric for assessing system workload at a given time. In contrast, practical
service systems more frequently use the actual waiting time (AWT), which measures the total time customers
spend in the queue, regardless of whether they abandon or receive service. AWT is more directly observable
from real-world data. For a detailed discussion on different waiting time definitions, see Liu et al. (2022).
The generality of our approach here allows us to treat CASE driven by either PWT or AWT.

1.2 Crude Monte-Carlo Estimator

Given the complex dynamics and intractable nature of nonstationary queues, the most conceptually straight-
forward approach to compute CASE in (1) may be Monte-Carlo (MC) simulation. We envision an MC
algorithm should follow the framework specified in Algorithm 1.

To distinguish Algorithm 1 from the other algorithms introduced later, we refer to the MC estimator
in Algorithm 1 as the crude MC (CMC) estimator. Despite the apparent simplicity of Algorithm 1, the
simulation of the CMC estimator involves subtleties that make it more complex than it may first appear.
First, designing and implementing a nonstationary queueing system is already significantly more challenging
than its stationary counterpart, as it requires tracking the transient evolution of system dynamics. Second,

427



Liu and Zhang

Algorithm 1 Crude Monte Carlo Method.
1: for j = 1 to n do
2: Generate all customer waiting times W j

1 ,W
j

2 , . . . ,W
j

N j(T ) using a discrete-event simulator in [0,T ]

3: Compute θ j← 1
N j(T ) ∑

N j(T )
i=1 f (W j

i )

4: end for
5: Output the sample mean Θ̄(n)← 1

n ∑
n
j=1 θ j

Note: Superscript “ j” indicates samples on the jth MC trial.

simulating customer-level waiting times requires generating high-granularity events, making it significantly
more complex and challenging than simulating system-level queue length. For instance, systematically
modeling the PWT as a function of time necessitates periodically generating virtual customer arrivals
to observe and experience the waiting process. A virtual customer is able to record the PWT and then
dismissed only when it is about to “enter” service (Liu and Whitt 2012c).

Besides its high implementation complexity, Algorithm 1 may require a large number of MC trials to
achieve a reasonably tight confidence interval. This is because simulating individual customer experiences
in a bottom-up fashion involves generating a large number of random variables, which collectively contribute
to the system’s overall stochastic variability and inflate the variance of the CMC estimator. In line with
general principles in simulation, the more random variables a model generates, the greater the inherent
stochastic fluctuations, resulting in higher variance.

The primary focus of this paper is to develop novel estimators for CASE, as defined in (1), for
nonstationary queues, that are more efficient than the CMC estimator in two key aspects: (1) they should be
easier to simulate, requiring much less implementation effort, and (2) they leverage conditioning techniques
to achieve significant variance reduction. To apply the conditioning technique, our point of departure is
to separately model and treat (i) the randomness in the queue size “observed” by a customer upon her
arrival and (ii) that in this customer’s (future) waiting-time experience assuming a given number of existing
customers yet to be processed before this customer enters service. For a given queue-length process, we
derive an expression for CASE in (1) as a function of the queue-length process. Next, we take some extra
steps to characterize the transient trajectory of the queue length. Following Liu et al. (2016), we leverage
the heavy-traffic limit to approximate the queue length process by truncated Gaussian approximation.

1.3 Contributions and organization

We summarize our contributions below:

• We contribute to the performance analysis of nonstationary queueing systems by developing efficient
and effective estimators for customer-averaged wait-time service-level (SL) metrics over a finite
time horizon. Unlike CMC, which directly simulate individual customer experiences, our proposed
estimator only requires simulating the queue length, which achieves a lower variance and reduced
implementation complexity.

• Our variance reduction is achieved by conditioning on the queue-length process, we express CASE
defined in (1) as a weighted sum of the time-averaged queue length at different time step. This
derivation utilizes the relationship between customer waiting times and the queue length process
in nonstationary queues.

• We further refine our estimator using a Gaussian approximation derived from process-level heavy-
traffic diffusion limits, leading to additional variance reduction. We conduct numerical experiments
to investigate the solution accuracy, computational efficiency, and robustness of our algorithms.

Organization of the paper. In Section 2 we derive our conditioning estimator as a function of the
queue length process. In Section 3 we further refine the queue-based estimator using the truncated Gaussian
approximation derived from heavy-traffic limit. In Section 4, we conduct numerical experiments and
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computer simulations to evaluate the performance of our new algorithm. In Section 5 we give concluding
remarks and discuss future directions.

2 A QUEUE-BASED CONDITIONAL ESTIMATOR

We work with the Mt/M/st +M nonstationary queueing model having a Poisson arrival process with time-
varying rate λ (t), independent and identically distributed (I.I.D.) service times following an exponential
distribution with rate µ > 0, a time-varying staffing level n(t), and customer abandonment according to
I.I.D. exponential abandonment times with rate θ ≥ 0. Customers are served according to the first-come
first-served (FCFS) discipline. Our model covers both Erlang-A (with θ > 0) and Erlang-C (with θ = 0)
models. Let Q(t) and B(t) be the numbers of customers in the waiting queue and in service at time t, and
let X(t) ≡ Q(t)+B(t) be the total number of customers in the system (in queue or in service) at time t.
In what follows, we develop an estimator for CASE by conditioning on the queue length. We do so in
two steps: First, we connect the customer-averaged SL metric in [0,T ] to the pointwise queue-based SL
by conditioning on the queue length (Section 2.1). Second, we explain how to compute the pointwise SL
at a fixed time t given the queue length Q(t) (Section 2.2).

2.1 Q-CASE: A Conditional Estimator on Queue Length

We condition on the queue-length process Q ≡ {Q(t),0 ≤ t ≤ T}. Aligned with the philosophy of the
technique of conditioning, this approach removes the extraneous randomness in CASE beyond that inherent
in the queue-length process. To proceed, our key idea here is to properly separate (i) the total number
of arrivals in [0,T ], (ii) the random distribution of their arrival times, and (iii) the pointwise SL for each
customer given her arrival time.

We analyze the random arrival times (and their “observed” queue lengths) by looking into all potential
scenarios, the kth of which represents the event {N(T ) = k}, meaning there are in total k arrivals in [0,T ].
Next, we properly treat the arrival times of the k customers which, along with their “observed” queue length,
provides an estimator of the SL. The most important step is to properly aggregate the SL experienced by
all future customers in [0,T ] using weights designed based on both spatial and temporal attributes of the
problem.

Conditional arrival times. It is well known that, given there are in total N(T ) = k arrivals during
[0,T ], the k arrival times 0 < τ1 < τ2 < · · ·< τk−1 < τk < T follow the distribution of the order statistics
of k I.I.D. random variables each follows the probability density function (PDF)

f (t) =
λ (t)∫ T

0 λ (s)ds
, t ∈ [0,T ]. (2)

Now, we consider a discrete-time framework where the interval [0,T ] is evenly split to a finite number
m consecutive time steps: 0≡ t0 < t1 < · · ·< tm−1 < tm ≡ T , with ti ≡ i∆T , ∆T ≡ T/m. All arrival times
τ1, . . . ,τk are distributed on the m time grids, which are order statistics of random variables following the
discrete-time analog of (2), with a probability mass function (PMF)

p(ti) =
λ (ti)

∑
m
j=1 λ (t j)

, t ∈ {t0, . . . , tm}. (3)

Given that N(T ) = k, define Ni as the total number of arrivals among all k arrivals that occur at time
ti, i = 0,1, . . . ,m. We know that Ni ∼ Bino(m, p(ti)), a binomial distribution having m trials and a success
probability p(ti). Next let W (i)

j be the waiting time of the jth customer among all Ni arrivals at time ti,
1≤ j ≤ Ni.

Connecting to the pointwise SL. For a tagged customer who arrives at time t, define

β̂ (t,q)≡ E[u(W (t))|Q(t) = q] (4)
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as the conditional expected SL specified by waiting time W (t) at t and utility function u(·), given that
the tagged customer observes a queue length q (excluding herself). We refer to (4) as the pointwise
queue-snapshot SL in order to distinguish from CASE as defined in (1). Here the function β̂ maps the
dynamic queue-length information at t and other static inputs (e.g., arrival rate and staffing level) to the
desired wait-time SL metric at t. Our idea is to develop CASE by aggregating the pointwise SL at different
time steps over the temporal domain. We discuss the computational procedure of β̂ in Section 2.2.

Given N(T ) = k, the conditional expectation of the discrete-time version of CASE in (1) is

E

[
1
k

m

∑
i=1

Ni

∑
j=1

u(W (i)
j )

∣∣∣∣∣N(T ) = k

]
=

k

∑
l=0

E

[
1
k

m

∑
i=1

l

∑
j=1

u(W (i)
j )

∣∣∣∣∣N(T ) = k,Ni = l

]
P(Ni = l|N(T ) = k)

=
1
k

k

∑
l=0

m

∑
i=1

l

∑
j=1

E
[

u(W (i)
j )
∣∣∣N(T ) = k,Ni = l

]( k
l

)
p(ti)l(1− p(ti))k−l

=
1
k

m

∑
i=1

k

∑
l=0

lE
[
β̂ (ti,Qk(ti)

]( k
l

)
p(ti)l(1− p(ti))k−l =

m

∑
i=1

p(ti)E
[
β̂ (ti,Qk(ti)

]
,

where Qk(ti) is the queue length at ti given N(T ) = k. Unconditioning on N(T ), we write the discrete-time
CASE (with the discrete time step ∆ included in the superscript) as

β
∆
u = ∑

k

m

∑
i=0

p(ti)E
[
β̂ (ti,Qk(ti))

]
·P(N(T ) = k) = E

[
m

∑
i=0

p(ti)β̂ (ti,Q(ti))

]
(5)

→ E
[∫ T

0
f (t)β̂ (t,Q(t))dt

]
= βu, as ∆→ 0. (6)

Remark 1 (Individual vs. population, ensemble average vs. time average) Formula (6) reveals some good
insights: First, for each time point ti, the snapshot term β̂ (t,Q(t)) quantifies a pointwise individual SL
experience, and this experience is estimated here in the ensemble sense with repeated MC trials. Next,
the “weight” f (t) (and p(ti) in (5)) describes how frequent a customer arrival should occur at time t (or
equivalently how many customers will arrive at time ti over many “days”), so that it takes into account
the population level effect. Finally, the weighted sum gives the time-averaged SL outcome over the entire
[0,T ] period.

It is straightforward to see that (6) can be further simplifies to E
[
E
[
β̂ (τ,Q(τ))|τ

]]
= E

[
β̂ (τ,Q(τ))

]
,

where τ is a random arrival time following the PDF in (2). This seems to suggest that the most conceptually
simple queue-based estimator is β̂ (τ,Q(τ)), which requires sampling an independent arrival time τ and
the queue length Q(τ) at τ , making it easy to implement. In terms of variance reduction, the estimator
β̂ (τ,Q(τ)) conditions on the queue length to eliminate the need to sample waiting times for all customers,
thereby removing additional sources of stochasticity beyond what is already captured by the queue length.
However, collapsing the customer heterogeneity within their arrival times into a single representative
arrival time can significantly amplify overall variability. Therefore, we propose the estimator in (6), which
can be interpreted as E

[
β̂ (τ,Q(τ))|τ

]
, the conditional estimator of β̂ (τ,Q(τ)) given τ . We call it the

queue-conditioning CASE (Q-CASE), with (5) and (6) representing its discrete-time and continuous-time
versions, respectively. See Algorithm 2 below for the formal statement of the algorithm.

2.2 Pointwise SL conditional on queue length

We now describe how to compute the queue-conditioning pointwise SL β̂ (t,q) for a given queue length
q≥ 0. We hereby focus on PWT, but all analysis easily generalizes to AWT; see for example Section 2.1
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Algorithm 2 Q-CASE
1: for j = 1 to n do
2: Generate an independent sample path of Q( j)(ti) for all t1, . . . , tm
3: Compute β̂ (ti,Q( j)(ti)) for all t1, . . . , tm
4: Compute the sum θ j← ∑

m
i=1 p(ti)β̂ (ti,Q( j)(ti))

5: end for
6: Output the sample mean Θ̄(n)← 1

n ∑
n
j=1 θ j

Note: Superscript “ j” indicates samples on the jth MC trial.

in Konrad and Liu (2023b). In addition, for the ease of explanation, below we assume a constant staffing
function n. The full treatment of n(t) is given in Konrad and Liu (2023b).

We view the waiting time at t as a phase-type (PH) distribution associated with a continuous-time
Markov chain (CTMC) {Yq(s) : s≥ t} which models the future queueing position of a customer who arrives
at t. We refer to this customer as the “tagged” customer. Because the system is operated according to
FCFS, the tagged customer’s waiting time is independent with any future arrivals after t, so that Yq is a
pure-death process; see Figure 1 for the transition rate diagram. Suppose at time t, the tagged customer
arrives, seeing that there are q existing customers waiting in the queue. According to the definition of PWT,
the tagged customer is infinitely patient, who remains in the waiting line until q+ 1 “departures” occur
(either due to service completions or customer abandonments). Formally, the waiting time conditioning on
the queue length q, denoted by W (n,q), is a PH random variable associated with the absorbing CTMC Yq
having a state space S ≡ {n−1,n, . . . ,n+q−1,n+q}, where state n+q is the initial transient state and
state n−1 is the only absorbing state. To see this, we can write W (n,q) as a sum of q+1 independent
random variables:

W (n,q) d
= Dq +Dq−1 + · · ·+D1 +D0, (7)

where Di is an exponential random variable with rate iθ +nµ , and “ d
=” means “equal in distribution”. Here

Di is the ith inter-departure time of all required q+1 departures.

Initial State Absorbing StateIntermediate States

Figure 1: Transition rate diagram.

The transition rate matrix for Yq is given below as

Q =

n−1
n
...

n+q


0 0 · · · 0 0

nµ −nµ 0 · · · 0
...

...
...

...
...

0 · · · 0 nµ +qθ −nµ−qθ

=

[
0 0
S0 S

]
, (8)

where S is a (q+1)×(q+1) matrix, and Si,i−1 = nµ +(i−n)θ for i = n, · · · ,q+n, Si, j = 0 for j /∈ {i, i−1},
i = n+1, · · · ,q+n. The cumulative distribution function (CDF) of W (n,q) is given by

F(w;n,q)≡ P(W (n,q)≤ w) = 1−αeSwe, (9)

where e is a column vector of 1’s, row vector α = [0, . . . ,0,1] (because the initial state is n+ q), and
eX = ∑

∞
k=0(1/k!)Xk the matrix exponential. See Latouche and Ramaswami (1999) for detailed review of
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PH distributions. Using the CDF in (9), we can easily compute

β̂ (t,q) = E[u(Wj)|Q(t) = q] =
∫

w
u(w)dF(w;n,q). (10)

For example, to compute the TPoD at w, we have

E[1{Wj>w})|Q(t) = q] = 1−F(w;n,q) = αeSwe.

See Konrad and Liu (2023b) for the generalized treatment of a time-varying n(t).
Remark 2 (Inverse Laplace transformation) As an alternative to the above PH method for computing the
distribution of W (n,q), the decomposition in (7) enables us to derive its Laplace transform (LT) directly,
which has the following product form:

LW (n,q)(s) =
q

∏
k=0

LDk(s) =
q

∏
k=0

nµ + kθ

nµ + kθ + s
. (11)

To recover the original PDF of W (n,q) we resort to the numerical inversion of LT developed by Abate and
Whitt (1995).

3 G-CASE: A GAUSSIAN APPROXIMATION FOR Q-CASE

In this section, we consider a heuristic approach leveraging the heavy-traffic approximation for the queue
length process - the fluid and diffusion models.

3.1 Heavy-Traffic Fluid Limit

In a nonstationary queueing system having time-varying arrival rate and staffing level, the challenges in
establishing analytic solutions are due to two main factors: (i) temporal variability (e.g., the system’s states
at different time points during a day, such as peak and off-peak hours) and (ii) stochastic variability or
ensemble variability (e.g., the variability across different days but at the same time during a day). As the
system scale increases, the former begins to dominate the latter (Liu and Whitt 2012a). Fluid models,
arising from the large-scale limits of their associated stochastic queueing models with the scale approaching
infinity, have been proven effective in the performance analysis of multiserver queueing systems (Liu and
Whitt 2012a). Fluid models focus on characterizing the temporal variability while omitting the stochastic
variability; they are determinisitic models described by a system of differential equations so they are much
more tractable than the corresponding stochastic root models. Also see Liu and Whitt (2011), Liu and
Whitt (2012a), Liu and Whitt (2012b), Liu and Whitt (2014a), Lee et al. (2021).

The better explain the fluid functions, we first describe the queueing equations for their stochastic
counterparts. The Markovian structure enables us to use the so-called random time change of unit-rate
Poisson approach (e.g., Section 2.1 in Pang et al. (2007)) to construct the above-mentioned performance
functions. Specifically, let Nλ (·), Ns(·) and Na(·) be three I.I.D. unit-rate Poisson processes. We have

X(t) = X(0)+Nλ

(∫ t

0
λ (s)ds

)
−Ns

(∫ t

0
µB(s)ds

)
−Na

(∫ t

0
θQ(s)ds

)
= X(0)+Nλ

(∫ t

0
λ (s)ds

)
−Ns

(∫ t

0
µX(s)∧n(s)ds

)
−Na

(∫ t

0
θ(X(s)−n(s))+ds

)
. (12)

As we can see from the above formula, the system’s randomness is attributed to three separate random
sources: the arrival process (modeled by Nλ ), the service process (modeled by Ns) and the abandonment
process (modeled by Na).
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We use lower-case letters q(t), b(t) and x(t) to denote the fluid limits of their stochastic counterparts.
The dynamics of the total fluid content x(t) is described by the following ordinary differential equation
(ODE) having a piecewise drift:

x′(t) = λ (t)−µ ·b(t)−θ ·q(t), where q(t)≡ (x(t)−n(t))+ and b(t)≡ x(t)∧n(t) (13)

are the fluid contents in queue and in service at t, x+ ≡max(x,0), and x∧ y≡min(x,y).
To formalize the MSHT framework, we define a sequence of Mt/M/st + M models indexed by

η = 1,2,3, . . ., where the η th model has an η-scaled arrival rate λη(t) = ηλ (t) and service capacity
nη(t) = ηn(t), but unscaled service rate µ and abandonment rate θ . Let Xη(t), Qη(t) and Bη(t) be the
total queue length, waiting queue length and number of busy servers at t in the η th model. We expect the
following functional weak law of large number (FWLLN)

Xη(t)/η ⇒ x(t) as η → ∞, (14)

where x(t) is the fluid limit specified in (13). A straightforward comparison of (13) and (12) reveals that
the fluid model is to treat the original stochastic model as if the random fluctuation may be omitted (with
all three Poisson shells Nλ , Ns and Na removed) while still preserving the system’s trend in the temporal
domain. See Liu and Whitt (2012b), Liu and Whitt (2014b), Whitt (2006) for detailed theoretical framework
of FWLLN.

3.2 Gaussian Approximation for the Queue Length

Building on the fluid limit specified in (13), we further expect that the following functional central limit
theorem (FCLT) holds:

(Xη(t)−ηx(t))/
√

η ⇒ X̂(t) as η → ∞, (15)

where the diffusion limit X̂(t) is a zero-mean Gaussian process. Before we carefully investigate the dynamics
of X̂(t), we first explain how the Gaussian approximation works. According to (15), for a large system
scale η , we have the approximation

Xη(t)≈ ηx(t)+
√

ηX̂(t) d
= N

(
ηx(t),ησ

2(t)
)

for any time t, (16)

where N (a,b) is a Gaussian random variable with mean a and variance b, and σ2(t)≡ Var(X̂(t)).
Next, following the truncated Gaussian approximation in Liu et al. (2016), we write

Qη(t) = (Xη(t)−nη(t))+
d≈N

(
ηx(t)−nη(t),ησ

2(t)
)+ d

= (ηx(t)−nη(t)+
√

ησ(t)Z )
+ ≡ Q̂η(t),

(17)

Bη(t) = Xη(t)∧nη(t)
d
≈N

(
ηx(t),ησ

2(t)
)
∧nη(t)

d
= (ηx(t)+

√
ησ(t)Z )∧nη(t)≡ B̂η(t), (18)

where Z is a standard Gaussian random variable.
In the Q-CASE estimator defined in (6), replacing Q(t) by Q̂η(t) specified in (17) yileds the Gaussian

approximation version of Q-CASE:

β
G ≡ E

[∫ T

0
f (t)β̂

(
t,(x(t)−n(t)+σ(t)Z )+

)
dt
]
. (19)

Here in (19) we slightly abuse our notation by using x(t) in place of ηx(t) as the scale-free fluid process
and σ(t) in place of

√
ησ(t) as the scale-free standard deviation process.
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The final missing piece in (19) is the variance σ2(t). Our Mt/M/st +M model is a special case of results
in the Gt/M/st +G model in (Liu and Whitt 2014b) and the Markovian queueing network in Mandelbaum
et al. (1998). For this step, we mainly draw from Mandelbaum et al. (1998). The diffusion limit of the
total queue length in our Mt/M/st +M model solves the following stochastic differential equation (SDE)

dX̂(t) = [µ1(x(t)≤ n(t))+θ1(x(t)> n(t))] X̂(t)−− [µ1(x(t)< n(t))+θ1(x(t)≥ n(t))] X̂(t)+

−dBλ

(∫ t

0
λ (s)ds

)
−dBa

(∫ t

0
θ(x(s)−n(s))+ds

)
−dBs

(∫ t

0
µ(x(s)∧n(s))ds

)
, (20)

where x− ≡max(−x,0), and Bλ , Bs and Ba are three I.I.D. standard Brownian motions (BMs).
Next, if we omit the time points at which the fluid model is critically loaded, that is x(t) = n(t) (which

rarely occurs in practice), we can simplify (20) to the following Ornstein-Uhlenbeck (OU) process having
a piecewise drift:

dX̂(t) =− [µ1(x(t)< n(t))+θ1(x(t)> n(t))] X̂(t)

−dBλ

(∫ t

0
λ (s)ds

)
−dBa

(∫ t

0
θ(x(s)−n(s))+ds

)
−dBs

(∫ t

0
µ(x(s)∧n(s))ds

)
, (21)

of which the variance σ2(t) solves the following ODE.

dσ2(t)
dt

=−2 [θ1(x(t)> n(t))+µ1(x(t)< n(t))]σ2(t)+λ (t)+θ(x(t)−n(t))++µ(x(t)∧n(t)), (22)

with initial condition σ2(0) = 0.1

We are now ready to describe the MC algorithm arising from (19). Note that the main appeal of (19) is
its ease of implementation: For each MC trial, instead of generating a full sample path of the queue-length
process, it now suffices to generate a single random variable Z . This advantage can further enable the
use of additional variance reduction technique: For example, because the pointwise SL function β̂ (t,q) is
monotonically increasing in q, we can apply the technique of antithetic variables, that is

β
G
A ≡ E

[∫ T

0
f (t)

(
β̂
(
t,(x(t)−n(t)+σ(t)Z )+

)
+ β̂

(
t,(x(t)−n(t)+σ(t)(−Z ))+

)
2

)
dt

]
. (23)

Below we formally state the Gaussian-antithetic version of Q-CASE in Algorithm 3. We call it G-CASE.

Algorithm 3 G-CASE
1: for j = 1 to n do
2: Generate Z j ∼N (0,1);
3: Compute x(t) and σ2(t) using (13) and (22).
4: Compute β̂

(
ti,(x(ti)−n(ti)+σ(ti)Z j)

+) and β̂
(
ti,(x(ti)−n(ti)+σ(ti)(−Z j))

+) for all t1, . . . , tm;
5:

6: Compute the sum θ j← ∑
m
i=1 p(ti)

β̂

(
ti,(x(ti)−n(ti)+σ(ti)Z j)

+
)
+β̂

(
ti,(x(ti)−n(ti)+σ(ti)(−Z j)

+
)

2
7: end for
8: Output the sample mean Θ̄(n)← 1

n ∑
n
j=1 θ j

Note: Superscript “ j” indicates samples on the jth MC trial.

1The initial queue value is the observation of the system state at the beginning of the interval [0,T ], which is always
deterministic. Hence, the variance of the initial queue size is 0.
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4 NUMERICAL EXPERIMENTS
To evaluate the accuracy and effectiveness of our new estimators, we conduct a numerical studies which
benchmark Q-CASE and G-CASE to CMC. Following Liu and Whitt (2012a), we first consider an
Mt/M/st +M example having a sinusoidal arrival rate λ (t) = n(1+ 0.2cos(t)), a constant staffing level
with n servers, service rate µ = 1, and abandonment rate θ = 0.5. Let n = 1000. We conduct 1000 MC trials
for all estimators. We focus on two predominant SL metrics in form of CASE in (1): (i) customer-averaged
waiting time in [0, t] (with u(x) = x), and (ii) fraction of customers in [0, t] whose waiting times are ≤ w
(with u(x) = 1{x≤w}, w = 0.5). See Table 1 for CIs of all estimators at four representative time points. Table
1 shows that the use of antithetic variables in G-CASE is able to achieve additional variance reduction
beyond Q-CASE.

In terms of end-to-end simulation time, CMC requires around 1 minute and 40 seconds to complete.
In contrast, G-CASE achieves comparable accuracy with runtime of just 0.3 seconds. This efficiency is
enabled by a preprocessing step where all unique integer-valued queue lengths are identified and their
corresponding β̂ (t,q) values are precomputed. This is not surprising because each trial of G-CASE requires
only the generation of a single Gaussian random variable, while that of CMC requires a complete DES
simulation of detailed waiting time data for all customers.

Table 1: CMC vs. Q/G-CASE: confidence intervals for (i) customer-averaged waiting time, and (ii) fraction of
customers with waiting times below a target, in interval [0, t].

Time t = 8 t = 10 t = 16 t = 20

Customer-averaged CMC 0.044 ± 3e-03 0.045 ± 3e-03 0.056 ± 2e-03 0.058 ± 2e-03
waiting time Q-CASE 0.045 ± 1e-03 0.046 ± 1e-03 0.057 ± 1e-03 0.059 ± 1e-03

G-CASE 0.043 ± 8e-06 0.044 ± 4e-05 0.055 ± 4e-05 0.057 ± 4e-05
Fraction of CMC 0.223 ± 2e-02 0.221 ± 2e-02 0.275 ± 1e-02 0.284 ± 1e-02
waiting times Q-CASE 0.228 ± 5e-03 0.23 ± 6e-03 0.286 ± 5e-03 0.293 ± 5e-03
below a target G-CASE 0.221 ± 2e-03 0.224 ± 1e-03 0.282 ± 2e-03 0.288 ± 2e-03

Supplementing the above example with a theoretical arrival rate, we next consider a more realistic
arrival rate that resembles the demand pattern in real-world large-scale call centers (representing two
demand surges throughout the day). In Figure 2, we plot all three estimators for (i) and (ii) within different
interval [0, t], for t ∈ [0,T ], T = 24. See the two panels at the bottom of Figure 2. Across both metrics,
both Q-CASE and G-CASE closely agree with CMC, confirming their accuracy. On the other hand, both
estimators achieve significantly smaller confidence intervals (CIs) as demonstrated in Table 2.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we propose new methodologies for efficiently estimating customer-averaged service level
metrics in nonstationary queueing systems, with a particular focus on developing computationally efficient
estimators that outperform traditional Monte Carlo approaches. By leveraging conditioning techniques on

Table 2: CMC vs. Q/G-CASE: confidence intervals for the example in Figure 2, n = 400 servers, mean service
time is 10 minutes, and mean abandonment time is 20 minutes.

Time t = 10 t = 12 t = 16 t = 20

Customer-averaged CMC 0.031 ± 1e-03 0.052 ± 1e-03 0.056 ± 8e-04 0.049 ± 7e-04
waiting time Q-CASE 0.031 ± 9e-04 0.051 ± 8e-04 0.053 ± 6e-04 0.048 ± 6e-04

G-CASE 0.032 ± 6e-06 0.051 ± 3e-05 0.053 ± 6e-05 0.048 ± 6e-05
Fraction of CMC 0.041 ± 5e-03 0.162 ± 9e-03 0.103 ± 6e-03 0.08 ± 5e-03
waiting times Q-CASE 0.034 ± 9e-03 0.168 ± 2e-02 0.107 ± 1e-02 0.082 ± 8e-03
below a target G-CASE 0.036 ± 3e-03 0.165 ± 3e-03 0.106 ± 4e-03 0.081 ± 3e-03
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Figure 2: CMC vs. Q/G-CASE: (1) average wait time and (2) fraction of wait times below target w, in [0, t], for
t ∈ [0,T ], T = 24, n = 400 servers, mean service time is 10 minutes, and mean abandonment time is 20 minutes.

the queue length and its heavy-traffic approximations, the proposed new estimators significantly reduce
variance and end-to-end simulation time while maintaining high accuracy in predicting customer wait-time
metrics. Through extensive numerical experiments, we demonstrate the effectiveness of these methods.

There are several important venues for future research. Although the present paper focuses on the
time-varying Erlang-A model, it is possible to extend our results to non-Erlang models. For example, the
development of the Gaussian-based estimator can leverage useful heavy-traffic results of non-Markovian
queues in Aras et al. (2018), Liu and Whitt (2012a). Another future direction is to extend our methods
to multi-class queueing systems, which requires the estimator to be aware of the scheduling and routing
policies (Liu et al. 2022). Finally, a practical future work is to turn the performance prediction result to
a decision-support tool; we can design an efficient simulation optimization framework to determine the
optimal operational decisions (e.g., staffing) subject to SL constraints (Konrad and Liu 2023a).
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