Proceedings of the 2025 Winter Simulation Conference
E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

WHO’S TO BLAME? UNRAVELING CAUSAL DRIVERS IN SUPPLY CHAIN SIMULATIONS
WITH A SHAPLEY VALUE BASED ATTRIBUTION MECHANISM USING GAUSSIAN
PROCESS EMULATOR

Hoiyi Ng?, Yujing Lin?, Xiaoyu Lu!, and Yunan Liu?

' Amazon Supply Chain Optimization Technology, Bellevue, WA, USA
2Amazon Supply Chain Optimization Technology, Austin, TX, USA
3 Amazon Supply Chain Optimization Technology, New York City, NY, USA

ABSTRACT

Enterprise-level simulation platforms model complex systems with thousands of interacting components,
enabling organizations to test hypotheses and optimize operations in a virtual environment. Among these,
supply chain simulations play a crucial role in planning and optimizing complex logistics operations. As
these simulations grow more sophisticated, robust methods are needed to explain their outputs and identify
key drivers of change. In this work, we introduce a novel causal attribution framework based on the Shapley
value, a game-theoretic approach for quantifying the contribution of individual input features to simulation
outputs. By integrating Shapley values with explainable Gaussian process models, we effectively decompose
simulation outputs into individual input effects, improving interpretability and computational efficiency.
We demonstrate our framework using both synthetic and real-world supply chain data, illustrating how our
method rapidly identifies the root causes of anomalies in simulation outputs.

1 INTRODUCTION

Supply chain simulations have become an indispensable tool for planning and optimizing complex logistics
operations. These sophisticated simulations model the intricate relationships and dynamics within the supply
chain, allowing businesses to test scenarios, identify bottlenecks, and evaluate the impacts of potential
changes before implementation. In Amazon, a large-scale simulation system is responsible for predicting
product level inventory flow to support labor planning and capacity management for millions of products
world wide. This system generates future 12-weeks inventory flow predictions by simulating various events
such as customer demand, vendor orders, inventory arrival, and customer shipments. Due to the evolving
nature of the simulation input data, the predictions generated from different simulation runs for the same
target period can vary significantly. The increasing complexity of Amazon’s supply chain systems makes
it challenging to extract meaningful insights from simulation outputs.

To understand the impact of different inputs on an outcome, two analytical approaches are commonly
used: sensitivity analysis and attribution. While sensitivity analysis is a prospective method that evaluates
how changes in inputs affect outputs, attribution analysis is retrospective, seeking to link downstream effects
to upstream causes and assign responsibility for observed outcomes. Businesses have developed various
strategies to tackle attribution, ranging from rule-based heuristics to model-based quantification and scenario
analysis. One common approach involves constructing root cause buckets based on domain knowledge
and distributing the target outcome across these buckets using waterfall logic derived from business rules.
Another method is to fit simple models, such as linear regression, to estimate relationships between inputs
and outputs, using the model’s coefficients to quantify impact. A third approach leverages what-if scenario
analysis through simulations or conducts functional decomposition to assess a target variable’s sensitivity
to input changes (Owen 2013).
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However, each of these methods has inherent limitations. Rule-based heuristics often lack a systematic
way to uncover true causal drivers. Regression-based models struggle to capture complex, nonlinear
relationships. While scenario analysis offers more flexibility, it becomes computationally prohibitive as
the problem scales, answering a subtly different question - it is more forward-looking in assessing how
inputs impact outcomes, rather than the backward-looking task of attributing observed outcomes to different
inputs. These challenges underscore the need for more sophisticated, scalable, and principled approaches
to address attribution in complex supply chain systems.

Originally introduced in game theory, the Shapley value (Shapley 1952) provides a fair and mathemat-
ically principled way to distribute a total outcome among multiple contributors based on their individual
impact. It calculates each participant’s marginal contribution by considering all possible coalitions, ensuring
an equitable attribution of the total effect. This concept has been widely adopted beyond game theory,
particularly in machine learning and explainability. Lundberg and Lee (2017) and Chen et al. (2023) were
among the first to leverage the Shapley value to explain black-box machine learning outputs, providing
a way to quantify the influence of individual input features on model predictions. More recently, with
the additional assumption of an underlying causal graph, Shapley-based attribution methodologies were
proposed in Singal et al. (2021) and Budhathoki et al. (2021) to better capture causal dependencies in
attribution problems.

However, these existing approaches do not fully address the challenges in our problem setting. Unlike
prior studies that consider a flat list of independent input features, large-scale enterprise-level simulation
system incorporates complex physical mechanics and dynamic interactions between components. For
example, the impact of economic variables on inventory levels is indirect compared to the impact of
outbound demand. Economic variables affect order quantities, which then impact inbound units through
vendor confirmation rates and lead times, before finally reaching the on-hand inventory levels. Simply
attributing output changes to input variables would fail to capture how these effects propagate through
the simulation. While causal graph-based methods attempt to address this gap, they still suffer from
computational inefficiencies and robustness issues, making them impractical for large-scale simulations.
Our work builds upon these foundations to develop a more effective and scalable attribution framework
tailored to enterprise-level simulation systems.

In this paper, we aim to quantify the contributions of individual input features to simulation outputs
by proposing a novel Shapley value-based Attribution method via a Gaussian-process Emulator (SAGE).
This mechanism allows us to decompose simulation outputs into individual feature effects and derive
closed-form solutions for Shapley values, significantly reducing computational complexity and overcoming
computational challenges in existing approaches. Our attribution framework offers several key advantages:

* Root cause identification: It enables rapid diagnosis of anomalies in simulation outputs, allowing
businesses to take timely corrective actions.

* Interpretability and insights: The Shapley value-based attribution provides a clear and compre-
hensive explanation of simulation results, improving understanding and decision-making.

* Model-agnostic integration: Our approach is flexible and can be seamlessly applied to a wide
range of supply chain simulation systems.

We demonstrate the effectiveness of our framework by diagnosing key drivers of changes in supply
chain simulation outputs. One critical decision in supply chain management is determining the target
inventory based on key inputs such as demand forecasts, vendor lead times, and economic factors (e.g., lost
sales and holding costs). Our method identifies the causal relationships among these inputs and quantifies
their impact on downstream simulation outputs, such as inbound and outbound units for the same target
week across different simulation runs.

This paper is organized as follows: In Section 2, we review the definition and key properties of Shapley
value. In Section 3, we formulate our Shapley value-based attribution problem: simulation over simulation.
In Section 4, we introduce a Gaussian process model to proxy the relationship between simulation inputs and
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outputs and derive closed-form solution for Shapley value computation. We present real-world applications
of our method in Section 5. Finally, we conclude in Section 6.

2 SHAPLEY VALUE

Before we introduce our full attribution framework, we first review the definition and properties of the
Shapley value. In game theory, the Shapley value is used to fairly distribute both gains and costs to several
players in a cooperative game (Shapley 1952). Formally, we define an n-player game with a set of players
A ={1,2,...,n} and a real-valued function that maps a subset of .4” to its corresponding value function
v, ie., v:2”" — R with v(®) = 0, where ® denotes the empty set. Thus, v(.#) represents the value that
arises when the players in the subset .’ of .4#" form a coalition in the game. The player i’s return in the
coalitional game (v,.4") or the Shapley value of player i with respect to v(-) is defined as

= |7 = 1)

n!

$i(v) =

SCH\{i}

(" U{i}) =v(7)). e))

The weight in (1) can be written as (|.|!(n— .| —1)!)/n! = (1/n)- (’ﬁ;l‘)_l, so ¢;(v) can be interpreted

as
1 marginal contribution of i to coalition

¢i(v)

number of coalitions excluding i of this size’

number of player $ coalitions excluding i

In other words, ¢;(v) is the incremental value of including player i in set . averaged over all possible
different permutations in which the coalition can be formed (i.e., all sets . C A"\ {i}).

The Shapley value is widely used in machine learning to explain the contribution of each input feature
to the difference of a prediction and the expected value of the model (Molnar 2020). Suppose f : R" — R
is a real-valued function of n random variables denoted by X = {X;,X,,...,X,}, then each input feature
x; can be viewed as the player i in the context of game theory, the value function v(.¥) is the prediction
for feature values in set . that are marginalized over features that are not included in set .7:

W) = [ F1, i) APy —ELAX)) @

where P is the joint probability distribution for the features not in . conditional on those in .#, and E
is the expectation taken with respect to the random features. In fact, v(.¥) is the difference between the
conditional expectation of f(X) given observed values of features in . and the unconditional expectation
of f(X). For example, if X = {X;,X>,X3,X4} and we evaluate the prediction for the coalition .# consisting
of feature values x; and x3, then (2) is evaluated as

o) = vl = [ [ 700X X dPex, ~E(/(X)= B X)X = 0,% = xa] ~E[f(X)]

which is the difference between the conditional expectation given x; and x3 and the unconditional expectation,
quantifying the impact of the x; and x3 on the overall expectation of f(X).

The Shapley value is the only attribution method that satisfies the properties of efficiency, symmetry,
dummy and additivity, which are essential to our attribution problem.

» Efficiency: The sum of the Shapley values (feature contribution) of all players (input features)
must equate the difference of prediction for x and the average: Y, ¢;(v) = f(x) — E[f(X)].

*  Symmetry: The contributions of two feature values i and j should be identical if they contribute
equally to all possible coalitions. That is, if v(.#U{x;}) = v(# U {x;}) for all coalitions . C

A\{i, j}, then ¢i(v) = ;(v).
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*  Dummy: A feature i that does not change the predicted value, regardless of which coalition of
feature values it is added to, should have a Shapley value of 0. That is, if v(.-” U{x;}) = v(.’) for
all coalitions . C A"\ {i}, then ¢;(v) = 0.

* Additivity: If two coalition games described by value functions v and w are combined, then the
distributed gains should correspond to the gains derived from v and the gains derived from w:
oi(v+w) = ¢;(v) + ¢;(w). Suppose we train a random forest, which means that the prediction is
an average of many decision trees. The additivity property guarantees that for a feature value, we
can calculate the Shapley value for each tree individually, average them, and then get the Shapley
value for the feature value for the random forest.

These properties are crucial for interpreting simulation outputs. Additivity, for instance, allows us to
accurately attribute observed outcomes to distinct inputs, while efficiency ensures that the target value is
fully accounted for by the given causal factors. Additionally, the symmetry and dummy properties are
intuitive and applicable in business contexts.

3 SIMULATION-OVER-SIMULATION ATTRIBUTION VIA THE SHAPLEY VALUE

Supply chain systems have become increasingly complex, characterized by intricate interactions among
thousands of nodes, millions of products, and countless uncertain variables. Accurately modeling and
simulating these dynamic networks is essential for optimizing operations, identifying bottlenecks, and
evaluating the effects of potential changes. At Amazon, a large-scale Monte Carlo (MC) simulation system
plays a pivotal role in predicting product-level inventory flows to support critical business functions such
as labor planning and capacity management across its global logistics network.

This simulation system produces 12-week forecasts of inventory flows by modeling key supply chain
events, including volatile customer demand, vendor order fulfillment variability, and inventory arrivals.
Given the evolving and stochastic nature of these input variables, the simulation outputs can vary significantly
across runs - even when targeting the same forecast period. Understanding the root causes behind these
output differences is a fundamental challenge, as it limits the ability to extract actionable insights and
make data-driven decisions. To address this, we introduce an attribution framework to decompose changes
in simulation outputs - specifically target inventory (TI) levels - into contributions from individual input
factors. For example, if the TI for a product is significantly higher in one simulation run than the previous
week’s, our attribution analysis can identify key drivers - such as demand forecast shifts or changes in
vendor lead times (VLT) - enabling supply chain managers to take timely corrective action.

In our context, the MC simulation estimates the expectation of an output metric, denoted by E[f(X)],
where X is a vector of key input variables such as demand forecasts, macroeconomic indicators, and VLTs.
The output metric f(X) corresponds to the optimal TI, a critical value that balances customer service
levels against operational costs. TI reflects the inventory level a retailer aims to maintain after placing
replenishment orders, considering current stock, pipeline inventory, and backorders. Determining optimal
TI is inherently complex, as it involves multi-period stochastic optimization under uncertainty in demand
and supply lead times, along with interdependencies across products.

Simulation-over-simulation (SoS) attribution compares the outputs of two MC simulations with differing
input configurations X" and X, and attributes the observed changes in TI to specific changes in the
input features. To achieve this, we first encode domain expertise in the form of a causal graph representing
key relationships among variables in the simulation system (see Figure 1). We then employ Gaussian
Process models to learn the functional mappings between input variables and TI. Finally, we apply Shapley
value decomposition to quantify the marginal impact of each input variable on the observed change in TI
between simulation runs. This approach ensures a principled and interpretable attribution of simulation
output variability to its causal drivers.
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Figure 1: Causal relationship between input variables and target inventory.

Vendor Lead Time

In this paper, we use higher and lower case symbols for random and deterministic variables; we use
bold face symbols for vectors and matrices. Suppose that the TI computation in simulation is characterized
by the real-valued function f(-) which takes n inputs X, ¢ = {X4.¢.1,%4,2; - - -,Xa,0} for product a in the o/
simulation, and that the function f(-) remains unchanged in two simulation runs of interest. This means
the structure of the optimization problem to determine TI remains unchanged. Let the inputs for product
a in the two simulation runs be denoted by x,; and X, >, and the entire input data set to be denoted by
X = [X1,1,...,X|o7|,1,X12; - - - X| | 2] » then according to the property of efficiency, we have

Y fu1al0) = k) < ELAXL, and Y02, = fixaz) ~ B X,

where the expectation is taken with respect to two simulation runs’ input distributions. In other words, the
data fed in our model has the following structure:

X1 X2 Xon
Xg1,1 **+  *  Xgln]| product a, simulation run 1
Xa2,1 Xa2.n product a, simulation run 2 (3)
Xp,1,1 R Xp,1,n| product b, simulation run 1

2,1 ' "t Xp2pd product b, simulation run 2

The objective of SoS attribution is to explain the contribution of each input feature to the difference
in TL i.e., f(X42) — f(Xq4,1), we therefore take the difference of the two equations above and get

Z ¢a 21 Z ¢a 1, l Z ¢a21 ¢a,1,i(V)) = f(Xa,Z) _f(xa,l)a 4

i=1

where the difference of the Shapley value of feature x;, ¢,2;(v) — @4.1.i(v), is the contribution of feature x;
to the TI difference of product a. In (4), we do not need to calculate E[f(X)] explicitly because this term
gets canceled out when taking the difference. Let product-level attribution of feature x; for product a to be
denoted by

q)tl,i = ¢a,2,i(v) - ¢a,l,i(v)7 )

since products are simulated independently in simulation, then the aggregated contribution of feature i
across a set of products, say <7, to the total target inventory changes is

Y @, (©)

acs/

It is straightforward to show that both ®,; and ), ., ®,; satisty all the 4 properties of the Shapley value.
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In practice, we do not have analytical functions for most production systems including target inventory
computation. Ideally, we should repeat the simulation runs for any permuted instance, butitis computationally
intensive to run as the number of features n and sampling size M increases. Hence, we build a machine
learning model f() to approximate f(-). Additionally, computing the integral defined in (2) is intractable
and the exact solution to this problem becomes computationally challenging because the number of possible
coalitions increases exponentially as more features are added. An approximation for ¢;(v) via MC sampling,
presented in Algorithm 1, allows the approximation of product-level attribution @, ; for a given input feature
i (§trumbelj and Kononenko 2014).

Due to the potential error caused by the fitted f() and MC sampling, we might see a gap between
estimated total attribution and total TI value change. So we modify (4) as below:

i i aa,l,i(v) + Z ga,i(V) = f(xa,Z) _f(xa,l) + il ga,i(v) = f(Xa,Z) - f(xa,l)a (7)

where €,;(v) is the estimation error of attribution for feature i of product a.

3.1 Algorithm for Estimating the Shapley Value

Algorithm 1 Product-level attribution estimation via Monte Carlo sampling

Require: Xa,1,Xa,27X7J?(')
1: for {=1,2 do

2: (Pa,ﬂ.i(v) <0

3 for m=1,2,...,M do

4 draw random instance @’ from the data matrix x

5 choose a random permutation o of the feature values

6: order instance X, based on permutation o: X_ = {xa,m,xa’(z), X )}

7 order instance X, based on permutation o: Xj;, = {xa@( 1)sXd(2)5 - - - ,xa/,(n)}

8 construct an instance with it Xy; = {Xq (1)5 - »Xq,(i—1)>Xa,(i)sXa (i+1)5 - - - X () }
9 construct an instance without i: X_; {x (1) Xa,(i—1) xag(i),xa/’(,-ﬂ),...,xa/7(n)}
10: compute marginal contribution: ’" (V) = f ) f(x,i)

11: end for

12: compute the Shapley value as the average: (ﬁ,’g’,‘ = Z 0, l( )

13: end for

14: compute attribution of feature i for product a: CTDW- = (ﬁfl(v) - a; :(v)

Evaluating all possible coalitions to compute the Shapley value directly is computationally intractable, so
various sampling algorithms are investigated to estimate the Shapley value (Molnar 2020; Strumbelj and
Kononenko 2014; Castro et al. 2009). We adopt the MC sampling approach and rewrite (1) as:

00) =~ ¥ (v(Pre'(0) U{i}) — v(Pre'(0))), ®)

" oen(n)

where 7(n) is the set of all ordered permutations of the feature indices {1,2,...,n} and Pre'(o) is the set
of all indices that precede i in permutation o € 7r( ). Based on Equation (8), Strumbelj and Kononenko
(2014) shows that the estlmated Shapley value (j), is approx1mately normally distributed with mean ¢; and
variance 7 = /M, where T is the population variance. That is, d), is an unbiased and consistent estimator
for ¢;. Algonthm 1 shows how to estimate product-level attribution via the MC sampling scheme from
in Strumbelj and Kononenko (2014). The two instances constructed in lines 8-9 in Algorithm 1 only
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differ in the feature of interest (i.e., feature i), and the mixed values of x, and x, aim to approximate the
conditional expectation where we only know the feature values of @ while sampled a’ refers the distribution
of the dataset. See §tmmbelj and Kononenko (2011), Strumbelj and Kononenko (2010), Strumbelj and
Kononenko (2014) for more details.

3.2 Shapley Value for Closed-Form TI Functions

In this section, we apply our attribution model using Shapley value to a simple order-up-to policy. The
closed-form expression of function f(-) allows us to compute the true attribution of each input and evaluate
the accuracy of the attribution.

Normal distributions have been widely used in the supply chain literature for modeling demand. Despite
the fact that it theoretically allows for negative values, it offers closed-form solutions. Alternate distributions
such as Gamma or Poisson can also be used, which should yield similar TI structure, with the normal quantile
replaced by Gamma or Poisson quantile. Also for practicality, the negative tail of normal distribution can
be easily handled by truncation at 0. For product a, assume that its review period is T, weeks and VLT is
L, weeks, and that its weekly demands are i.i.d. D, ~ N (U, 03), then the demand over planning horizon
(T, +L,), say D, follows N(fi,,62), where fi, = (T, + L), and &, = (v/T, + L,)0,. Suppose the service
level is identical for all products, that is, for all a, we require the same target of the fulfillment probability

P(TL, > D,) =P(TL, > N(fl, 67)),
which yields TI, (with subscript a added for product a) in form of

T, = fis+ 26, = (Tu + L) o + 2(V Ty + L) 04 = f(X), 9)
where X = (U, 04, Ty, Ly),

z is the corresponding z-score of the standard normal distribution at the target service level. In this example,
the function f(-) is a linear in the demand mean and standard deviation when planning horizon, but a
nonlinear function of the planning horizon and VLT. We next showcase how to compute the Shapley value
of U, and o, (the linear case), and that of 7, and L, (the nonlinear case). We hereby treat U, and o, as
input features instead of the demand itself because the mean and variance are to be estimated from data
so they can be treated as random variables themselves.

Shapley values of i, and o, (linear case).  Assume that we have 100K products and observe
different values (both input and output) in two simulations. Let 7, = L, = 1 and z = 1.64 for all a. The
demand means in the two simulations, denoted by ,; and U, are selected randomly in the intervals
(100,200) and (150,250), respectively. Similarly, the demand standard deviations, denoted by o, and
0,2, are randomly selected in intervals (50,150) and (75,175), respectively. We next draw 100K samples
from each distributions with selected parameters and compute the corresponding TI,; and TI,> using
Equation (9). In this case, X, ¢ = [X4.0.,1,%4,¢2] = [Ua,¢; Oar]-

Given that TI is a linear function of x, we can easily compute the true attribution of each feature i by
deriving the partial derivative of the TI function with respect to feature i. The true contributions of demand
mean and standard deviation along with the attribution computed using Algorithm 1 are shown in Table 1.

Table 1: Computed Shapley value attribution vs. ground truth for y, and o,.

Ground truth  Shapley value Error

Demand mean 99.75 99.76 0.01%
Demand standard deviation 57.70 57.71 0.02%
Total 157.45 157.47 0.01%

Shapley values of L, and o, (nonlinear case). Let7,=1,z=1.64, and U, = Uy = 150 for all
a. The varying inputs are demand standard deviation and VLT. Same as the linear case, we randomly select
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04,1 and 0, in the intervals (50,150) and (75,175), respectively. For VLT, we draw L, | and L, > according
to two different exponential distributions with rates 1 and 0.5. In this case, X, ¢ = [Xq.0,1,%4,¢.2] = [La,¢; Oa ]
so that TI is a nonlinear function of x. For all a and /, the partial derivatives (PDs) of TI with respect to
these input features are (omitting the subscripts a and [/ for simplicity):

OTI 6 OTI
oL+ %% ad L UTHL
oL Mtourgr M e TV L

from which we see the partial derivative value and the corresponding attribution depend on which point is
evaluated at. For example, the attribution of VLT and demand standard deviation evaluated at the initial
point (X, 1) are 222.66 and 56.73 (summing up to 279.39), while the ones evaluated at the ending point
(X4,2) are 184.98 and 68.36 (summing up to 253.34). Neither of the total attribution equals to the true TI
change, which is 263.18. Algorithm 1, on the other hand, returns VLT attribution 200.67, demand standard
deviation attribution 62.54, and the total attribution 263.21 which is nearly identical to the total target
inventory change (see Table 2). Both examples demonstrate the efficiency property of the Shapley value.

Table 2: Computed Shapley value attribution vs. ground truth for VLT and demand standard deviation.

Ground truth ~ Shapley value PD evaluated at x,; PD evaluated at x,»

VLT N/A 200.67 222.66 184.98
Demand standard deviation N/A 62.54 56.73 68.36
Total 263.18 263.21 279.39 253.34

The results from applying the Shapley value-based attribution framework to the supply chain simulation
case studies are compelling. In the first example, where TI was a linear function of the input features
(demand mean and standard deviation), the Shapley values precisely captured each input’s contribution.
The total attribution closely matched the actual change in TI, with deviations for individual features under
0.02% - demonstrating the method’s accuracy in decomposing simulation outputs. In the second, more
complex example -where TI depended nonlinearly on variables such as VLT and demand standard deviation
- the Shapley approach again proved powerful. Unlike the partial derivative method, which yielded varying
results depending on the evaluation point, the Shapley values provided a single, consistent attribution that
correctly summed to the overall change in TI. These case studies highlight the robustness and reliability of
Shapley value-based attribution in explaining simulation outcomes, even under nonlinear and interdependent
input relationships.

4 MODELLING CAUSAL RELATIONSHIPS USING GAUSSIAN PROCESSES

We leverage Gaussian Process (GP) with orthogonal additive kernel (OAK) proposed in Lu, Boukouvalas,
and Hensman (2022) to proxy the true relationship encoded in complex optimization algorithms between
target inventory and its parents (inputs to target inventory) and compute attribution due to its flexibility and
interpretability. Additive GP model works by decomposing the output into components of its input features
or interactions between them. We consider up to two-way interactions for interpretability but the method is
capable to incorporate higher order terms too. Let y be the output and {x;,--- ,xp} the D-dimensional input
feature, Duvenaud et al. (2011) introduced the additive Gaussian process model y = f(x1,x2,--- ,xp) + €
where € is some white noise and f has the following additive structure:

flxi,x2,--,xp) = fi(x1) + fa(x2) + -+ fia(x1,x2) + -+ fio.p(x1, %2, - - xp) (10)

with additive kernel

n
Kaaa, (x,x") = 0'3 Z [Hkil (x,-l,x;l)] . (11
1<ii <iy<-<ig<d |I=1
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We leverage the proposed method in Lu et al. (2022) to constrain each functional component f; with a
modified constrained kernel l}i(xi,xf), such that: [ Py fi(xi)pi(xi)dx; = 0 for i € [d], where [d] denotes all
possible subsets of an index set {1,...,d}. Z; and p; are the sample space and the density for input feature
x;. The n'" order additive kernel in (4) are then replaced with the constrained kernel k. Constraining the
kernel enables a parsimonious representation, so that high-dimensional interaction can be represented with
low-dimensional interactions.

Since uncertainties can be propagated through the GP model, we are able to provide confidence intervals
for Shapley value attribution. When used in combination with Shapley value for attribution quantification, it
offers one key advantage: it provides a closed form for the Shapley value computation which overcomes the
computational challenges for computing Shapley value with nonlinear models. We apply method proposed
in Lu et al. (2024) to attribute the output or the change in the output to the corresponding inputs to supply
chain systems.

4.1 Computing GP-based Shapley Value

We explain in this section how the main effects and the interaction terms are used to compute Shapley
value attribution. Take a two-dimensional example with the following decomposition:

flx) = fila) + falx) + fia (e, x2) + By o[£ (x1,02)] (12)
the Shapley value for x; is defined as

o= ~

N .
DYE{xl,mx,l}\{x,-}( |- > (v(ZU{i}) —v(¥)) (13)

where D is the number of input features and v is some value function. Take the above example, we
define the value function over a set . to be the sum of the d terms that involves elements in .¥, i.e.,

v({x1}) = filx) and v({x1,x2}) = fi(x1) + f2(x2) + fi2(x1,%2) = f(x1,x2), ete.

Shapley value can then be computed according to (13) as
1
91(x) = fi(x1) + 2 fiz(x1,22).- (14)

9 (x) Zfz(X2)+%f12(X1,X2)- (15)

The above Shapley values add up to f(x,x2) —Ey, ,,[f(x1,%2)]. Note that since f is now a GP model, the
Shapley value defined above is a random variable whose mean and variance can be computed analytically
using the GP posterior. The above reasoning can be extended to the general cases with inputs having higher
dimensionalities.

4.2 Attributing the Difference in Qutput

Let x' = (x],x}) and x> = (x3,x3) be features for a single product for simulation run 1 and simulation run
2, respectively, where the superscripts represent different time (e.g., week) and the subscripts represent
different fe.atu'res. Suppose the output f (x%,xé) has changed to f(x7,x3), we aim to attribute this change
to each of its input feature. For each simulation run /, we have

FL2) = filx) + f2(xd) + fia (6] x0) + By o[£ (21,32)], (16)

the Shapley value for each product a and feature i in each simulation run  is ¢;(x}), the Shapley value for
the difference in output between two simulation runs is therefore

¢i(x3) — i(xy) (17)

for product a and feature i.
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S RESULTS

We showcase areal-world example that demonstrates the efficiency of our attribution framework in identifying
the root causes of anomalies in supply chain simulation outputs, enabling timely business actions. Each
week, Amazon’s simulation system forecasts 12-week inventory flows by modeling various events such as
customer demand, vendor orders, inventory arrivals, and customer shipments. Due to the evolving nature
of input variables over time, adjacent simulation runs often produce different outputs for the same target
prediction week.

B Other Variable B
Other Variable C

Demand Forecast
Vendor Lead Time Prediction

—
]
Economic Variable X
Economic Variable ¥
A i i A i A i A i i ) Other Variable A

Economic Variable Z

Economic Variable W

Actual Change
Modelled Change

:x*bb

o : o
S
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ST 1“"?’» 1°"3”
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Figure 2: Attribution of differences in TTacross different simulation runs. The bar heights, each corresponding
to a color, indicate the magnitude of the change in TI attributable to individual input features or feature
interactions. Other Variables A, B, C, and Economic Variables W, X, Y, Z are confidential input metrics.
The total height of the colored bars, also shown by the grey line, represents the explained difference
between two consecutive weekly simulation results for the corresponding target week. Positive (negative)
bar heights indicate positive (negative) contributions of the corresponding drivers to the overall change.
The “Actual change” line shows the total observed difference in TI between the two simulation runs for
the same target week. The “Modeled change” line represents the changes in TI that are explained by the
attribution model. The gap between the modeled change and actual change is the TI prediction error from
the GP model. The GP model reduced the Shapley value computation time from hours to minutes for each
attribution run.

To diagnose the underlying drivers of these week-over-week changes, we apply our SAGE attribution
framework to quantify the impact of input feature changes on the simulated target inventory (TI) outputs.
This is achieved through a three-step process:

1. Given a target week, we concatenate the input/output data frame from two adjacent simulations as
shown in Equation (3).

2. We train a GP model described in Equation (1) with manipulated data from Step 1.

3. We compute Shapley value as proposed in Section 3.1 and Section 3.2.

We run SAGE automatically after each simulation cycle to systematically explain changes in simulation
outputs. In one illustrative case, shown in Figure 2, the latest simulated TI was significantly higher than
the previous week’s prediction for the same target period. Our attribution results pinpointed the predicted
vendor lead time (VLT) as the primary driver of this increase. This insight provided a crucial lead for
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further investigation, which revealed that a human error had led to the deployment of an incorrect VLT
prediction, causing the inflated TI estimate.

This example highlights the effectiveness of our SAGE framework in rapidly identifying and diagnosing
anomalies in simulation outputs. By automatically tracing changes in simulation results back to specific
input features or their interactions, the framework enables the business to quickly detect, understand, and
address the root causes of such discrepancies. This empowers supply chain teams to take timely corrective
actions, supporting more resilient and adaptive logistics operations.

6 CONCLUSION

We have developed SAGE: a novel attribution mechanism based on the Shapley value and Gaussian
process emulator, which can be applied to explain changes in the outputs of our supply chain simulation
systems. By leveraging explainable Gaussian process models, we are able to decompose the simulation
outputs into contributions from individual input features and their interactions. This provides us with a
principled way to quantify the attribution of changes in the simulation outputs to specific drivers. We have
illustrated the application of our methodology using both synthetic and real-world supply chain data. The
examples demonstrate how our attribution framework can rapidly identify the root causes of anomalies in
the simulation outputs, enabling the business to take timely corrective actions. By automatically attributing
simulation output changes to their underlying drivers, we can empower the business to quickly diagnose
and resolve issues, leading to more robust and responsive supply chain operations.

There are several promising avenues for future research. First, integrating the attribution insights from
our Shapley value framework into the ongoing simulation model development and refinement process
could help dynamically identify and address gaps between the simulation and real-world. Additionally,
studying how the Shapley value attribution can guide sensitivity analysis and uncertainty quantification could
enhance the robustness of complex simulation workflows. Another direction is investigating how modeling
errors from Gaussian processes models propagate to Shapley values. Finally, extending the framework to
handle temporal dependencies and dynamics in the simulation inputs and outputs over time would broaden
its applicability to a wider range of real-world systems. Collectively, these research directions have the
potential to significantly expand the capabilities and impact of simulation-based decision support.
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