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ABSTRACT

Stochastic discrete event simulation is a vital tool across industries. However, the high dimensionality
and complexity of real-world systems make it challenging to develop simulations that accurately model
and predict business metrics for users when faced with inaccurate input and model fidelity limitations.
Addressing this challenge is critical for improving the effectiveness of industrial simulations. In this work,
we focus on simulation output uncertainty, a crucial summary statistic for assessing business risks. We
introduce a novel framework called INput-aware Quantification of Uncertainty for Interpretation, Risk, and
Experimentation (INQUIRE). At the heart of INQUIRE, we develop a residual-based uncertainty prediction
model driven by key input parameters. Then we incorporate a skewness-detection procedure for quantile
estimation that provides risk assessment. To analyze how input parameters evolution influences simulation
output uncertainty, we introduce a Shapley-value-based interpretation method. Additionally, our framework
enables more efficient simulation-driven experimentation, enhancing strategic decision-making by providing
deeper insights.

1 INTRODUCTION

1.1 Background and Motivation

A stochastic discrete event simulation (DES) models stochastic behavior of a system by specifying probability
distributions for random variables used in the model, and it is widely used to estimate counterfactual
impact or to generate predictions for future events in industry. Business owners often create digital twins of
their business systems through simulation, which models the dynamic interaction across different system
components and relationship with macroeconomic evolution. DES is critical for business owners as it
enables event-driven forward-looking forecasts for business management and “what-if” counterfactual
experiments for strategic decision-making. Compared with other prediction and experimentation tools
such as machine learning and causal graphs, simulation-based prediction has two major benefits: (1) DES
captures event-driven correlation. Take a supply chain simulation as an example, by simulating the behavior
of manufacturers and customers as well as inventory flows of different products together, we can capture
the correlation between different types of flows simultaneously through events rather than estimating the
correlation from a pure data-driven approach. For example, if a warehouse is experiencing high backlog
due to limited labor resource, then all the products that have inbound flows to this warehouse will be
impacted with positive correlation. Such event-driven correlation can be naturally reflected via event-based
simulation. (2) DES ensures statistical consistency. Since a discrete event simulator can model events
and entities at the finest granularity where their interaction happens (i.e., manufacturer-product-warehouse
level in supply chain business), such a bottom-up modeling structure will simultaneously output metrics of
interest at different granularities. Those metrics will preserve statistical consistency and follow restricted
physical dynamics as needed.

979-8-3315-8726-0/25/$31.00 ©2025 IEEE 402



Lin, Zhang, Perry, Lu, Liu, and Ng

In spite of these advantages, the forecast accuracy of simulation-based prediction is one of the main
challenges in industrial use-cases. Due to inadequate input accuracy and simulation model fidelity, the
raw simulation outputs cannot easily meet user’s accuracy requirements. Overall, the bias and variance
of simulation output metrics arise from three sources: (1) Monte Carlo (MC) sampling: Simulating a
finite number of replications with different random seeds in each replication introduces MC variance to
simulation output. (2) Input error: The estimated input distributions from real-world observations could
introduce both bias and variance to simulation output. The variance caused by input error is different from
MC variance, which we call input uncertainty (IU) (Barton 2012). (3) Model fidelity gaps: This is caused
by aspects of the system physics (e.g., supply chain system) that are either not modeled in simulation or
only modeled with inadequate fidelity in simulation. Model fidelity gaps bring bias to the mean estimators.
Taken collectively, we refer to the bias and variance caused by input error and fidelity gaps as model risk.
Compared with MC variance, model risk often dominates the total risk, especially when the number of
replications is large. MC variance is the estimation error for the mean predictions, which can in principle
be reduced by running more replications. Model risk, on the other hand, is much more difficult to quantify
and cannot be reduced by increasing simulation effort. It can only be reduced by improving simulation
input accuracy and model fidelity.

In this paper, we propose INQUIRE, a novel INput-aware Quantification of Uncertainty for Interpretation,
Risk, and Experimentation. The proposed framework leverages machine learning to predict simulation
output uncertainty using key input parameters. The incorporation of input allows users to interpret changes
in uncertainty and identify input drivers directly from the same model used for predicting uncertainty; it
also supports users in evaluating changes in uncertainty/risk under different policy configurations (i.e., input
features), which creates a powerful tool for business users to make risk-aware strategic decisions.

1.2 Literature Review

Uncertainty quantification (UQ) is not a new research topic in stochastic simulation, and there exists a large
amount of research work including both frequentist and Bayesian approaches in the simulation literature
(Nelson 2010; Riedmaier et al. 2021; Zhu et al. 2020). Most UQ work assumes that simulation output
uncertainty is contributed by MC variance and IU, where IU for quantifying and explaining simulation
output uncertainty is also well studied in the literature. IU research initially focused on direct resampling
methods (i.e., boostrapping) to characterize the error due to input models being fit with finite real-world
data. Given the computational burden of boostrapping, Bayesian model averaging (BMA) strategies were
developed to characterize IU based on uncertainty in both the input distribution family as well as the input
distribution’s parameter values (Chick 1997; Chick 1999; Chick 2000; Chick 2001). Another approach to
quantifying input uncertainty employs metamodeling techniques, where simulation runs are replaced by a
metamodel to minimize simulation error. When using these metamodels (typically Gaussian distributions
to represent input parameter uncertainty), the output distribution can be characterized through analytical
methods (Ankenman et al. 2010; Barton et al. 2010). However, these methods for identifying the input
models that contribute the most to input uncertainty require a sequence of additional diagnostic experiments;
in the worst case this requires as many experiments as there are input models, and each of these experiments
can be substantial. As an improvement, (Song and Nelson 2015) provides a new analysis that requires
only one diagnostic experiment to assess the overall effect of IU, the relative contribution of each input
distribution, and a measure of sample size sensitivity of each distribution. Inspired by simulation analytics,
(Lin et al. 2015) provides the first single-run method for IU by retaining the simulation sample paths to
further reduce computational complexity and deriving the measure of IU variance – both overall variance
and the contribution to it of each input model – from the nominal experiment that the analyst would typically
run using the estimated input models.

Although there exists a rich amount of research in UQ and IU, much of this work cannot be used
directly in large-scale industrial simulations. In practice, running simulations can be very expensive, and
the input data dimension is generally high; any methods requiring repeated experiments are therefore not
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suitable. Additionally, real-world data are often heavy-tailed and sparse, so how to handle outliers with
limited data is a challenge in industrial simulation UQ. Furthermore, existing literature often assumes
unbiasedness of simulation mean estimators when estimating uncertainty, while the mean estimators are
often biased due to inadequate input and model quality in reality. Uncertainty information is critical for
business owners as they need to make long-term strategic decisions with unknown factors. In particular,
they are interested in the estimation of uncertainty under both nominal and counterfactual (i.e., "what-if")
configurations to make better risk-aware decisions. Understanding uncertainty contribution from each
simulation input is also important because it can help business owners prioritize resources to reduce the
uncertainty from the top drivers. To enhance the robustness of the decision-making process for downstream
simulation users, we propose a novel framework for UQ that enables risk assessment, interpretation, and
counterfactual experimentation of large-scale simulations in industry. While the proposed framework can
be applied to a broad range of industrial use-cases, in the rest of the paper we apply our proposed methods
to retail supply chain management (Acimovic and Graves 2015; Acimovic and Farias 2019).

The rest of the paper is structured as follows: Section 2 introduces the proposed methodology and
algorithm for UQ. Section 3 presents the three applications of INQUIRE – quantile prediction for risk
assessment, uncertainty interpretation, risk analysis of experimentation. Finally, Section 4 concludes the
paper and discusses potential future research directions.

2 INPUT-AWARE UNCERTAINTY QUANTIFICATION

We choose weekly inbound arrival units, a key supply chain metric, as the example metric in this paper
to help illustrate our methodology. This metric is defined as the number of units of product received by
warehouses from external suppliers every week. In principle, the methodology is metric agnostic and can
be applied to all other supply chain metrics or other industries. Suppose we run the supply chain simulation
on the current week t and this simulation simulates the supply chain inventory flows for the future N weeks.
We are interested in estimating the uncertainty of future inbound arrival units Yt+n during target week t +n
for each n = 1, ...,N.

Our proposed method focuses on UQ, and we consume a separate mean calibration model which
leverages business insights to reduce bias in the estimated means of simulation outputs. This calibration
model assembles simulation the raw sample mean and time-series prediction, and has exhibited superior
accuracy in the prediction of inbound arrival units compared with the raw simulated mean. For simplicity, we
denote the inbound arrival units mean prediction obtained from the calibration approach as calibrated mean
henceforth. In this work, we utilize calibrated mean as the mean of our predicted distribution and derive
quantile predictions based on it. The reasons for doing so are twofold: first, an accurate mean prediction
can significantly improve variance and quantile predictions, especially when the underlying distribution
is nearly symmetric; and second, using the calibrated mean ensures that our predicted distributions are
consistent with various business systems that have already adopted the mean calibration model.

2.1 Residual-based Uncertainty Prediction

In this subsection, we propose a residual-based uncertainty prediction method, which facilitates the input-
aware UQ. Define F := {Fl}l∈L as the collection of real-world distributions correlated with actual inbound
arrival units, e.g., unknown underlying distributions of customer demand, manufacturer lead time (MLT),
etc. Suppose the actual inbound arrival units follows Y (F ) = µ(F )+ ε(F ), where µ(F ) = E[Y (F )] is
the mean function of the actual inbound arrival units whose input is the set of input distributions F , and
ε(F )∼ D(0,σ2(F )) with some distribution D whose variance also depends on F . We denote µ̂(F̂ ) as a
predictor of µ(F ), where F̂ := {F̂l}l∈L ′ is a set of fitted input distributions F̂l for estimating Fl for l ∈ L ′,
e.g., estimated customer demand and MLT distributions. Note that the number of fitted input distributions
|L ′| is not necessary equal to |L |, since some of the distributions influencing the actual inbound arrival
units may be unobservable or challenging to estimate accurately.
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We are aiming at estimating Var(Y (F ) | F̂ ), i.e., the variance of the actual inbound arrival units given
the fitted input distributions F̂ . Estimating the conditional variance poses a significant challenge due to
the limited availability of observations and high dimensionality of F̂ . At any given week, we can only
obtain a single observation, making it impossible to calculate the sample variance and fit a model directly
for variance prediction. Consequently, we employ a residual-based model as an alternative approach to
forecasting the variance. To understand how this approach works out, we first note that

Var
(

Y (F ) | F̂
)
= Var

(
ε(F ) | F̂

)
= Var

(
Y (F )−µ(F ) | F̂

)
= E

[
(Y (F )−µ(F ))2 | F̂

]
.

Thus, one way to predict Var(Y (F ) | F̂ ) is to predict the expectation of (Y (F )−µ(F ))2 conditioning on
F̂ . Since µ(F ) is unattainable in practice, we replace it by µ̂(F̂ ) and calculate the squared residual as

r(F̂ ) = (Y (F )− µ̂(F̂ ))2.

Using the realizations of r(F̂ ) derived from the historical observations of Y (F ), we can construct a
prediction model f̂ (F̂ ) to predict E[r(F̂ ) | F̂ ] based on observed r(F̂ ) and input samples from F̂ . Note
that replacing µ(F ) by µ̂(F̂ ) introduces bias into the prediction of Var

(
ε(F ) | F̂

)
. To demonstrate it,

consider the following decomposition:

E
[
r(F̂ ) | F̂

]
=E
[
(Y (F )− µ̂(F̂ ))2 | F̂

]
= E

[
(Y (F )−µ(F )+µ(F )− µ̂(F̂ ))2 | F̂

]
=Var

(
ε(F ) | F̂

)
+
(
E
[
µ(F )− µ̂(F̂ ) | F̂

])2
+Var

(
µ̂(F̂ ) | F̂

)
(1)

The first term is equal to Var(Y (F ) | F̂ ), which is our objective. The second term is the fidelity gap
introduced by the bias of the mean prediction and the input uncertainty from the input distribution predictions.
The third term is the uncertainty of the mean prediction, which depends on the properties of the mean
prediction model. If µ̂(F̂ ) is the sample mean of the simulation outputs using the fitted input distribution
F̂ and M is the number of samples taken from the simulation, then Var(µ̂(F̂ ) | F̂ ) = M−1Var(ε(F̂ ) | F̂ )

is the Monte Carlo simulation error, which diminishes as M → ∞. If µ̂(F̂ ) is a prediction model built
on the historical samples means with corresponding inputs, e.g., calibrated mean, then Var(µ̂(F̂ ) | F̂ )
accounts for both the randomness of the training data set and the training procedure.

As (1) shows, to predict Var(Y (F ) | F̂ ), suppose f̂ (F̂ ) is an unbiased predictor of E[r(F̂ ) | F̂ ], a
debiased predictor

σ̂
2(F̂ ) = f̂ (F̂ )−

(
E
[
µ(F )− µ̂(F̂ ) | F̂

])2
−Var

(
µ̂(F̂ ) | F̂

)
can serve as a predictor of Var(Y (F )). However, since both the second and the third terms on the right hand
side (r.h.s.) are difficult to eliminate in practice, we use f̂ (F̂ ) instead of σ̂2(F̂ ) as the variance predictor,
accounting for uncertainty from all sources listed above. In fact, if the calibrated mean model is accurate
enough, i.e., µ(F )≈ µ(F̂ ), then the second and third terms are negligible such that σ̂2(F̂ )≈ f̂ (F̂ ).

To construct the uncertainty prediction model f̂ (F̂ ), we can leverage machine learning models to learn
the relationship between observed r(F̂ ) and input samples from F̂ . The choice of model depends on data
characteristics and the trade-offs between prediction power and computation speed. We offer more relevant
discussions in Section 3.1.1. In the model training process, since both Y (F ) and µ̂(F̂ ) are realized, we
can scale r(F̂ ) by (µ̂(F̂ ))2, i.e.,

r̃(F̂ ) = r(F̂ )/(µ̂(F̂ ))2 = (Y (F )/µ̂(F̂ )−1)2, (2)
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and use the scaled residual r̃(F̂ ) as the observations to construct the prediction model. The predicted
variance of inbound arrival units can be recovered by multiplying the mean prediction µ̂2(F̂ ) at the target
week. There are two main reasons for adopting this ratio-based approach. First, it can mitigate the impact
of outliers. Although the absolute prediction errors may vary significantly across different periods, the
relative errors can be similar. Consequently, predicting the variance of the ratio tends to be more accurate
and easier. Second, previous UQ studies have demonstrated the superior performance of the ratio-based
form. Our numerical tests also corroborate its advantages over directly estimating the variance of the
original random variable. By utilizing the predicted variance and the calibrated mean, we can construct the
predicted distributions by assuming a specific distribution family.

3 APPLICATIONS OF INQUIRE

We apply the input-aware UQ framework to three applications: quantile prediction for risk assessment,
uncertainty interpretation, and counterfactual experimentation. We present the additional algorithms needed
for each application, and illustrate the effectiveness via numerical examples.

3.1 Quantile Prediction and Prediction Interval Construction for Risk Assessment

The objective is to construct an accurate prediction Ŷ q
t+n of the q-quantile of Yt+n, such that P(Yt+n ≤ Ŷ q

t+n) = q.
Additionally, we aim to construct a prediction interval (PI) centered around mean, P̂I

q
t+n, with the desired

q-coverage probability, i.e., P(Yt+n ∈ P̂I
q
t+n) = q.

Predicting quantiles and constructing PIs with assumptions on normality may yield unsatisfactory
results, particularly when the underlying distribution is asymmetric. As demonstrated later in our numerical
experiments, when the predicted 0.5 quantile (given by the estimated mean) exhibits over- or under-coverage,
the overall coverage of predicted quantiles from 0.1 to 0.9 can be severely affected. To address this issue, we
propose a skewness-detection method. The main idea is to first estimate the nonparametric skewness of the
predicted distribution. If the nonparametric skew is significantly different from 0, indicating an asymmetric
distribution, we construct the predicted quantiles and PIs using a skewed-Gaussian distribution. Otherwise,
we revert to the normal distribution assumption. Note that this approach relies strongly on the belief that the
predicted mean we adopted (calibrated mean in our case) has negligible bias; if this is not the case, then the
skewness can be misdetected, leading to an even worse performance than that without skewness detection.

The main procedure of the skewness-detection is shown in Algorithm 1. The training window is denoted
by T . For t = 1,2, . . . ,T , xt represents the observed input vector at week t from F̂ , comprising quantile
predictions of demand and MLT, for instance. Additionally, yt denotes the corresponding actual inbound
arrival units. The parameter δ in line 8 is a user-specified threshold that governs the choice between utilizing
a skewed-Gaussian distribution or Gaussian distribution. The selection of δ can be based on empirical
evidence or determined through cross-validation techniques. Typically, a larger value of δ results in a
more conservative decision regarding the application of a skewed-Gaussian distribution. As δ → ∞, the
method reverts to the scenario where a Gaussian distribution is assumed. In our implementation, we choose
δ = 0.05 by empirical evaluations. With estimated parameters, we can estimate the mean and variance of a
skewed-Gaussian distribution (Azzalini and Arellano-Valle 2013; Hou et al. 2021).

3.1.1 A Numerical Illustration

We apply Algorithm 1 for inbound arrival units UQ, adopting the XGBoost library (Chen and Guestrin
2016) for variance prediction and quantile regression forests (Meinshausen and Ridgeway 2006) for median
prediction. We opted for tree-based models as they demonstrate better prediction power under limited data
and offer superior interpretability compared to deep learning models, which are crucial advantages for
our problems given the limited actual observations we have and user’s need for uncertainty interpretation.
Additionally, our own numerical study validates the effectiveness of tree-based models, outperforming
other traditional methods such as linear regression and Gaussian Process regression. We use Amazon retail
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Algorithm 1: Skew-detection algorithm for quantile prediction PI construction
Input: Training data set M = {(xt ,yt)}T

t=1, predicted means {µ̂t}t≥1, skewness tolerance δ

Output: Predicted quantiles and PIs
1 Compute the errors rt = (yt − µ̂t)

2 for t = 1,2, . . . ,T ;
2 Construct training data set R = {(xt ,rt)}T

t=1;
3 Fit the prediction model f̂ of variance using training data set R;
4 Fit the prediction model ĝ of median using training data set M ;
5 Predict the median mt = ĝ(xt) and variance vt = f̂ (xt);
6 if |mt − µ̂t |/

√
vt > δ then

7 Fit a skew-normal distribution;
8 Construct predicted quantiles and PIs using the skew-normal distribution;

9 else
10 Construct predicted quantiles and PIs using normal distribution;

supply chain data in our example, specifically, the inputs we choose include inventory, purchased orders
from manufacturer, key quantiles of customer demand and MLT forecasts, economic cost, and historical
ratios of actual observation over forecast. We use historical two-year weekly inbound arrival units and the
corresponding inputs as the training data, and test the performance of predicted quantiles and PIs using
the next one-year data. For comparison, we include the following four methods: (1) assuming a Gaussian
distribution for uncertainty prediction, estimating the variance of the distribution via maximum likelihood
estimation (MLE), and centering the distribution on the raw simulated arrivals mean (we referred to as
MLE-raw); (2) applying the same Gaussian MLE approach in (1) to estimate uncertainty but centering the
distribution around the calibrated mean simulation output (MLE-calibrated); (3) predicting the variance
of a Gaussian using XGBoost and centering the distribution on the calibrated mean simulation output
(XG-calibrated); and (4) adding skewness-detection to the XG-calibrated model (XG-SD-calibrated). To
measure the overall performance, we define the following metrics:

• Absolute error (AE) of empirical coverage: Letting q̂ denote the empirical coverage for a target
coverage q ∈ Q, the AE is calculated as |Q|−1

∑q∈Q |q̂−q|.
• Continuous ranked probability score (CRPS): Define the quantile loss at q as QLq(Ŷ q,Y ) =

Y−1(q · (Y − Ŷ q)++(1−q) · (Ŷ q −Y )+), where Ŷ q is the q-quantile prediction. Denote the set of
inbound arrival observations as D . The CRPS is then calculated as 2∑q∈Q |Y |−1

∑y∈D QLq(Ŷ q,y).

Table 1 shows the empirical coverage of the quantile predictions of week t +6, i.e., the 6-weeks-ahead
forecast. As we can see, the calibrated mean does not serve as an accurate median prediction under the
normal distribution assumption, resulting in the over-coverage for the quantile predictions of p30 and p40.
Adopting the skew-detection algorithm successfully detects this phenomenon, and the adjusted asymmetric
distribution gives a more accurate quantile prediction from both AE and CRPS. Figures 1 shows the PIs
with 90% coverage (i.e., 0.95-quantile prediction − 0.05-quantile prediction) of week t +1, t +3 and t +6,
which indicate the method provides satisfactory coverage.

Table 1: Coverage of the quantiles for week t +6.

Methods p10 p20 p30 p40 p50 p60 p70 p80 p90 AE CRPS
MLE-raw 8.22% 27.40% 49.32% 58.90% 69.86% 78.08% 87.67% 90.41% 93.15% 12.95% 0.1152
MLE-calibrated 4.11% 19.18% 36.99% 50.68% 57.53% 61.64% 65.75% 78.08% 89.04% 4.52% 0.0932
XG-calibrated 13.70% 24.66% 36.99% 47.95% 57.53% 61.64% 67.12% 76.71% 91.78% 4.49% 0.0942
XG-SD-calibrated 9.59% 21.92% 28.77% 39.73% 50.68% 56.16% 68.49% 76.71% 87.67% 1.72% 0.0898
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(a) Prediction of week t +1. (b) Prediction of week t +3. (c) Prediction of week t +6.

Figure 1: Actual inbound arrival units versus mean and 90% PIs. Exact prediction values in the y-axis are
omitted due to the company’s confidentiality policy.

3.2 Uncertainty Interpretation of the Predicted Uncertainty

INQUIRE also enables efficient uncertainty interpretation, which is our second application in this paper. As
mentioned in Section 1, the relative contribution from each driver to the overall uncertainty is important
because it helps business owners prioritize resources to reduce the uncertainty from top drivers. We employ
the Shapley value, which is defined in (3) in the following section, to explain simulation output uncertainty,
and we aim at answering two questions: (1) Which inputs drive uncertainty change for two simulations,
and (2) what are the top drivers of uncertainty for a single simulation run? The key idea of Shapley value
is for a given input i, compare the average output difference for those outputs produced by coalitions that
include input i verses those that do not (Owen 2014; Lundberg and Lee 2017; Burkart and Huber 2021). In
other words, for each input i we first consider all input coalitions (different subsets of the inputs) with i,
replace the values with all other possible values in these subsets, and average their corresponding outputs.
Then we repeat for all coalitions without input i. The attribution to input i is then given by the difference
of these average outputs. When the n inputs are independent and the functional relationship between
inputs and output is linear, Shapley value simplifies to the product of the coefficient (estimated by a linear
regression) and the input change value. When the functional relationship is non-linear, if using a black-box
model, computing Shapley values usually requires Monte Carlo estimation where multiple subsets of the
corresponding inputs are substituted with different values through sampling (Song et al. 2016).

3.2.1 Shapley Value

Definition 1 (Shapley value) For a D-player cooperative game with the set of players D = {1,2, . . . ,D}
and gain c(·), the Shapley value of the ith player is defined by:

φi = ∑
π∈Π(D)

1
D!

(c(Pi(π)∪{i})− c(Pi(π))) , (3)

where Π(D) denotes the set of all D! permutations of players in D , and Pi(π) denotes the players that
precede player i in one permutation π .

First introduced in (Shapley 1953), Shapley value has many convenient properties such as efficiency,
symmetry, dummy and additivity. These properties are critical for our interpretation problem, e.g., the
efficiency property ensures that the sum of the contribution value to each player (which are the inputs in
simulation) is equal to the total uncertainty change from two simulation runs (which is the target difference
to explain). The Shapley Value has been applied in different areas such as game theory and machine learning,
and we adopt its application in machine learning in this paper. In machine learning prediction, the Shapley
value is used to explain the contribution of each input to the difference of a prediction and the average.
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For example, consider a machine learning model that predicts apartment prices: For a certain apartment it
predicts $300,000. The average prediction for all apartments is $310,000. Then the Shapley value is used
to explain how much has each input value contributed to this certain prediction ($310,000) compared to the
average prediction ($300,000)? Let this machine learning function used to predict apartment price to be
denoted as p(x), then according to efficiency property, the sum of the Shapley values (input contribution)
of all players (inputs) must equal the difference of prediction for x and the expectation, which is taken with
respect to (w.r.t.) the sampling noise when drawing x from FX.

∑
π∈Π(D)

φi = p(x)−E[p(X)]. (4)

3.2.2 Shapley Value Based Uncertainty Interpretation

Continued with the notation defined in Section 2.1, assume we have predicted simulation output uncertainty
f̂ j(F̂ j) from the jth run, j = 0,1, . . . ,J−1, and let the Shapley value for each input i from the jth simulation
run be φ ℓ

i . Suppose we are interested in explaining the uncertainty change from specific two runs, f̂ j(F̂ j)

vs f̂s(F̂s) where j ̸= s, then according to (4), the Shapley values computed from these two simulation runs
satisfy

∑
l∈L

φl, j = f̂ j(F̂ j)−E( f̂ (F̂ )) and ∑
l∈L

φl,s = f̂s(F̂s)−E( f̂ (F̂ )),

where the expectation here is taken with respect to the randomness in F̂ . Recall F̂ is estimated input
distributions from real-world data and the underlying true input F is unknown, so there exists uncertainty
in estimated F̂ . We are interested in explaining the contribution of each input to the variance difference,
i.e., f̂ j(F̂ j)− f̂s(F̂s), therefore we take the difference of the two equations above to get

∑
l∈L

φl, j − ∑
l∈L

φl,s = ∑
l∈L

(φl, j −φl,s︸ ︷︷ ︸
Φl

) = f̂ j(F̂ j)− f̂s(F̂s) (5)

where Φl , the difference of the two Shapley values, is the variance attribution of input F̂l .
Typically, the interpretation of the change of the predictions requires us using the same variance

prediction model f̂ . However, we could build separate prediction models for different target weeks due
to business requirements, and using separate prediction models in the interpretation procedure can lead
to consistency issues. Additionally, note that because the prediction model predicts the variance of the
ratio which is defined in (2), we need to multiply it by the squared calibrated mean (µ̂(F̂ ))2 to get the
predicted variance of the inbound arrival units. Since the calibrated mean prediction for a given target week
can differ across adjacent simulation weeks t and t ′ ̸= t, it introduces another source of inconsistency. To
illustrate, consider two prediction tasks involving simulations run j and s on weeks t and t +1, with both
simulations predicting the same target week t +1. Denoting the predicted variance of the ratios from the
week t and week t +1 simulations as v̂ j(F̂ j) and v̂s(F̂s), respectively, (5) can be written as

∑
l∈L

φl, j − ∑
l∈L

φl,s = v̂ j(F̂ j)− v̂s(F̂s),

if the simulation means are identical. However, given the calibrated predictions µ̂ j(F̂ j) ̸= µ̂s(F̂s), we have

f̂ j(F̂ j)− f̂s(F̂s) = µ̂
2
j (F̂ j)v̂ j(F̂ j)− µ̂

2
s (F̂s)v̂s(F̂s) ̸= µ̂

2
j (F̂ j) · ∑

l∈L

φl, j − µ̂
2
s (F̂s) · ∑

l∈L

φl,s,

which violates the efficiency property of the Shapley value. To fix this issue, we first construct a unified
variance prediction model ĝ, which utilizes all training samples for predicting week t and t +1, and do the
prediction for the same target week t +1. The Shapley value derived from ĝ should maintain its efficiency
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property. Then, we use two separate prediction models for prediction tasks. To attribute the predicted
variance change, i.e., f̂ j(F̂ j)− f̂s(F̂s), we use the following scaling method:

Φ
′
l = (φl, j −φl,s) ·

f̂ j(F̂ j)− f̂s(F̂s)

v̂ j(F̂ j)− v̂s(F̂s)
, ∀l ∈ L , (6)

where Φ′
l is the scaled Shapley value explaining the contribution of the change of each input to the change

of the predicted variance. The scaled Shapley values preserve the efficiency property.
Our framework can also quantify the contribution of each input to the total uncertainty in a single run.

Unlike explaining the uncertainty change from two runs, in which the efficiency property of the Shapley
values may be destroyed, as discussed above, the single-week attribution procedure is straightforward.
We take run j as an example. Based on (4), we know ∑l∈L φl, j = v̂ j(F̂ j)−E(v̂(F̂ )), let scaling factor
α = v̂ j(F̂ j)/(v̂ j(F̂ j)−E(v̂(F̂ ))), we have

φ
′
l, j = αφl, j · µ̂

2
j (F̂ j), ∀l ∈ L ,

The scaled Shapley values quantify the contribution of inputs to the predictive variance f̂ j(F̂ j):

∑
l∈F

φ
′
l, j = α ∑

l∈L

φl, j · µ̂
2
j (F̂ j) = α

(
v̂ j(F̂ j)−E(v̂(F̂ ))

)
· µ̂

2
j (F̂ j) = v̂ j(F̂ j) · µ̂

2
j (F̂ j) = f̂ j(F̂ j).

3.2.3 Numerical Results

We choose the same inputs used in quantile prediction example (Section 3.1.1) for interpretation in this
section. Similarly, we continue with XGBoost which provides efficient Shapley value computation in
addition to its superior prediction power. Figure 2 (a) shows the interpretation of predicted uncertainty
change from two simulation runs. As we can see, the economic cost is the main driver for the decrease
of the uncertainty, which aligns with the decrease in its raw value. Additionally, “ratio lag 1”, which is
the ratio from previous week’s forecast and actual observation, contributed negatively to the uncertainty
reduction. We notice the value of ratio lag 1 drops from 0.8 to 0.69, i.e., the historical accuracy of the
calibrated mean is potentially getting worse. Thus, the predicted simulation model fidelity gap increases,
leading to the increase of the predicted variance. Figure 2 (b) shows the contribution of inputs to the relative
total uncertainty of a single target week.

3.3 Counterfactual Experimentation

The last application of INQUIRE is to support business counterfactual experimentation. Incorporating inputs
that are highly correlated with the supply chain system into our proposed UQ model enables counterfactual
analysis, which is critical for business owners to make strategic decisions. Counterfactual analysis poses a
significant challenge because the ground truth of the counterfactual scenario is never known, making it
difficult to evaluate the proposed method’s capability for such analysis. In this section, we first consider a
scenario under different hypothetical economic cost, as we can potentially estimate the ground truth at
certain cost to evaluate the performance of our UQ approach. Subsequently, we conduct the analysis of
scenarios with different economic costs.

We start with the approach for constructing the “ground truth” for scenario where the actual observation
cannot be observed. We adopt the notations defined in Section 2 but simplify Y (F ) to Y and µ̂(F ) to µ̂

for simplicity. Let Yu and Yc denote the inbound arrival units under unobservable and observable scenarios,
respectively, and µ̂sim

u and µ̂sim
c represent the raw simulated arrivals. Recall that our primary goal is to

predict the inbound arrival units uncertainty under unobservable scenario, i.e.,

Var(Yu) = Var

(
Yu

µ̂sim
u

· µ̂
sim
u

)
.
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(a) Interpretation of predicted uncertainty change for two
simulation runs.

(b) Interpretation of predicted uncertainty of a single
run.

Figure 2: Uncertainty interpretation represented by Shapley values (scaled by 1010). The percentage presents
the relative contribution of the inputs. The left figure shows the interpretation of changes from two runs,
and the right shows the contribution of a single run.

The estimation of inbound arrival units variance under an unobservable scenario is based on our view
of Yu/µ̂sim

u . Given that Yu cannot be observed, we need to make assumptions in order to conduct the
counterfactual analysis. Specifically, we assume that for each week, the ratio Yu/µ̂sim

u follows the same
distribution as Yc/µ̂sim

c at that week, if the actual arrival is observable in that week. Then, the unobservable
“actual inbound arrival units” Yu can be estimated as follows:

Ŷu ≈
Yc

µ̂sim
c

· µ̂
sim
u .

Although the estimated “actual inbound arrival units” under the unconstrained scenario cannot be fully
trusted, it serves as a valuable tool to evaluate the performance of the quantile predictions and predicted
intervals. To predict the variance of Yu, we employ the same inputs as those used during the observable period,
with the exception that the economic cost is set to a new hypothetical cost. After deriving the predicted
variance of the ratio using the algorithm discussed in Section 2.1, we multiply it by the unconstrained
calibrated mean to obtain the prediction of Var(Yu). We further evaluate the benchmark method MLE,
where the predicted variance of the ratio is unaffected by changes in the economic cost. This evaluation is
designed to explore the capability of the ratio-based method for counterfactual analysis when the desired
counterfactual input is not included in the prediction model.

Figure 3 shows the quantile prediction and the PIs with 90% coverage of both methods, and Table 2
presents the coverage statistics. We set the hypothetical economic cost to zero in this example, where the
actual economic cost is nonzero. The results illustrate that our proposed method offers satisfactory coverage
for both quantile predictions and PIs. And MLE-calibrated tends to yield larger quantile predictions and
wider PIs in most cases. However, it retains the ability to respond to cost changes thanks to its ratio-based
approach. Thus, under our assumption, even if the input is not incorporated into the variance prediction
model, we can still perform the counterfactual analysis if the mean prediction model has the capability.

We propose the following general approach for counterfactual analysis. If the counterfactual scenario
involves inputs already incorporated in our variance prediction model, we suggest employing our proposed
method for analysis. However, if the counterfactual scenario involves inputs not accounted for in our model,
we recommend adopting the MLE approach due to its simplicity and ease of implementation.
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(a) Quantile prediction. (b) PI.

Figure 3: Unobservable “actual inbound arrival units” versus 0.9-quantile predictions (left) and 90% coverage
PIs (right) for prediction target week t +1.

Table 2: Coverage of the quantiles and PIs for week t +1 under unobservable scenario.

quantile prediction p10 p20 p30 p40 p50 p60 p70 p80 p90 AE
XG-SD-calibrated 15.07% 23.29% 30.14% 45.21% 49.32% 54.79% 69.86% 82.19% 90.41% 2.48%
MLE-calibrated 4.11% 17.81% 27.4% 38.36% 49.32% 60.27% 73.97% 83.56% 91.78% 2.51%
PI p10 p20 p30 p40 p50 p60 p70 p80 p90 AE
XG-SD-calibrated 5.48% 9.59% 27.40% 39.73% 49.32% 58.90% 65.75% 75.34% 87.67% 3.42%
MLE-calibrated 10.96% 21.92% 38.36% 48.58% 56.16% 65.75% 76.71% 87.67% 93.15% 5.25%

4 CONCLUSION AND FUTURE DIRECTIONS
In this work, we developed INQUIRE, a novel framework that significantly improves uncertainty quantification
through better quantile predictions and prediction intervals. We demonstrated its effectiveness in three key
applications: risk assessment through skewness-aware quantile prediction, uncertainty interpretation via
Shapley values, and counterfactual experimentation for strategic decision-making. Looking ahead, key
research directions include: developing a unified framework for interpreting both mean and uncertainty
changes, and extending uncertainty attribution to inputs not currently included in our prediction model,
while maintaining prediction accuracy.
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