
Proceedings of the 2025 Winter Simulation Conference
E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

A FEDERATED SIMULATION FRAMEWORK FOR MODELING COMPLEX LOGISTICS:
AMAZON SORT CENTER CASE STUDY

Rahul Ramachandran1, Hao Zhou1, and Anish Goyal1

1Worldwide Design Engineering, Amazon, Bellevue, WA, USA

ABSTRACT

Amazon’s sort centers represent highly complex systems where traditional monolithic simulation approaches
fall short due to computational limitations, extended time-to-value, and challenging model maintenance.
This case study presents a federated simulation framework that decomposes the sort center model into four
key federates: inbound operations, main sortation and outbound operations, non-conveyable processing,
and non-compliant item handling. Each federate operates independently while maintaining synchronization
through a conservative time-stepping algorithm and structured message-passing protocol. Our implemen-
tation demonstrates significant advantages, including a 40% reduction in model development time, 15%
improvement in model execution time, and improved scenario testing capabilities. This approach enables
early optimization of sort center design, identification of cross-process bottlenecks, and better first-time
launch quality. This real-world application showcases the practicality and benefits of federated simulation
in modern logistics, offering valuable insights for practitioners modeling complex industrial systems.

1 BACKGROUND

Amazon’s sort centers process thousands of packages daily through multiple process paths such as regular
sortation, non-conveyable items, and non-compliant packages. These facilities incorporate a complex
mix of automated systems (including Autonomous Mobile Robots, conveyors, sorters, and sophisticated
warehouse management and control software) alongside manual processes. Simulating these complex
operations traditionally required monolithic models that were difficult to develop, validate, and maintain.
Key challenges included long development cycles requiring cross-team coordination, complex model
validation across multiple processes, difficulty in parallel development and testing, and resource-intensive
computation for full-scale simulation. Additionally, monolithic simulations required developers to be
subject matter experts across all systems, creating knowledge bottlenecks and ownership challenges. These
limitations led to longer project timelines and compromised decision-making capabilities.

2 SOLUTION

Our federated simulation framework decomposes complex systems into separate discrete event simulations
(federates) that operate independently while maintaining synchronized execution. This distributed approach
is orchestrated through a federation server including three essential services: the Message Broker handles
message delivery between federates; the Clock Service receives federate’s simulation clock update and
publishes time horizon to federates; the State Manager receives federate’s state update and publishes state
transition to federates. Each federate includes two essential components: Federation Client and FlexSim
Model. The Federation Client handles communications with the three services within the Federation Server
and controls the simulation engine to execute time horizon and station transition. It also provides APIs
to the FlexSim Model for message exchange with other federates. Messages are communicated through
a JSON-based universal communication library that supports various data types, enabling standardized
information exchange between federates. The framework utilizes standardized interfaces for communication
and deployment, supporting parallel development and testing of individual federates while maintaining
overall simulation integrity.



Ramachandran, Zhou, and Goyal

3 USE CASES AND BENEFITS

We decomposed the complex Amazon sort center operations simulation into four distinct federates:

1. Inbound Operations federate simulates receiving and unloading processes, including trailer docking,
package unloading, and initial sortation decisions.

2. Main Sortation and Outbound Operations federate represents the primary package flow through
automated conveyor systems, sorters, and outbound trailer loading

3. Non-conveyable Processing federate models the handling of over sized and irregular items through
specialized equipment and manual processes

4. Non-compliant Handling federate simulates the processing of packages requiring special handling
or problem-solving

The federated framework provides valuable benefits both pre- and post-launch, enabling validation of
processes and optimization of resources during initial planning while supporting continuous improvement
through bottleneck analysis and performance prediction after implementation. A key advantage of this
architecture is its support for parallel development and the ability to model specific operations in great detail.
For instance, the Inbound Operations federate could be refined to consider intricate details such as associate
walking paths, individual package handling based on size and shape, and precise unloading times. This
level of detail, when combined with the broader system view, provides a more accurate representation of the
entire operation without compromising on development speed or overall model performance. Quantifiable
benefits include 40% reduction in model development time, 15% improvement in simulation run time,
improved accuracy in throughput predictions, enhanced ability to test operational scenarios, and better
first-time launch quality metrics.

4 CHALLENGES

Key challenges addressed during implementation included maintaining temporal causality across federates,
ensuring efficient state synchronization, managing different time scales across processes, and ensuring model
consistency. While the framework successfully reduced development time through parallel development,
the runtime performance can be a consideration, particularly for smaller size models. For these simpler
scenarios, the framework may introduce some overhead compared to simplified monolithic models due
to the necessary external services synchronizing simulation clocks and managing information exchange
between federates. However, this overhead becomes less significant as model complexity increases, and
is outweighed by the benefits in development time and flexibility for larger, more complex simulations. A
significant challenge emerged in debugging scenarios, particularly when tracing issues across connected
processes spanning multiple federates. Implementation challenges included defining appropriate federate
boundaries, establishing standard interfaces, validating individual and integrated performance, and managing
data dependencies.


	Background
	Solution
	Use Cases and Benefits
	Challenges

