
Proceedings of the 2023 Winter Simulation Conference 
C. G. Corlu, S. R. Hunter, H. Lam, B. S. Onggo, J. Shortle, and B. Biller, eds. 

 

SEAIRD MODEL TO SIMULATE THE IMPACT OF HUMAN BEHAVIORS 
 

Aidan Fahlman 
Gabriel Wainer 

 
Systems and Computer Engineering 

Carleton University 
1125 Colonel By Dr 

Ottawa, ON K1S 5B6, CANADA 
 
 

ABSTRACT 

Compartmental models have been utilized in the study and understanding of the COVID-19 pandemic. 
Traditional models have been expanded to include geographical level transmission dynamics and new 
states. Here, we present a model based on Cell-DEVS specifications that can be used to define and study 
the effects of basic human behavior. We include mask wearing and lockdown fatigue, and an adaptable 
framework allowing for the rapid prototyping of different diseases and behaviors. We exemplify how to 
build the model and adapt the attributes using the provinces of Canada as a case study. The results show 
the effect mask mandates, mask wearing, and lockdown fatigue have on case counts over time. 

1 INTRODUCTION 

In December 2019 a new infectious disease was identified in Wuhan, China. By the end of January 2020 
Canada had its first case of COVID-19 in Toronto, Ontario (Urrutia et al. 2021). Now, in 2023 we are still 
feeling the effects of COVID-19, many countries still seeing significant cases every day (WHO 2021). 
Throughout the pandemic there have been different levels of lockdowns, government restrictions, and other 
rules put in place by government officials. These non-pharmaceutical interventions (NPI) have impact on 
human behavior and many research efforts showed how long lockdowns caused fatigue, leading to ignore 
restrictions and reducing lockdown effectiveness (Flaxman et al. 2020; Goldstein et al. 2021; Joshi and 
Musalem 2021). Mask wearing has been another important focus for researchers. Different types of masks 
have shown different levels of effectiveness, this combined with mask compliance has shown to make a 
significant difference on how fast COVID-19 can spread through a population (Grinshpun et al. 2009; Tay 
et al. 2021; Maged et al. 2022; Rengasamy et al. 2014). 
 Many of the NPI were evaluated with models of the spread disease. One of such models Kermack and 
McKendrick (1927) categorizes the population into three "compartments": Susceptible to the disease, 
Infective (capable of transmitting it), and Recovered (SIR). Simulation results obtained from such models 
helped officials plan public health measures before the number of cases becomes unmanageable, allowing 
to evaluate the impact of various NPI on the future spread of the disease (Mader and Rüttenauer 2022). 
Although there have been many advances in these models, human behavior and its impact have not been 
studied or modelled as closely. Most compartmental models focus on disease transmission dynamics but 
fail to incorporate the impact human behavior has on the dynamics. The addition of mask wearing, type, 
lockdown fatigue, etc. would allow to simulate the impact basic human behaviors would have on disease 
spread, helping governments and policy-makers to plan and respond to a pandemic better. 

Considering these issues, this research focuses on the definition advanced SIR models, specifically a 
geographical Susceptible-Exposed-Asymptomatic-Infective-Recovered-Deceased (SEAIRD) model whose 
aim is to incorporate human behavior aspects for COVID-19. Our implementation allows users to run the 
model at a user-defined region level. The model is designed using the Cell-DEVS formalism (Wainer 2019) 
and implemented using the Cadmium simulator (Vicino et al. 2019). The model’s adaptable framework 
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allows for accessible rapid-prototyping. We implement mask usage including efficiency, compliance, and 
behavior around mask usage and lockdown fatigue where a population will suffer from lockdown fatigue 
over long periods of lockdowns leading to increased disobedience. Users can also input a described group 
of neighborhoods, allowing for visualization of how a disease might spread through a city, town, or country. 
We present a case study where the model’s neighborhoods are defined as the provinces of Canada. Our 
results show how different levels of mask usage, mask effectiveness, and lockdown fatigue can result in a 
change in total case counts over time. Our model provides a framework to rapidly prototype disease spread 
in their neighborhood where asymptomatic infections can be considered and incorporated where necessary. 

2 BACKGROUND / RELATED WORK 

As discussed earlier, Kermack and McKendrick (1927) introduced the SIR models in which population 
moves from one compartment to another based on a set of differential equations. Their work was the 
foundation for many of the SIR-type models that were developed in the years to come, which incorporated 
more advanced transitions, states, disease and population rules. One common addition to the SIR model 
was the Deceased (SIRD) compartment where the models population could die after becoming infected 
(Calafiore et al. 2020). Another common extension is the Exposed state (SEIRD) where the population 
become exposed to the disease before being infected (Korolev 2021). More advanced models incorporate 
new states, like Giordano et al. (2020) where Asymptomatic and Quarantine states are added. Potasman 
(2017) included Diagnosed, Ailing, Recognized, Threatened, Healed and Extinct. 

The definition of geographical SIR models allow to use a cell space to represent a geographical regions 
as large as countries or as small as individual rooms. Early work in this area included a structured epidemic 
model with geographic mobility (Sattenspiel and Dietz 1995). Recently, Cárdenas et al. (2020) defined a 
geographical SIR model based on Zhong et al. (2009) using Cell-DEVS (Wainer 2019). The model allows 
for inputs such as hospital capacities, lockdown correction factors and a Deceased state. The model can 
also define geographical based disease spread between two regions based on a correlation factor, which 
allows to link two neighboring cells together based on geographical information such as the shared border 
length between the two neighborhoods, which can be described as follows: 
 

 𝑐𝑖𝑗 = 𝑐𝑗𝑖 =  

ೕ


ା

ೕ

ೕ

ଶ
  

 
This describes the weighted correlation factor Cij, which uses the two values, the shared boundary 

length between cells i and j (zij, zji) in both directions, divided by the total boundary length of both cells i 
and j (li, lj). This method states that the correlation for i, when moving to j, is the same as j moving to i.  

Davidson and Wainer (2021) further extended this model to include the Exposed state better model the 
transition from susceptible to infected, including incubation rates (SEIRD). An asymptomatic state was 
added (SEAIRD) to explore how this population would be different than a regular infectious population. 
We showed how asymptomatic people could move between neighborhoods with less care since they did 
not know they were infectious and could spread the disease unknowingly (Fahlman et al. 2021). 

Since the beginning of the COVID pandemic, mask wearing has been an important topic of discussion. 
SIR models were developed to explore and implement how mask wearing impacts disease spread. Maged 
et al. (2022) defined a SEIR model where mask wearing impacted the rate of infection of a population. The 
study showed how mask compliance and mask effectiveness changed the levels of infection. Many studies 
shown that mask wearing over time changes depending on government policies, fatigue and behavioral 
changes; for instance Mohammadi et al. (2022) defined a SEIARL model where a population had the ability 
to isolate while infectious. In this study real data was used to model the COVID-19 pandemic where 
different levels of mask compliance and mask efficiency were defined. The model explored how other Non-
Pharmaceutical Interventions (NPI’s) like mobility impact the spread of COVID-19 as well. Another 
example of modelling the impact of masks using a modified logistic function is described in Tay et al. 
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(2021). This model allowed for compliance of masks to change over time based on a logistic function. One 
setback to these models is that they do not include a method where the mask wearing compliance or 
efficiency would change dynamically depending on the state of the model. 

When a population is under lockdown for a significant amount of time, they will become frustrated and 
will begin to require human contact; the lack of these interactions is called lockdown fatigue (Goldstein et 
al. 2021). Many models have explored how long periods of lockdowns or heavy government restrictions 
impacted human behavior. One such study found that lockdown fatigue is an important factor when 
considering long lockdowns. The study conducted by Joshi and Musalem (2021) found lockdowns lose 
30.1% of the mobility reduction achieved within 28 days and 100% of the mobility impact was lost in day 
112. The study of length of lockdowns led to an advanced continuous-time Markov chain model with eight 
states (SEAMHQRD‑V) where lockdown lengths and impact were considered (Oraby et al. 2021). The 
model found that shorter lockdowns seemed to have a larger relative effect on the total COVID-19 attack 
rate. The study of lockdown fatigue and lockdown timing is an important factor for policy makers to 
consider when planning the impact of lockdowns and may help decide whether earlier, shorter lockdowns 
would be more effective than waiting and having to enact an aggressive long-lasting lockdown. 

Our research focuses on geographical models, allowing the definition of models at a regional level 
which could be a city, town, or country. We build the spatial models using Cell-DEVS (Wainer 2019), 
which allows defining cell spaces based on DEVS (Zeigler et al. 2000). Cell-DEVS defines n-dimensional 
cell spaces where each cell is a DEVS atomic model and the cell space is a coupled model, as in Figure 1. 
When a cell receives an input, the local computing function 𝜏 is activated, computing the next state for the 
cell. We only consider and compute active cells using a continuous time base. If there is a change in the 
cell’s state, the change is transmitted after a time delay d. Cell-DEVS accepts other neighborhoods and 
irregular topologies as well. Cell-DEVS inherits the modularity and hierarchical modeling ability of DEVS. 
This allows for models to better interact with other models, tools, datasets, and visualization tools, making 
it an easy, and efficient method to build complex cellular models. 

 

Figure 1: Cell-DEVS model: (left) Atomic cell schematics; (right) 2D Cell-DEVS neighborhood. 

There are different simulators to execute Cell-DEVS models (Vicino et al. 2019). In this research, we 
use the Cadmium tool (Vicino et al. 2019), which allows users to define model inputs using JavaScript 
Object Notation (JSON), a data format to store and transmit large amounts of human readable data. JSON 
stores data in key-value pairs allowing for the simple representation of neighborhoods, their attributes, and 
their relationships. Cadmium allows the user to include complex geographical inputs that load into the 
model at run time resulting in a flexible model that allows for efficient rapid prototyping. 

3 MODELING HUMAN BEHAVIOR IN SEAIRD MODELS 

The model in this section includes multiple layers of human behavior (Fahlman et al. 2021). Besides the 
basic behavior, this model defines individuals including mask wearing compliance, mask types, level of 
fatigue, as well as disobedience and non-compliance. Figure 2 shows the states included in the model and 
their respective transitions. A cell’s population begins with a fully susceptible population before a disease 
is introduced. Then, the population in contact with infected individuals become exposed who either become 
infectious or asymptomatic. The asymptomatic population will eventually recover from the disease as they 
do not have symptoms, but the infectious population will either move to the recovered state or deceased. 
The model has the capability for a population to become re-susceptible if needed. 
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Figure 2: SEAIRD state diagram. 

Each state transition is based on a time behavior described using the delay function in each cell. 
Exposed, Infection, Asymptomatic and Recovered states have a defined number of days that a population 
can be within the state before transitioning to the next this is defined by Te, Ti, Tai and Tr. The set of days 
within each state is described as q = {1, 2,…, Tstate}. For example, 𝐸,

௧ (𝑞), describes the proportion of 
exposed cases for an age group a in cell i at time t in exposed state q = {1, 2,…, Te}. Our model includes k 
unique geographical cells. The proportion of a given population’s age group a found in each state is 
described as: 𝑆,

௧ , 𝐸,
௧ , 𝐴,

௧ , 𝐼,
௧ , 𝑅,

௧ , 𝐷,
௧  (cell i at time t for age group a). Each transition is built using the 

Cell-DEVS transition and delay functions, which implement equations 1 – 12 below. 
Let us consider fa(q) as the fatality rate of infected stage q for age group a; λa(q) their infection rate; 

μa(q) their mobility rate; εa(q) the incubation rate; γa(q) the recovery rate and φ as the asymptomatic 
infection rate. Then, cij is the geographical correlation factor between cells i and j; kij is the correction factor 
applied to both cells i and j to model disobedience. Equation (1) calculates the proportion of deaths at time 
t as the total of current deaths plus the sum of the infectious population that died the day before. New deaths 
are equal to the newly deceased population moving from the infectious state multiplied by the fatality rate. 
The deceased transition does not consider asymptomatic infections as they do not lead to deaths. 
 𝐷,

௧ାଵ = 𝐷,
௧ + ∑ 𝑓𝑎(𝑞) ቀ𝐼,

௧ (𝑞)ቁ்
ୀଵ  (1) 

Equation (2) is used to calculate the proportion of the newly exposed population. This is calculated as 
the result of the susceptible ones in contact with either the entire infectious population or the asymptomatic 
population of neighboring cells j. 

 𝐸,
௧ାଵ(1) = 𝑆,

௧ ∑ ቆ𝑐𝑖𝑗𝑘𝑖𝑗 ∗ ∑
ேೕ,್

ேೕ
µ(𝑝)𝜆௦,

௧ (𝑝)𝐼,
௧ (𝑝)𝑏∈𝐴

𝑝∈{ଵ,ଶ,…,்}
ቇ +

ୀଵ ቆ𝑐𝑖𝑗 ∗ ∑
ேೕ,್

ேೕ
 µ(𝑝)𝜆௦,

௧ (𝑝)𝐴𝑖,
௧ (𝑝)𝑏∈𝐴

𝑝∈{ଵ,ଶ,…,்}
ቇ (2) 

The first part of the equation calculates the proportion of a cell’s susceptible population exposed to an 
infectious individual (I) and the second part the proportion exposed to an asymptomatic individual (Ai). A 
defines the set of age groups in cell j, each age group is represented by b. The λmask is the infection rate after 
masks are considered, as in equations (4-6). Each cell’s population represented by Nj is divided into age 
groups (subscript b). Each cell is related to its neighbor by a geographical correlation factor cij that describes 
the impact each neighboring cell has on a given cell, including infection rate and mobility rates a given 
cell’s population has with its neighbors. Finally, kij defines a correction factor between cells i and j, applied 
to the infectious half of the equation to simulate infectious and asymptomatic populations: asymptomatic 
individuals are more carefree, thus they will expose more individuals (Del Valle et al. 2005). The correction 
factor kij is defined using the model disobedience factor d where kij=min(ki, kj). The correction for individual 
cells i and j is defined as kcell=d+(1-d)*mc. The infection correction factor mc is defined in the model as a 
function of the ICU threshold (ITH) that triggers a specific mobility correction factor (cm) and a removal 
level (R). Over time, the correction factor (cm) of a given cell can change due to lockdown fatigue. 

We added lockdown fatigue to define the impact long lockdowns have on behavior and infection case 
counts. We have incorporated lockdown fatigue by calculating the time each geographical region has been 
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under lockdown and then checking if the time meets certain time requirements defined as in (Joshi and 
Musalem (2021): lockdown fatigue sets in after 28 days 30% of the lockdown impacts are gone, and after 
121 days 100% are gone. These rates are based on previous research, and our model allows them to be 
modified to meet new research results easily Equation (3) shows how to calculate this lockdown effect.  

 

 𝑐𝑚 = ൝

𝑐𝑚, 𝐿௧ < 28

1 − ((1 −  𝑐𝑚) ∗ (1 − 0.301)), 𝐿௧ ≥ 28 𝑎𝑛𝑑 𝐿௧ < 121
1.0, 𝐿௧ ≥ 121

 (3) 

 
The lockdown effect cm is based on the number of days a given cell has been in lockdown (Lt) and 

follows (Joshi and Musalem 2021), as discussed above. If a cell is under lockdown for less than 28 days cm 
has full effect. If a state is in lockdown, 𝐿௧ is incremented. It is not enough to assume one day out of 
lockdown is enough to reset a population’s behavior; hence, if a state comes out of lockdown, 𝐿௧ is slowly 
lowered back to 0 where the population will behave normally again. This allows for the model to address 
the effect multiple lockdowns that may occur in quick succession have on a population’s behavior. 

Mask wearing was added to represent the impact masks have on infection transmission dynamics over 
time. This has been added as a modifier to the infection rate of the disease, using mask compliance and 
efficiency factors, which can be adjusted. The model also allows to define a “mask recommendation time” 
where the model can simulate the impact a mask mandate would have on rising case counts. In our case 
this is defined by applying the mask modifier after a given time. For example, if infection rate is 1.0, mask 
efficiency is 0.5, mask compliance is 0.5 and a mask recommendation time is set to 50 days, the infection 
rate would remain at 1.0 for the first 49 days, and on the 50th day the infection rate would begin lowering 
to 0.75 (equation 6). This equation defines a dynamic modified logistic regression function where the 
impact of masks can change over time depending on government restrictions. 

 
 Λ = 1 − ቀλ ∗ ൫𝑚𝑎𝑠𝑘 ∗ 𝑚𝑎𝑠𝑘൯ቁ (4) 
 Λି = λ ∗ 𝑚𝑎𝑠𝑘ௗ (5) 

 Λ௦(𝑡) =  
ି 

1+ 𝑒−𝑘1(−𝑡+𝑡1) +  
ି ష

1+ 𝑒−𝑘2(−𝑡+𝑡2) + λି (6) 

 
First, λ(4) defines the infection rate for mask compliance, where maskeff and maskcomp are the mask 

efficiency and mask compliance respectively. Mask efficiency can be modified to represent different types 
of masks. For example if infection rate (λ) is 1.0, mask efficiency (𝑚𝑎𝑠𝑘) is 0.5 and mask compliance 
(𝑚𝑎𝑠𝑘) is 0.7, our new infection rate (λ) would be 0.65. λି(5) defines the proportion of 
mask wearers who decide to not wear masks (maskd) after government rules change. k1 and k2 define the 
rate at which the population begins mask wearing (k1) or mask removal (k2). t is the current day of the 
simulation; t1 defines the day when government restrictions or lockdowns begin and t2 defines the day when 
the restrictions are lifted. In our model t1 and t2 are set dynamically, as the simulation runs and new 
restrictions are declared t1 is set on that day, while t2 is an arbitrary date in the future. When restrictions are 
lifted t2 is set, and the population will begin removing their masks. The model also allows for users to enter 
a mask recommendation time, if this is set, t1 will be assigned to that day and the population will be given 
a mask recommendation when that day is reached. 

Equation (7) describes how the exposed population transitions to the infectious or asymptomatic state. 
The equation defines the exposed in stage q is equal to the exposed of the previous day multiplied by 1- 
εa(q-1). Where εa (q-1) defines the incubation rate for an age group a for state q – 1. The incubation rate 
defines the probability of the population moving to infectious or asymptomatic. 

 
 𝐸,

௧ାଵ(𝑞) = ൫1 − 𝜀(𝑞 − 1)൯𝐸,
௧ାଵ(𝑞 − 1), 𝑞 ∈ (2, 3, … , 𝑇) (7) 
 

Equation (8) describes the new infectious population that will occupy day 1. The equation considers 
the exposed population from all stages, and all age groups. As defined above in (7), a proportion of the 
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exposed population moves to infectious or asymptomatic based on the incubation rate εa. The rate at which 
the exposed population becomes either infectious, or asymptomatic is defined by asymptomatic rate φ. 
Thus, for the case of new infectious population the rate is defined as (1 – φ). 

 
 𝐼,

௧ାଵ(1) = 𝐸,
௧ (𝑇) + ∑ ቀ𝜀(𝑞)𝐸,

௧ (𝑞)ቁ (1 − 𝜑)்ିଵ
ୀଵ  (8) 

 
Equation (9) describes the portion of the infected population that moves to the next stage. The infectious 

population for stage q equals the population of infectious in the previous stage, q – 1 minus the population 
who move to either recovery or deceased. The portion of the population that move to the recovered or 
deceased states is defined by recovery rate γ and fatality rate 𝑓 respectively. 

 
 𝐼,

௧ାଵ(𝑞) = 𝐼,
௧ (𝑞 − 1) ∗ ൫1 − 𝛾(𝑞 − 1) − 𝑓𝑎(𝑞 − 1)൯, 𝑞 ∈ (2, 3, … , 𝑇) (9) 

 
Equations (10 and 11) define the asymptomatic state behavior following the same rules described in 

(8) and (9). Equation (10) defines the proportion of the exposed population that moves to the asymptomatic 
state (here, the asymptomatic population rate remains as φ). Equation (11) follows the same rules defined 
when asymptomatic cases either move to the next stage q or recovered. 

 
 𝐴,

௧ାଵ(1) = 𝐸,
௧ (𝑇) + ∑ (𝜀(𝑞)𝐸,

௧ (𝑞))𝜑∈ {ଵ,ଶ,…, ்ିଵ}  (10) 

 𝐴,
௧ାଵ(𝑞) = 𝐴,

௧ (𝑞 − 1) ∗ ൫1 − 𝛾(𝑞 − 1)൯, 𝑞 ∈ (2, 3, … , 𝑇) (11) 
 

Equation (12) describes the proportion of infectious or asymptomatic that recover. The number of 
recoveries is the total number of recoveries from the previous day plus the newly recovered population. 
The current day recoveries are calculated by taking the proportion of infectious and asymptomatic that 
move to the recovered stage using rate γ. Finally, we check individuals on the final day of either infectious 
or asymptomatic; they can move to the deceased state, or they are added to the recovered state. 

 
 𝑅,

௧ାଵ(1) = ቀ𝐼,
௧ (𝑇) + 𝐴,

௧ (𝑇)ቁ + ∑ 𝛾(𝑞)𝐼,
௧ (𝑞)∈ {ଵ,ଶ,…,்ିଵ} + ∑ 𝛾(𝑞)𝐴,

௧ (𝑞)∈ {ଵ,ଶ,…,்ೌିଵ}   (12) 
 

Equations (13 and 14) are used only if re-susceptibility is not enabled. Once the recovered population 
reaches the final day of recovery, they remain there for the rest of the simulation time. 

 
 𝑅,

௧ାଵ(𝑞) = 𝑅,
௧ (𝑞 − 1), 𝑞𝜖{2,3, … , 𝑇 − 1} (13) 

           𝑅,
௧ାଵ(𝑇) = 𝑅,

௧ (𝑇) + 𝑅,
௧ (𝑇 − 1) (14) 

 
Equation (15) is an equation only used when re-susceptibility is enabled, i.e., patients who are recovered 

will go through each day of recovery, when they reach the final day of recovery the population will move 
back into the susceptible population pool where they can be re-exposed. The length of the recovery state 
represents the amount of time the population is naturally immune to the disease. 

 
 𝑅,

௧ାଵ(𝑞) = 𝑅,
௧ (𝑞 − 1), 𝑞𝜖{2,3, … , 𝑇} (15) 

 
Equation (16) is needed for the integrity. Since we know that any given population starts in the 

susceptible state, the population that is not in any other state should remain susceptible 
 

 𝑆,
௧ାଵ = 1 −  ∑ 𝐸,

௧ାଵ(𝑞) − ∑ 𝐼,
௧ାଵ(𝑞)

்
ୀଵ

்
ୀଵ −  ∑ 𝐴,

௧ାଵ(𝑞) −  ∑ 𝑅,
௧ାଵ(𝑞)்

ୀଵ
்
ୀଵ − 𝐷,

௧ାଵ  (16) 
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The model is defined as a coupled Cell-DEVS where the space represents a geographical region, and 
each cell is a location using an irregular topology. Each cell consists of a cell ID, a set of state variables, a 
model configuration, and neighboring cell’s correlation factors. The cell and atomic model where the states 
change within each cell independently of the neighbors, but the neighboring cells impact each other based 
on the correlation factor in Figure 1. Each atomic model has a population that begins as Susceptible; and 
then transitions through the other states based on the equations. The model implements each equation for 
any given number of geographical cells the user defines. 

4 MODEL IMPLEMENTATION 

The equations above are implemented; when all the geographical cells are defined, they are placed into a 
top level coupled cell model called geographical_coupled, with configuration seen in Figure 3. At runtime, 
the geographical_coupled model is initialized using cells data provided from in a JSON input file this is 
doing using the methods described in the top model class cadmium::celldevs:cells_coupled<T,C,S,V>; 
Figure 3 below describes how this coupled cell model is defined. 

 

Figure 3: Coupled SEAIRD cell diagram. 

At runtime, the geographical_coupled model is initialized using the cell’s unique data. The cell’s data 
is provided from a JSON input file using the methods described in the top model class 
cadmium::celldevs:cells_coupled<T,C,S,V>; Figure 3 shows how this coupled cell model is defined. The 
structures SEAIRD, simulation_config and vicinity define the inputs of geographical_cell k. SEAIRD 
defines the state variables used to hold the population, infection correction, disobedience factors, lockdown 
fatigue modifiers and mask wearing. The simulation configuration defines the attributes that characterize 
the disease being modelled including infection rates, incubation rates, fatality rates and asymptomatic rates. 
The vicinity structure holds the information defining the correlation factors between two geographical cells. 
These structures are read in at run time to create the single parameterized model geographical_cell. The 
geographical_coupled model is defined by the collection of geographical cells and their relationships. 

In Figure 4 the relevant SEAIRD information is defined. Each cell has a unique population divided into 
age groups. The cell’s population is divided into one of six states. When modeling the beginning of a 
pandemic, a single cell is assigned as the starting location; in this cell a small population will be infected 
or exposed, the remaining population will be susceptible. In this scenario, all other cells will have 100% of 
their population as susceptible. Our model allows users to define how the models parameters are defined. 
If needed the user can have the model start at any time point during the pandemic. 

struct seaird { 
 std::vector<double> age_group_proportions; 
 std::vector<double> susceptible; 
 std::vector<std::vector<double>> exposed; 
 std::vector<std::vector<double>> infected; 
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 std::vector<std::vector<double>> asymptomatic; 
 std::vector<std::vector<double>> recovered; 
std::vector<double> fatalities;      
std::unordered_map<std::string, lockdown_factor> lockdown _factors; 
 double population; 
 std::vector<double> disobedient; 
 double days_in_lockdown; 
 double mask_efficency; 
 double mask_compliance;...}; 

Figure 4: SEAIRD configuration code. 

In Figure 5 the simulation configuration is defined. These variables define how the population moves 
from one state to another. These variables also describe the disease that is being modelled, the transmission 
rates, incubation rates and the other important variables that describe how a disease behaves. The structures 
shown above define the geographical_cell atomic model shown in Figure 3. A geographical_cell atomic 
model is defined for each unique geographical cell in the model, where the collection of these atomic models 
make the geographical_coupled model. Finally, the geographical_coupled model is defined by the methods 
found in class cadmium::celldevs::cells_coupled<T,C,S,V>. 

struct simulation_config { 
 int prec_divider; 
 using phase_rates = std::vector<std::vector<double>>; 
 phase_rates infection_rates; 
 phase_rates incubation_rates; 
 phase_rates recovery_rates; 
 phase_rates mobility_rates; 
 phase_rates fatality_rates; 
 double asymptomatic_rates; 
 bool SIIRS_model = true; }; 

Figure 5: Simulation configuration code. 

5 PROVINCIAL COVID-19 SPREAD 

In this section we use the SEAIRD discussed above to execute different simulation scenarios generated 
using data collected from the Canadian Provinces. The results in this section will compare the different 
effects human behavior has on mask wearing, lockdown fatigue and how different government restrictions 
can change the trajectory of the pandemic using Statistics Canada census data (Statistics Canada 2021). 
 The parameters used in this study are described in Table 1: 

Table 1. Test case configuration. 

Parameter Value 
Population Varies per cell, based on Canada census data  
Age Groups Varies per cell, based on Canada census data 
Disobedience Rates [0.29, 0.25, 0.23, 0.21, 0.24] 
Asymptomatic Rate Varies per simulation (See figure descriptions) 
Infection Rate 0.6 across all states and age groups 
Incubation Time 14-day profile (Davidson and Wainer 2021) 
Mobility Rates 1.0 across all states and age groups 
Recovery Rates 0.07 across all states and age groups 
Fatality Rates 0.005 across all states and age groups 
ICU correction factors (lockdown/restrictions) 0.5: [0.25, 0.3],0.75: [0.25, 0.1] ,1.0: [0.005, 0.05] 
Mask efficiency Varies per simulation (See figure descriptions) 
Mask compliance Varies per simulation (See figure descriptions) 
Mask policy onset times Varies per simulation (See figure descriptions) 
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We have a population defined for each geographical area. Then we use the vector of age group values 
to split the population into the correct age group proportions. Our age group values were gathered using 
Canadian census data where our values represent the following five age groups: 0-14, 15-19, 20-44, 45-65, 
and over 65 years old. Disobedience follows the same format where each value represents a proportion of 
the age group that disobey restrictions; this is estimated using data gathered by the Angus Reid Institute 
(2020) and Carlucci et al. (2020). “All states and age groups” means that the value shown is the same for 
each state of disease transmission and the same across all age groups. Incubation time is the number of days 
a population is exposed before becoming infected or asymptomatic; this is defined using a 14-day profile 
where each day the population has a chance to move to the next state (Davidson and Wainer 2021). Mobility 
rates define the population movement; 1.0 means there are no mobility restrictions. Recovery rates are the 
rate at which the population can recover from the disease, 0.07 means for each day the population is 
infected, they have a 7% chance to recover. Fatality rates define the chance the population will die on a 
given day of the infection. ICU correction factor describe the proportion of the population that is estimated 
to be in the ICU before government restrictions are required. This value is estimated based on the number 
of infectious individuals. ICU capacity is unique to each geographical region, the ICU capacity data was 
gathered using data gathered from (Fowler et al. 2015). The values shown for the ICU correction factor can 
be described as: ‘Proportion of population infected to start restrictions’: [‘mobility modifier’, ‘Proportion 
of population infected to lift restrictions’] where mobility modifier reduces the mobility of a cell by the 
given value. The mobility modifier can change over time (equation 6). Mask efficiency and compliance are 
tested using differing values based on a number of studies that shown the difference between surgical, cloth, 
or N95 masks (Grinshpun et al. 2009; Rengasamy et al. 2014; Willeke et al. 1996).  

 

Figure 6: Base line – No masks worn, 10% asymptomatic. 

In Figure 6 we see a single wave with a steep curve. The population becomes exposed rapidly, and then 
1-14 days after exposure, they become infected. The total infected reaches 14% of the population, causing 
to require a hard lockdown to bring the infected count back down. No mask wearing has been enabled, and 
the re-susceptibility field has been set to false. Due to the lack of mask wearing, the infectivity rate is left 
at its full value, this leads to cases spreading at a fast rate. Instead, Figure 7 shows the same scenario but 
now 75% of the population is wearing a mask, the masks have 50% efficiency at reducing transmissions 
and the population is given a mask mandate after 50 days.  

We can see the population becomes infected more slowly, ideally giving the government more time to 
plan and act. The peak of cases is also much lower with only 7% of the entire population becoming infected; 
50% less than in Figure 6. This allows for some of the restrictions to be lifted leading to cases slowly 
returning to 0. We can see that around day 260 the infected begin dropping slower, due to lockdown fatigue 
starting to set in. As described in equation 3 the model detects that some of the cells within the simulation 
have been in lockdown for weeks around day 260, thus increasing the mobility within the cell and the 
neighboring cells. Around this time cases have dropped enough for restrictions to begin loosening as well, 
with less restrictions the population begins believing they are safe, this will cause some of the population 
to start removing their masks, slightly increasing the infectivity again. If re-susceptibility were enabled in 
the model, cases would begin climbing again at this point. This can be seen in more detail in Figure 8. 
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Figure 7: 50% Mask efficiency, 75% mask compliance, 10% asymptomatic, 50-day mask requirement 
(left). Mask adjusted infection rate over time (right). 

In Figure 8 we can see the same scenario as Figure 7, but now re-susceptibility has been enabled. We 
can see that the first wave trajectory is the same as figure 7, but now when government restrictions begin 
to lower, and lockdown fatigue rising, a second wave begins. Due to the lingering lockdown fatigue, the 
second wave ends up with slightly more cases than the first wave. At the end of the second wave, 
government restrictions start lifting, we can see (right) that some of the population begin removing their 
masks, causing the infection rate to rise once again. The rise of cases at the end of the model’s runtime 
causes new government restrictions to be applied, this can be seen by mask wearing resuming in figure 8 
(right). This rise in infection rate shows the start of what would be a third wave. From the models point of 
view, when a given cell lockdown ends, some of the masked population believe they are safe to begin 
removing masks. This leads to the increase and decrease in infection rate shown. Although lockdowns are 
lifted mask mandates may not have ended yet, this allows for the model to simulate how changes in 
government policy can indirectly impact disease spread due to how the population perceives the change. 

     
Figure 8: 50% Mask efficiency, 75% mask compliance, 10% asymptomatic, 50-day mask requirement, with 
re-susceptibility enabled (left) Mask adjusted infection rate over time (right). 

In Figure 9 we can see an example of the geographical visualization for our scenario. The visualizer 
(St-Aubin et al. 2018) allows for animation showing a timeline of the pandemic (day 111). In this scenario, 
the first case was in Ontario, thus the provinces connected to Ontario (Manitoba, Quebec) have more cases 
at this time than further provinces such as British Columbia and Yukon. Due to the correlation factor being 
based on border length, places with very few or small land borders get less cases, as seen when examining 
Nova Scotia. When comparing to Figure 8 we can see that at day 111 the disease was spreading rapidly but 
had not hit the yet. We can understand the geographical transmission dynamics behind the curve showing 
how the disease spread fastest in certain provinces and slower in others. The visualization allows users to 
select different layers, this can be used to view other model parameters like days in lockdown showing how 
different provinces healthcare capacities allowed them to remove lockdowns earlier than others. 

With these results being shown, our model has the capability to simulate the impact human behaviors 
around masks and lockdown fatigue has on case counts. The model shows how early mask mandates slow 
the rise of infections, and overall lower the number of infections throughout the population. We can model 
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how a population might perceive lowered restrictions as a sign they can remove their masks. The model 
will also allow the simulation of lockdown fatigue, showing how longer lockdowns can cause slower 
decline in cases over time or cause second waves that infect more than the first wave. 

 

Figure 9: Geographical visualization. 

6 CONCLUSIONS & FUTURE WORK 

We presented a model that allows users to create rapid simulation prototypes to simulate the impact different 
human behaviors have on disease spread. The model was built to simulate COVID-19 spread but has the 
ability to change for any other disease a user requires. The design of the model allows for quick, efficient 
prototyping where users can change mask wearing, asymptomatic rates, or government restrictions with 
ease. Users simply need to update the disease or population information, regenerate the population, and run 
the model. The model shows results where re-susceptibility, mask mandates, mask wearing over time and 
lockdown fatigue are present. 

Future adaptations of the model could incorporate new methods of geographical disease spread where 
information like traffic movement, and flight travel are incorporated. The model could be further adapted 
to include new states and transitions. In future adaptations variants of concerns and disease mutations can 
be addressed allowing for the simulation of multiple disease types. 
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