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ABSTRACT

The rapid growth of distributed energy resources (DERs), such as renewable energy sources, generators,
consumers, and prosumers in the smart grid infrastructure, poses significant cybersecurity and trust challenges
to the grid controller. Consequently, it is crucial to identify adversarial tactics and measure the strength
of the attacker’s DER. To enable a trustworthy smart grid controller, this work investigates a trustworthy
artificial intelligence (AI) mechanism for proactive identification and explanation of the cyber risk caused
by the control/status message of DERs. Thus, proposing and developing a trustworthy AI framework to
facilitate the deployment of any AI algorithms for detecting potential cyber threats and analyzing root
causes based on Shapley value interpretation while dynamically quantifying the risk of an attack based
on Ward’s minimum variance formula. The experiment with a state-of-the-art dataset establishes the
proposed framework as a trustworthy AI by fulfilling the capabilities of reliability, fairness, explainability,
transparency, reproducibility, and accountability.

1 INTRODUCTION

The smart grid infrastructure is expected to deploy huge amounts of distributed energy resources (DERs)
such as renewable energy sources, consumers, prosumers, and so on to meet the goal of around 40%
(U.S. Energy Information Administration: Annual Energy Outlook 2023 with Projections to 2050 ) cost
reduction by 2050. Thus, the operation of such deployed DERs in a smart grid significantly increases the
risk of cyber-attacks through their control/status messages (Nafees et al. 2023; Bitirgen and Filik 2023;
Karimipour et al. 2019; Kurt et al. 2019). As a result, it is critical to recognize adversarial strategies and
evaluate the impact of the attacker’s DER. Therefore, a trustworthy smart grid controller must monitor and
manage each DERs operation for the entire smart-grid cyber-physical systems.

To boost confidence in smart grid controllers and enable secure power transactions between DERs, it
is crucial to develop a trustworthy artificial intelligence (AI) (Dwivedi et al. 2023; Wing 2021; Floridi
2019; Chatila et al. 2021; Liang et al. 2022; Munir et al. 2023) mechanism for detecting potential cyber
threats and measuring the severity of the risk. However, in order to establish trustworthy AI mechanisms
for smart grid controllers, several technical metrics such as reliability, fairness, explainability, transparency,
reproducibility, and accountability on threat detection must be needed to be fulfilled.

In this work, we address the following research challenges:

• How to proactively detect the potential cyber threat in a smart grid environment, where millions of
DERs are connected and controlled by the smart grid controller?
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• In order to guarantee a secure power transaction, how can the root cause of a possible cyber attack
be identified in a smart grid controller?

• When there are no apparent indicators to differentiate among types of attacks, how can the grid
controller distinguish between the various attack types and measure the risk?

To address the above research challenges, in this work, a trustworthy artificial intelligence (AI) technique
is studied for the purpose of proactively identifying and explaining the cyber risk brought on by the
control/status message of DERs. We summarize our key contributions as follows:

• First, we design a system model of a trustworthy smart grid controller for assuring a secure power
transmission among the distributed energy resources. Then, we formulate a decision problem that
can detect the potential cyber threat in an adaptive smart grid environment while analyzing the root
cause of such threat by determining the contribution among the features of a status message.

• Second, we propose a trustworthy artificial intelligence framework to solve the formulated decision
problem in smart grid controllers. In particular, we design an AI pipeline that is capable of facilitating
the deployment of any AI algorithms for potential cyber threat detection, can analyze root causes
based on Shapley (Shapley et al. 1953; Munir et al. 2022; Dubey 1975; Lundberg and Lee 2017)
value interpretation, and dynamically quantifying the risk of an attack based on Ward’s minimum
variance (Ward Jr 1963) formula.

• Third, we implement the proposed framework in a simulation environment and tested it with the
state-of-the-art cyber-physical system SCADA WUSTL-IIOT-2018 (Teixeira, M., Zolanvari M., and
Jain R. 2018).

• Finally, we do the analysis of the implemented framework in terms of reliability, transparency,
fairness, accountability, and explainability of the proposed trustworthy artificial intelligence frame-
work. We have found that the proposed framework can detect potential attacks with at least 99%
reliability while ensuring transparency, fairness, and explainability by analyzing the contribution
of the feature on decisions and quantifying the risk of each potential attack.

The rest of the paper is organized as follows. Section 2 discusses some of the interesting related work. The
system model and problem formulation of the considered trustworthy smart grid controller are described
in Section 3. The proposed trustworthy AI framework is presented in Section 4 and experimental analysis
is discussed in Section 5. Finally, we conclude our discussion in Section 6. A summary of notations is
presented in Table 1.

2 RELATED WORK

The problem of cyber attack detection for smart grid infrastructure has been studied in (Karimipour et al.
2019; Kurt et al. 2019; Sakhnini et al. 2019; Munir et al. 2021; Bitirgen and Filik 2023). In (Karimipour
et al. 2019), the authors proposed an unsupervised learning-based anomaly detection by measuring the
statistical correlation among features. The work in (Kurt et al. 2019) studied a partially observable Markov
decision process for cyber-attack detection and proposed a model free reinforcement learning (RL) to solve
it. The authors in (Sakhnini et al. 2019) investigated the problem of false data injection (FDI) attack
detection for the smart grid by deploying a support vector machine (SVM), K nearest neighbor (KNN),
and artificial neural network (ANN)-based supervised learning mechanism. Further, the authors in (Munir
et al. 2021) proposed a data-informed policy-based model-free RL scheme for detecting cyber threats and
controlling DERs for connected or disconnected from the main grid based on the attack situation. Recently,
the authors (Bitirgen and Filik 2023) proposed a hybrid deep learning model by combining particle swarm
optimization (PSO) and convolutional neural networks-long short-term memory (CNN-LSTM) for FDI
detection in the smart grid environment.

However, these works (Karimipour et al. 2019; Kurt et al. 2019; Sakhnini et al. 2019; Munir et al. 2021;
Bitirgen and Filik 2023) do not investigate the problem of root cause analysis of a particular cyber-attack
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nor do they account the quantify the potential risk, when there are no apparent indicators to differentiate
among types of attacks. Dealing with explainability, reliability, and fairness in the detection of cyber
attacks and measuring cyber risk with fairness, transparency, and accountability is challenging due to the
intrinsic nature of millions of distinct DERs in smart grid cyber-physical systems. Therefore, in this work,
we propose a trustworthy AI framework that can proactively recognize and explain the cyber risk posed
by the control/status message of DERs.

3 SYSTEM MODEL AND PROBLEM FORMULATION OF TRUSTWORTHY SMART GRID
OPERATION

3.1 System Model of Trustworthy Smart Grid Controller

Figure 1: A system model of trustworthy smart grid controller.

We consider a smart grid environment, where a set D = {1,2, . . . ,d, . . . ,D} of distinct distributed energy
resources (DERs) (Nafees et al. 2023; Munir et al. 2021; Munir et al. 2022) such as dispatchable power
sources, wind sources, photovoltaics sources, prosumer, critical infrastructure consumers, electric vehicle
(EV) charging station, and so on are deployed (as seen in Figure 1). The transmission system operator
(TSO) controller transfers energy from source DERs to the distribution system operator (DSO). The DSO
controller is responsible to distribute energy among the consumer DERs such as critical infrastructure, EV
charging, prosumers, and others. Considering a trustworthy smart grid controller (TSGC) that can monitor
and control the activities of each DER for the entire smart grid cyber-physical systems. We assume that,
physically, the TSGC is an entity of the supervisory control and data acquisition (SCADA) system of the
considered smart grid infrastructure.

In the considered system model, three kinds of communication and energy flows occur power trans-
mission, information flow, and operational message flow. In Figure 1, the yellow dashed line indicates
information flow, the black solid line represents energy flow, and the purple dashed line presents operational
signals among the DERs.

In general (Teixeira, M., Zolanvari M., and Jain R. 2018; Munir et al. 2021), the at first control/status
messages are exchanged between the generator DERs and TSO controller before transacting energy to
the DSO. Similarly, control/status messages are exchanged between DSO controllers and consumer DERs
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Table 1: Summary of Notations.

Notation Description
D Set of distributed energy resources (DERs)

d ∈D Each control/status messages
X = {0,1,2, . . . ,x, . . . ,X} Set of attack types including trusted message

M No. of features
yd ∈ Y Threat detection decisions variable
ϒm ∈ ϒϒϒ Shapley coefficient (root cause)

g(.) Risk of severity
zd Tuple of features

ωM Weight of the model for M features
Zt Total number of control/status messages at time slot t ∈ T

before distributing the energy to the consumer DERs and vice versa. However, it is essential to assure
trust in DERs before establishing energy flow or transaction while control messages may carry threats in
the considered smart grid. In this system model, we consider five types of potential cyber threats: 1) port
scanner, 2) address scan, 3) device identification, 4) aggressive mode, and 5) exploit (Teixeira, M., Zolanvari
M., and Jain R. 2018; Munir et al. 2021) in a DER control/status message d ∈ D . Therefore, we define
a set X = {0,1,2, . . . ,x, . . . ,X} that includes X cyber threats and x = 0 represents trusted control/status
message. Thus, X cyber threats can occur in smart grid cyber-physical systems and are initiated by the
DERs ∀d ∈ D . Thus, mathematically, a binary indicator can represent the observed cyber threat of each
DER control/status message d ∈D ,

yd =

{
1, if x ∈X ,x ̸= 0,
0, trustworthy,

(1)

where yd = 1 denotes the control message of DER d ∈D is an attack, and 0 trustworthy.
The considered TSGC can observe the characteristics and behavior of each DER d ∈D by analyzing

each of the control/status messages. In which, each control/status message consists of the following features:
source port a, the total number of packets b, the total number of bytes c, the number of packets at source
DER α , the number of packets sent to destination β , and the number of source byte size γ (Teixeira, M.,
Zolanvari M., and Jain R. 2018; Munir et al. 2021). Therefore, we represent these features as a tuple
zd : (a,b,c,α,β ,γ), d ∈D . However, in a dynamic case, we consider M features, then each tuple represents
as zd : (zd1, . . . ,zdm,zdM)). Then, for each time slot t ∈ T , the total number of control/status messages are
presented as Zt , where ∀zdm ∈M×Zt and T in a finite time domain.

In this system model, our goal is to proactively detect the potential cyber threat y by analyzing each
control/status message before executing the power transaction command. However, only detecting the
potential cyber threat does not buy the system as a trustworthy smart grid control. Therefore, the system
model must contain such a mechanism that can explain the root cause of the detected threat along with a
confidence score. We consider a linear model that can predict the potential cyber threat y of DER control
message d ∈D . For each feature m, the model is defined as follows (Munir et al. 2022):

yd = ĥ(zdm) = ω0 +ω1zd1 + · · ·+ωMzdM, (2)

where ωM denotes a weight of the model (2). Therefore, zdm presents a feature value, where m = 1, . . . ,M
and ωm represents a weight of feature m.

In this work, our aim is to find the reasoning behind a potential cyber attack from the control/status
message of each DER. Therefore, we can define a contribution function of feature m on ĥ(zdm) (Shapley
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et al. 1953; Munir et al. 2022; Dubey 1975; Lundberg and Lee 2017). Then, thus, we can formulate a
score function based on the contribution of the attack decision and define it as follows (Shapley et al. 1953;
Dubey 1975):

ϒm(ĥ(zdm)) = ωmzdm−E[ωmZt ], (3)

where E[ωmZt ] represents an expectation of effect for feature m. Here, our goal is to detect potential cyber
threat Y ∈ ∀y that is initiated by DER d ∈D and find the root cause behind that decision ∀ϒm(ĥ(zdm)) ∈
ϒϒϒ,m ∈M. Therefore, we need to formulate a problem for a trustworthy smart grid controller that can not
only detect the potential attack but also can find the root cause to build trust in such a decision.

3.2 Problem Formulation of Trustworthy Smart Grid Controller

In this section, we design a decision problem for the proposed trustworthy smart grid controller that can
coordinate between TSO and DSO. In this formulation, we consider two decision variables: 1) threat
detection decisions yd ∈ Y, and 2) quantifying root cause ϒm ∈ ϒϒϒ of such decisions that are affected by
the M features of the control/status message of each DER d ∈D . The objective is to minimize the square
error between actual occurrence ŷd and predicted occurrence yd of each control/status message d ∈D in
the smart grid controller. Thus, we formulate the decision problem of the smart grid controller as follows:

min
y∈Y,ϒm∈ϒϒϒ

1
|D ||T |

T

∑
t=1

|D |

∑
d=1

(
ŷd− yd

)2
, (4)

s.t. ωmzdm ≤ E[ωmZt ],∀m ∈ (1, . . . ,M), (4a)

ŷd ≥ ω0 +ω1zd1 + · · ·+ωMzdM,m ∈M,d ∈D , (4b)

ϒm ≤
M

∑
m=1

(ωmzdm−E[ωmZt ]),∀ϒm ∈ ϒϒϒ, (4c)

yd |D | ≤ |Y|, (4d)

yd ∈ {0,1} ,∀d ∈D . (4e)

Constraint (4a) ensures that the contribution of feature m ∈M must be smaller or equal to the expectation
of effect m for a control/status message of DER d ∈D . Constraint (4b) ensures the linear predicted model
(2) never exceeds the actual value during estimation. We establish a coupling between prediction and
contribution (i.e., effect) in constraint (4c). Finally, constraints (4d) and (4e) assure that the total number
of threats prediction does not bigger than the number of status messages and each status message d ∈D
only has one decision, respectively.

The formulated problem (4) leads to a combinatorial optimization problem in both the time and space
domain due to potential threats are depended on time and are characterized by the nature of each DER
status message. The problem (4) is hard to solve in polynomial time; however, it can be solved through
heuristic approximation. In this work, we propose a Shapley-based (Shapley et al. 1953; Munir et al. 2022;
Dubey 1975; Lundberg and Lee 2017) trustworthy artificial intelligence framework to solve the formulated
problem. The proposed framework can proactively detect cyber threats that are generated by DER, find the
root cause by analyzing the features of a status message, and elaborate on the severity of the cyber risk.

4 PROPOSED TRUSTWORTHY ARTIFICIAL INTELLIGENCE FRAMEWORK

We illustrate the high-level system design of the proposed trustworthy AI framework in Figure 2. In
particulate, Figure 2 demonstrated the overall AI pipeline for enabling a trustworthy smart grid controller.
The developed framework incorporates a regression-based predictive mechanism for cyber threat detection, a
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Figure 2: The proposed trustworthy AI framework for the smart grid controller.

Shapley-based explainer for root cause analysis, and Ward’s minimum variance-based hierarchical clustering
for characterizing threat severity.

The root cause of a status message d in feature m can be estimated as follows:

M

∑
m=1

ϒm(ĥ(zdm)) =
M

∑
m=1

(ωmzdm−E[ωmZt ])

= ĥ(zdm)−E[ĥ(Zt)],

(5)

where ωm is the weight of contributing feature m and zdm denote the each feature m in a feature tuple z.
E[ωmZt ] represents expected effect by the feature m in DER status message d. Therefore, the root cause
of a particular threat detection decision can be calculated as follows:

ϒm =
1
|M | ∑

M⊆D\{m}

[
|M |× |D |

|M |
]−1

[ĥ(zdm)M − ĥ(zdm)M \m]

=
marginal contribution o f m

number o f coalitions M ⊆D \{m}
,

(6)

where yd = ĥ(zdm) in (2). Thus, ϒm provides the root cause of the potential cyber attack yd = ĥ(zdm) for
each feature m ∈M of DER status message d ∈ D . Now, we need to characterize the severity of the
potential threat risk. However, the challenge here is to adapt to the unknown behavior of a potential cyber
threat in smart grid controllers. We consider each Xi can represent a disjoint type of cyber threat or trusted
energy transaction control/status message, where ∀Xi ∈X . Therefore, for two instance (i.e., i and i+1),
we can define Ward’s minimum variance (Ward Jr 1963) formula as follows:

g(ϒϒϒ,X ) =
|Xi||Xi+1|
|Xi|∪ |Xi+1|

||µXi−µXi+1 ||2∼∀ϒm∈ϒϒϒ
, (7)

where µXi and µXi+1 denote centroid of |Xi| and Xi+1. We can rewrite (7) as follows:

g(ϒϒϒ,X ) = ∑
x∈Xi∪Xi+1

||x−µXi∪Xi+1 ||2∼∀ϒm∈ϒϒϒ
− ∑

x∈Xi

||x−µXi ||2∼∀ϒm∈ϒϒϒ
− ∑

x∈Xi+1

||x−µXi+1 ||2∼∀ϒm∈ϒϒϒ
. (8)

An algorithmic procedure of the proposed mechanism for the trustworthy smart grid controller is shown
in Algorithm 1. Physically, Algorithm 1 will be executed by the smart grid controller. The input of the
Algorithm 1 will be control/status messages that are sent by DERs ∀d ∈D and each message contains |M |
features. The Algorithm 1 can be run in a finite time domain and is also capable of working as a watchdog
in an infinite time domain. All of the received control/status messages will be filtered as a potential cyber
threat or trustworthy yd and quantifying the root cause of that decision ϒϒϒ. Based on that findings, the
Algorithm 1 characterizes the risk of severity g(.) among the decisions. Lines from 4 to 11 estimate the
predicted decision based on the regression and calculate each feature’s contribution ϒm ∈ ϒϒϒ based on the
Shapley value interpretation. In particular, line 8 executes the regression model and line 9 calculates the
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Algorithm 1 An algorithm for trustworthy smart grid controller

Require: ∀m ∈M ,∀d ∈D ,Zt , zd : (a,b,c,α,β ,γ), d ∈D , ∀ŷ ∈ Ŷ
Ensure: yd ∈ Y, ϒm ∈ ϒϒϒ, g(.)

1: while T ̸= Tmax do
2: for ∀d ∈D do
3: Select a feature zdm ∈ Zt

4: for ∀m ∈M do
5: Calculate: ωmzdm and E[ωmZt ]
6: if ωmzdm ≤ E[ωmZt ] then ▷ Constraint (4a)
7: Calculate: (ĥ(zdm)−E[ĥ(Zt)])
8: Estimate: ω0 +ω1zd1 + · · ·+ωMzdM

9: Calculate: ϒm← 1
|M | ∑M⊆D\{m}

[
|M |× |D |

|M |
]−1

[ĥ(zdm)M − ĥ(zdm)M \m] ▷ Using (6)

10: end if
11: end for
12: if (4b) and (4c) then
13: Evaluate 1

|D ||T | ∑
T
t=1 ∑

|D |
d=1

(
ŷd− yd

)2
▷ Generic loss function evaluation for AI models

14: Get Threat Decision: yd
15: Get Explanation: ϒm

16: end if
17: end for
18: Y← y, ϒϒϒ← ϒm

19: Severity Analysis: g(ϒϒϒ,X ) ▷ Attack risk analysis using (8)
20: end while
21: Return: Y,ϒϒϒ, g(ϒϒϒ,X )

contribution of each feature in Algorithm 1. Line 13 evaluates a loss function for regression-based AI
model training such as random forest, extra tree, adaboots, and so on. Finally, cyber attack severity is
analyzed in line 19 of Algorithm 1. The computational complexity of the proposed Algorithm 1 relies
on the number of features |M | of a control/status message in a smart grid controller. The average case
Computational complexity of the proposed Algorithm 1 leads to O(2|D |×|M |+ |X |2 log |X |), where |X |
is the number of disjoint types of cyber threats in smart grid controller.

5 EXPERIMENTAL ANALYSIS

5.1 Experiment Setup

The proposed trustworthy AI framework for a smart grid controller is implemented in Python plat-
form (Scikit-learn: Ensemble Methods ; SHAP: Welcome to the SHAP Documentation ; Scikit-learn:
sklearn.cluster.AgglomerativeClustering ). In particular, we have developed several ensemble machine
learning methods (Scikit-learn: Ensemble Methods ) such as Extra Tree, Random Forest, Gradient Boost-
ing, AdaBoost, and Linear Regression for testing the proposed trustworthy smart grid controller. We have
utilized the SHAP (SHAP: Welcome to the SHAP Documentation ) Python library for calculating Shapley
value-based root cause analysis of the potential cyber attack. Then, we used Scikit-learn library to im-
plement the Agglomerative (Scikit-learn: sklearn.cluster.AgglomerativeClustering ) clustering for severity
characterization of the potential cyber risk. A summary of the experimental setup is given in Table 2.

The implemented framework is tested using the state-of-the-art cyber-physical system SCADA WUSTL-
IIOT-2018 (Teixeira, M., Zolanvari M., and Jain R. 2018). In this dataset, each control/status message
consists of 6 features along with the true label. The features include the source port, the total number of
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Table 2: Summary of Experimental Setup.

Description Value
No. of DERs status/control message sessions 2000 (Teixeira, M., Zolanvari M., and Jain R. 2018)

No. of training sessions 1400 (Teixeira, M., Zolanvari M., and Jain R. 2018)
No. of testing sessions 600 (Teixeira, M., Zolanvari M., and Jain R. 2018)

Types of attacks 5 (Teixeira, M., Zolanvari M., and Jain R. 2018)
No. of control/status message features 6 (Teixeira, M., Zolanvari M., and Jain R. 2018)

Cluster affinity Euclidean
Cluster linkage Complete
Cluster method Ward

Table 3: Reliability Analysis on AI Decisions (Score between 0 to 1).

AI Methods TN FP FN TP R2 Training Score R2 Test Score
Random Forest 0.996 0.003 0.0 1.0 0.997 0.993

Extra Trees 0.996 0.003 0.0 1.0 0.998 0.993
Gradient Boosting 0.996 0.003 0.0 1.0 0.997 0.993

AdaBoost 0.996 0.003 0.0 1.0 0.997 0.993
Linear Regression 0.996 0.003 0.0 1.0 0.946 0.935

packets, the total number of bytes, the number of packets at source DER, the number of packets sent to
the destination, and the number of source bytes. We have considered 2000 DER control/status messages
and divided these into 70% for training and the rest of them are used for testing. In this dataset, five
types of potential cyber threats are considered: 1) port scanner, 2) address scan, 3) device identification, 4)
aggressive mode, and 5) exploit; these are labeled into one category. Therefore, there are no given clues
that can differentiate between the types of attacks. To overcome such challenges, we have utilized the
concept of unsupervised learning for measuring the severity of cyber risk.

5.2 Results and Discussion

In this experiment, we focus on establishing a trustworthy smart grid controller by validating the proposed
trustworthy AI framework for SCADA. Thus, in order to establish a trustworthy AI model, we need to fulfill
a few of the metrics (Wing 2021; Floridi 2019; Chatila et al. 2021; Liang et al. 2022; Munir et al. 2023)
such as reliability, transparency, fairness, accountability, reproducibility, and explainability. Therefore,
we justify the proposed trustworthy AI framework in the following subsections.

5.2.1 Reliability

In order to measure the reliability of the proposed trustworthy AI framework, we consider a set of metrics
(Scikit-learn: Metrics and scoring: quantifying the quality of predictions ) such as true negative (TN), false
positive (FP), false negative (FN), true positive (TP), R2 regression score for training and testing, mean
squared error (MSE) and mean absolute error (MAE). In Table 3, we have presented TN, FP, FN, and TP
rates for 600 DER control/status messages, where we have found 0.003 and 1.0 as the FP and TP rates,
respectively for all of the AI/ML methods. Table 3 also evidenced a higher R2 score (i.e., coefficient of
determination) for all cases. Further, Figure 3 demonstrates the reliability of the defined objective function
4 (i.e., mean squared error) during testing, where we achieved a minimum error rate 0.0015 by the Extra
Tree model in the trustworthy AI framework.
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Figure 3: Trend analysis of mean squared error and mean absolute error among the ensemble-based
regression AI/ML models during execution (i.e., testing).

(a) Contribution of each feature on attack detection
from DER control/status messages.

(b) Features correlation of DER messages in WUSTL-
IIOT-2018 dataset (Teixeira, M., Zolanvari M., and
Jain R. 2018).

Figure 4: Explanation of the impact of Shapley value coefficient in cyber attack detection.

5.2.2 Transparency, Fairness, and Accountability

To assure transparency, fairness, and accountability of the proposed trustworthy AI framework, we have
demonstrated the impact of the Shapley value coefficient for DER cyber attack detection in Figures 4a.
In particular, it is clearly understandable in Figure 4a that the source port (Sport), the size of the source
packet (SrcPkts), and the number of source bytes (SrcBytes) have more contribution for detecting trusted
and threat DER messages. However, feature correlation (in 4b) of the raw data does not convey the right
insight. As a result, the proposed Shapley value-based feature contribution in attack detection assures
fairness and transparency in the AI model’s decision.

We have illustrated around 35% effect of generated bytes (SrcBytes) in source port (Sport) in Figure
5a while Figure 5b depicts that generated bytes (SrcBytes) and source packet (SrcPkts) have around 25%
effects on DERs’ attack detection. This evidence assures the accountability of the proposed trustworthy
AI framework.

5.2.3 Reproducibility and Explainability

We assure the reproducibility and explainability of the proposed trustworthy AI framework by incorporating
Ward’s minimum variance-based hierarchical clustering scheme. In particular, the trustworthy AI framework

644



Munir, Shetty, and Rawat

(a) Effect of generated bytes in source port of DERs
on attack detection.

(b) Effect of generated bytes and source packet of
DERs on attack detection.

Figure 5: Characterizing evidence on most prominent contributed features in DER control/status messages.

(a) Shapley value-based explanation of threat and
trusted DER messages.

(b) Characterization of the severity of five types
of cyber attacks in unknown labels.

Figure 6: Outcomes of agglomerative (hierarchical) clustering for the severity explanation.

explains the Shapley coefficient-based root cause and severity of the potential cyber risk that are shown in
Figures 6a, 6b, and 7. The explanation between trusted DER messages and potential attacks is shown in
Figures 6a, where we can clearly observe that the potential threats do not follow any particular characteristics.
Therefore, we differentiate among the unknown types of cyber threats in Figure 6b that can interpret the
root cause of such threats based on the Shapley coefficient.

The trustworthy smart grid controller can observe the severity of potential cyber risk from the DER
status/control messages. In Figure 7, we quantify the severity of cyber risk during the execution. In Figure
7, the x-axis represents the Shapley coefficient of features and the y-axis is control messages. Figure 7
indicates that the variation of Sport and SrcByte introduced a high risk of potential attack. To this end,
the experimental analysis establishes the proposed AI framework as a trustworthy AI mechanism that can
satisfy reliability, transparency, fairness, accountability, and explainability.

6 CONCLUSION

In this paper, we have introduced a new trustworthy artificial intelligence framework for assuring trusted
power transmission among the DERs. The proposed trustworthy AI framework can proactively predict
and explain the root cause of potential cyber-attacks in smart grid controllers while measuring the severity
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Figure 7: Risk quantification and explanation among the cyber threats in smart grid controller by Ward’s
minimum variance-based hierarchical clustering.

of such attacks. The developed trustworthy AI framework can select prominent features by deploying
Shapley value interpretation and train numerous regression-based ML/AI techniques by executing the mean
squared error loss function. Further, it can interpret the root cause and severity of the potential cyber-attacks
by employing Ward’s minimum variance-based hierarchical clustering. Experimental analysis shows the
efficacy of the proposed framework in terms of reliability, fairness, and explainability. That ensures the
trustworthiness of the proposed AI framework. In the future, we will investigate a neuro-symbolic AI
scheme for autonomous recovering system faults in a smart grid framework.
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