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ABSTRACT
We propose FQUEST, a fully automated fixed-sample-size procedure for computing confidence intervals
(CIs) for steady-state quantiles. The user provides a (simulation-generated) dataset of arbitrary size and
specifies the required quantile and nominal coverage probability of the anticipated CI. FQUEST incorporates
the simulation analysis methods of batching, standardized time series (STS), and sectioning. Preliminary
experimentation with the waiting-time process in a congested M/M/1 queueing system showed that FQUEST
performed well by delivering CIs with estimated coverage probability close to the nominal level, even in
unfavorable circumstances where the sample sizes were inadequate. In the latter cases and for very small
samples for steady-state quantile estimation, the close conformance of the CI coverage probability typically
came at the expense of loose CI precision.

1 INTRODUCTION
Steady-state simulations play a crucial role in the design and performance evaluation of complex production
and service systems (Law 2015). While the steady-state mean is a measure of central tendency, quantiles
of the marginal steady-state distribution are standard measures of risk (Glasserman 2004). The estimation
of a steady-state quantile is a much harder problem than the estimation of the mean: while both problems
are subject to effects from the potential presence of an initial transient, substantial serial correlation in
the simulation output process, and departures from normality, quantile estimation is adversely affected
by additional issues ranging from the inherent bias of point estimators (see Theorem 1 below) and the
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challenging nature of the marginal distribution such as nonexistence of a probability density function (p.d.f.),
discontinuities, and multimodalities with sharp peaks (Alexopoulos et al. 2018).

Recently, Alexopoulos et al. (2019) and Lolos et al. (2022, 2023) have developed Sequest and SQSTS,
respectively, two fully automated sequential methods for effective estimation of steady-state quantiles.
Unfortunately, users are often constrained by simulation models that are not integrated with the underlying
sequential method or by datasets that are limited due to budget constraints. The literature contains a few
fixed-sample-size procedures for estimating the steady-state mean; see Law (2015). The most efficient
automated method is N-Skart by Tafazzoli et al. (2011), which is based on batch means computed from
dynamically reconstructed batches with intervening “spacers.”

In this article, we introduce FQUEST, a fully automated fixed-sample-size procedure for computing
CIs for steady-state quantiles based on a single run. To the best of our knowledge, FQUEST is the first such
method that (i) uses the STS methodology; (ii) addresses the simulation initialization problem; and (iii)
warns the user when the dataset is insufficient and, subject to user’s approval, delivers a heuristic CI. We
substantiate our claim with a synopsis of a few methods from the literature. Methods based on regenerative
cycles (Iglehart 1976; Moore 1980; Seila 1982a; Seila 1982b) can address the simulation initialization
problem but do not lie within our scope because the number of cycles that can be completed within a finite
limit 𝑁 on the sample size may be insufficient so as to ensure good performance of the point estimators
and CIs for the quantile of interest. This challenge escalates for extreme quantiles (Seila 1982b).

Heidelberger and Lewis (1984) presented three procedures for estimating steady-state quantiles, the
first based on the spectral method and the last two based on empirical quantiles computed from groups of
nonoverlapping batches. The estimation of the 𝑝-quantile was reduced to the estimation of the 𝑝𝑣-quantile
of a sequence composed of the maxima of 𝑣 spaced observations, where 𝑣 ≈ ⌊ln(𝑞)/ln(𝑝)⌋, 𝑞 is a value
away from 0 or 1, and ⌊·⌋ is the floor function. The authors provided no recommendations for the spacing
between the observations or the number of groups. Although the experimentation was based on stationary
processes, the CIs generated by all methods exhibited substantial undercoverage for waiting-time processes
generated by single-server queues with traffic intensity 0.9 and large values of the associated probability 𝑝.

The indirect method of Bekki et al. (2010) also assumes that the initial transient phase has been
eliminated and computes point estimators and CIs for a set of selected quantiles. This fixed-sample-size
method estimates a given quantile by a four-term Cornish-Fisher expansion (Fisher and Cornish 1960)
based on the respective standard normal quantile and the first four sample moments of the time series.
The method has the advantage of estimating multiple quantiles simultaneously without storing or sorting
data. However, a sample moment computed from strongly correlated data often requires a large sample for
accurate estimation of the associated true moment, and this problem worsens for higher-order moments.
The impact of this problem is evident with use of sample sizes of 30 and 60 million to estimate job
cycle times in simple queueing systems with server utilizations below and above 90%, respectively. In
addition, this method may yield unreliable point estimates of quantiles if the marginal density exhibits
highly nonnormal behavior. This issue was partially rectified in Bekki et al. (2009) by combining the
Cornish-Fisher expansion with a Box-Cox transformation. Notably, the latter three methods do not address
the issues in items (ii) and (iii) above.

The proposed FQUEST method is designed to provide a CI for a selected steady-state quantile, with
a user-specified error probability, based on a single time series of an arbitrary fixed length. If the sample
size is deemed to be insufficient, FQUEST issues a warning and the user has the option to terminate the
procedure early without obtaining a CI. In any case, the user can utilize the output of FQUEST as the
first step for obtaining a conservative estimate of the sample size required to compute a CI with a certain
precision (absolute or relative). FQUEST draws ideas from three procedures: (i) SQSTS (Lolos et al. 2023);
(ii) Sequest (Alexopoulos et al. 2019), and (iii) N-Skart (Tafazzoli et al. 2011). Since the aforementioned
methods have different objectives, FQUEST differs from all three with regard to its scope, structure, and the
computation of the final CI. For instance, the Sequest and SQSTS are sequential methods, while N-Skart
addresses the computation of the steady-state mean and does not use the STS methodology.
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The core theoretical background for the CIs used in FQUEST is laid out in Alexopoulos et al.(2020,
2023) and in Lolos et al. (2023), who established asymptotic properties for a variety of variance-parameter
estimators for the sample-quantile process computed from nonoverlapping batches, showed that as the batch
size grows while the batch count remains constant the vector of the signed weighted areas of the STSs
computed from the nonoverlapping batches converges in law to a vector of independent and identically
distributed (i.i.d.) random variables (r.v.’s) from the normal distribution (see Theorem 2 below), and closed
various theoretical gaps related to STS-based variance-parameter estimation dating back to the 1980s.

Section 2 includes the necessary background information, the main assumptions, and the theorems on
which we build our fixed-sample-size method. Section 3 contains a description of the FQUEST algorithm.
In Section 4 we conduct a preliminary evaluation of the performance of FQUEST using the waiting-time
process in an M/M/1 system. In Section 5 we summarize our work and discuss future extensions.

2 FOUNDATIONS
For 𝑝 ∈ (0,1), the 𝑝-quantile of a r.v. 𝑋 with c.d.f. 𝐹 (𝑦) is defined as

𝑦𝑝 ≡ 𝐹−1(𝑝) ≡ inf{𝑦 : 𝐹 (𝑦) ≥ 𝑝}.

Our goal is the computation of a point estimate and a CI for 𝑦𝑝 based on a stationary sample path {𝑌𝑘 : 𝑘 ≥ 1},
which is a warmed-up version of the original sequence of simulation outputs. Let {𝑌𝑘 : 𝑘 = 1, . . . , 𝑛} denote
a time series of length 𝑛, and let 𝑌(1) ≤ · · · ≤ 𝑌(𝑛) be the respective order statistics. The classical point
estimator of 𝑦𝑝 is the empirical 𝑝-quantile �̃�𝑝 (𝑛) ≡ 𝑌( ⌈𝑛𝑝⌉ ) , where ⌈·⌉ denotes the ceiling function. For
each 𝑥 ∈ R and 𝑘 ≥ 1, we define the indicator r.v. as 𝐼𝑘 (𝑥) ≡ 1 if 𝑌𝑘 ≤ 𝑥, and 𝐼𝑘 (𝑥) ≡ 0 otherwise; hence
E[𝐼𝑘 (𝑦𝑝)] = 𝑝. Assuming 𝑛 ≥ 1, we let 𝐼 (𝑦𝑝, 𝑛) ≡ 𝑛−1 ∑𝑛

𝑘=1 𝐼𝑘 (𝑦𝑝); and for each ℓ ∈ Z, we let 𝜌𝐼 (ℓ; 𝑦𝑝) ≡
Corr[𝐼𝑘 (𝑦𝑝), 𝐼𝑘+ℓ (𝑦𝑝)] denote the autocorrelation function of the indicator process {𝐼𝑘 (𝑦𝑝) : 𝑘 ≥ 1} at
lag ℓ. Below we also use the following notation: 𝑍 denotes an r.v. from 𝑁 (0,1), the standard normal
distribution; 𝒁𝜈 ≡

[
𝑍1, . . . , 𝑍𝜈

]T denotes a 𝜈×1 vector whose components are i.i.d. 𝑁 (0,1); 𝜒2
𝜈 denotes a

chi-squared r.v. with 𝜈 degrees of freedom (d.f.); 𝑡𝜈 denotes an r.v. having Student’s 𝑡 distribution with 𝜈

d.f.; 𝑡𝛿,𝜈 denotes the 𝛿-quantile of 𝑡𝜈; and 𝐷 ≡ 𝐷 [0,1] denotes the space of real-valued functions on [0,1]
that are right continuous with left-hand limits.

The assumptions and key results that are outlined below form the skeleton for variance cancellation
methods used to develop 100(1−𝛼)% CIs for 𝑦𝑝. The basic (unadjusted) CIs for 𝑦𝑝 have form

�̃�𝑝 (𝑛) ± 𝑡1−𝛼/2,𝜈�̂�𝑝/
√
𝑛,

where �̂�2
𝑝 is an estimator of the variance parameter 𝜎2

𝑝 ≡ lim𝑛→∞ 𝑛Var
[
�̃�𝑝 (𝑛)

]
of the quantile process

{�̃�𝑝 (𝑛) : 𝑛 ≥ 1}, and the d.f. 𝜈 depends on the underlying quantile-estimation method.

2.1 Assumptions
In this subsection we present the main assumptions for the processes {𝑌𝑘 : 𝑘 ≥ 1} and {𝐼𝑘 (𝑦𝑝) : 𝑘 ≥ 1}.
Geometric-Moment Contraction (GMC) Condition (Wu 2005). The process {𝑌𝑘 : 𝑘 ≥ 1} is defined by
a function 𝜉 (·) of a sequence of i.i.d. r.v.’s {𝜀 𝑗 : 𝑗 ∈ Z} such that 𝑌𝑘 = 𝜉 (. . . , 𝜀𝑘−1, 𝜀𝑘) for 𝑘 ≥ 0. Moreover,
there exist constants 𝜓 > 0, 𝐶∗ > 0, and 𝑟 ∈ (0,1) such that for two independent sequences {𝜀 𝑗 : 𝑗 ∈ Z} and
{𝜀′

𝑗
: 𝑗 ∈ Z} each consisting of i.i.d. r.v.’s with the same distribution as 𝜀0, we have

E[|𝜉 (. . . , 𝜀−1, 𝜀0, 𝜀1, . . . , 𝜀𝑘) − 𝜉 (. . . , 𝜀′−1, 𝜀
′
0, 𝜀1, . . . , 𝜀𝑘) |𝜓] ≤ 𝐶∗𝑟𝑘 , for 𝑘 ≥ 0.

The GMC condition holds for a plethora of random processes including the autoregressive–moving
average time series, a rich set of linear and nonlinear processes with short-range dependence, and a broad
class of Markov chains. Alexopoulos et al. (2019, 2023) provide an extensive list of these processes

459



Lolos, Alexopoulos, Goldsman, Dingeç, Mokashi, and Wilson

and empirical methods for verifying the GMC assumption. Recently, Dingeç et al. (2022) established
the validity of the GMC condition for the customer waiting-time process (prior to service) in an M/M/1
queueing system and a G/G/1 system with non-heavy-tailed service-time distributions.

Density-Regularity (DR) Condition. The p.d.f. 𝑓 (·) ≡ 𝐹′(·), exists, and is bounded on R and continuous
almost everywhere (a.e.) on R. Moreover, 𝑓 (𝑦𝑝) > 0, and the derivative 𝑓 ′(𝑦𝑝) exists.

Short-Range Dependence (SRD) of the Indicator Process. The indicator process {𝐼𝑘 (𝑦𝑝) : 𝑘 ≥ 1} has
the SRD property so that

0 <
∑︁
ℓ∈Z

𝜌𝐼 (ℓ; 𝑦𝑝) ≤
∑︁
ℓ∈Z
|𝜌𝐼 (ℓ; 𝑦𝑝) | <∞.

Thus the variance parameters for the processes {𝐼 (𝑦𝑝, 𝑛)} and {�̃�𝑝 (𝑛)} obey

𝜎2
𝐼 (𝑦𝑝 ) ≡ lim

𝑛→∞
𝑛Var

[
𝐼 (𝑦𝑝, 𝑛)

]
= 𝑝(1− 𝑝)

∑︁
ℓ∈Z

𝜌𝐼 (ℓ; 𝑦𝑝) ∈ (0,∞),

𝜎2
𝑝 = lim

𝑛→∞
𝑛Var

[
�̃�𝑝 (𝑛)

]
=

𝜎2
𝐼 (𝑦𝑝 )

𝑓 2(𝑦𝑝)
∈ (0,∞).


Functional Central Limit Theorem (FCLT) for the Indicator Process. The sequence of random functions
{I𝑛 : 𝑛 ≥ 1} in 𝐷 defined by

I𝑛 (𝑡; 𝑦𝑝) ≡
⌊𝑛𝑡⌋

𝜎𝐼 (𝑦𝑝 )𝑛
1/2 [𝐼 (𝑦𝑝, ⌊𝑛𝑡⌋) − 𝑝], for 𝑡 ∈ [0,1] and 𝑛 ≥ 1,

where ⌊·⌋ denotes the floor function, satisfies the FCLT I𝑛 =⇒
𝑛→∞ W in 𝐷 with the appropriate metric.

Herein W denotes standard Brownian motion on [0,1] and =⇒
𝑛→∞ denotes weak convergence as 𝑛→∞

(Billingsley 1999, pp. 1–6 and Theorem 2.1). Below, the argument 𝑦𝑝 is omitted from the notation for
random functions unless it is needed to avoid ambiguity.

2.2 Asymptotic Properties Based on Nonoverlapping Batches
The FQUEST procedure relies on nonoverlapping batches. Given a fixed batch count 𝑏 ≥ 2, for 𝑗 = 1, . . . , 𝑏,
the 𝑗 th nonoverlapping batch of size 𝑚 ≥ 1 consists of the subsequence {𝑌( 𝑗−1)𝑚+1, . . . ,𝑌 𝑗𝑚}, where
we assume 𝑛 = 𝑏𝑚. The batch mean of the associated indicator r.v.’s from the 𝑗 th batch is 𝐼 𝑗 (𝑦𝑝,𝑚) ≡
𝑚−1 ∑𝑚

ℓ=1 𝐼 ( 𝑗−1)𝑚+ℓ (𝑦𝑝). Similarly to the full-sample case, we define the order statistics 𝑌 𝑗 , (1) ≤ · · · ≤ 𝑌 𝑗 , (𝑚)
corresponding to the 𝑗 th batch. Then the 𝑗 th batched quantile estimator (BQE) of 𝑦𝑝 is �̂�𝑝 ( 𝑗 ,𝑚) ≡𝑌 𝑗 , ( ⌈𝑚𝑝⌉ ) .
Theorem 1 (Alexopoulos et al. 2019) If the output process {𝑌𝑘 : 𝑘 ≥ 1} satisfies the GMC and DR
conditions, and the indicator process {𝐼𝑘 (𝑦𝑝) : 𝑘 ≥ 1} satisfies the SRD and FCLT conditions, then we
obtain the Bahadur representation

�̂�𝑝 ( 𝑗 ,𝑚) = 𝑦𝑝 −
𝐼 𝑗 (𝑦𝑝,𝑚) − 𝑝

𝑓 (𝑦𝑝)
+𝑂a.s.

[
(log𝑚)3/2

𝑚3/4

]
as 𝑚→∞

for 𝑗 = 1, . . . , 𝑏, where the big-𝑂a.s. notation for the remainder𝑄 𝑗 ,𝑚 ≡ �̂�𝑝 ( 𝑗 ,𝑚) − 𝑦𝑝 +
[
𝐼 𝑗 (𝑦𝑝,𝑚) − 𝑝

]
/ 𝑓 (𝑦𝑝)

means that there exist associated r.v.’s U 𝑗 and R 𝑗 that are bounded almost surely (a.s.) and satisfy
|𝑄 𝑗 ,𝑚 | ≤ U 𝑗

(log𝑚)3/2
𝑚3/4 for 𝑚 ≥R 𝑗 and 𝑗 = 1, . . . , 𝑏 a.s. Further,

𝑚1/2 [�̂�𝑝 (1,𝑚) − 𝑦𝑝, . . . , �̂�𝑝 (𝑏,𝑚) − 𝑦𝑝]T
=⇒

𝑚→∞ 𝜎𝑝𝒁𝑏 (1)

in R𝑏 with the standard Euclidean metric.
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2.3 Confidence Intervals for Quantiles
The CIs employed by FQUEST are computed from STSs based on nonoverlapping batches, the BQEs
�̂�𝑝 ( 𝑗 ,𝑚), and the full-sample empirical quantile �̃�𝑝 (𝑛).

For 𝑗 = 1, . . . , 𝑏, we define �̂�𝑝 ( 𝑗 , ⌊𝑚𝑡⌋) as the empirical 𝑝-quantile (i.e., the ⌈𝑝⌊𝑚𝑡⌋⌉-th order statistic)
computed from the partial sample

{
𝑌( 𝑗−1)𝑚+𝑘 : 𝑘 = 1, . . . , ⌊𝑚𝑡⌋

}
, and the STS-based quantile-estimation

process formed from batch 𝑗 as

𝑇𝑗 ,𝑚(𝑡) ≡
⌊𝑚𝑡⌋
𝑚1/2

[
�̂�𝑝 ( 𝑗 ,𝑚) − �̂�𝑝 ( 𝑗 , ⌊𝑚𝑡⌋)

]
, for 𝑡 ∈ [0,1] and 𝑚 ≥ 1.

Under the assumptions of Theorem 1, Theorem 2 of Alexopoulos et al. (2023) implies[
𝑚1/2( �̂�𝑝 ( 𝑗 ,𝑚) − 𝑦𝑝),𝑇𝑗 ,𝑚

]
=⇒

𝑚→∞ 𝜎𝑝

[
W (1),B

]
, for 𝑗 = 1, . . . , 𝑏,

where B(𝑡) ≡ W (𝑡) − 𝑡W (1) for 𝑡 ∈ [0,1] is a standard Brownian bridge process that is independent of
W (1). We define the signed area computed from batch 𝑗 as

𝐴𝑝 (𝑤; 𝑗 ,𝑚) ≡ 𝑚−1
𝑚∑︁
𝑘=1

𝑤(𝑘/𝑚)𝑇𝑗 ,𝑚(𝑘/𝑚).

where 𝑤(·) is a deterministic weight function that is bounded and continuous a.e. on [0,1] (so that 𝑤(𝑡)B(𝑡)
is Riemann integrable on [0,1]); and

𝑍 (𝑤) ≡
∫ 1

0
𝑤(𝑡)B(𝑡) 𝑑𝑡 ∼ 𝑁 (0,1). (2)

There are many weight functions that satisfy condition (2), including the constant 𝑤0(·) ≡
√

12.
Preliminary experimentation in Lolos et al. (2023) did not reveal any compelling reasons for replacing the
constant weight function 𝑤0(·) with other weight functions from the literature; see Lolos et al. (2022).

The batched STS-area estimator is the average of the squared signed areas,

A𝑝 (𝑤;𝑏,𝑚) ≡ 𝑏−1
𝑏∑︁
𝑗=1

𝐴2
𝑝 (𝑤; 𝑗 ,𝑚).

Theorems 1 (above) and 2 (below) constitute the basis for the statistical tests in FQUEST.
Theorem 2 (Lolos et al. 2023) If {𝑌𝑘 : 𝑘 ≥ 1} satisfies the assumptions of Theorem 1, then as 𝑚→∞, the
𝑏×1 vector of the signed areas

[
𝐴𝑝 (𝑤;1,𝑚), . . . , 𝐴𝑝 (𝑤;𝑏,𝑚)

]T converges weakly to the same distributional
limit as the (scaled) vector of BQEs in Theorem 1:[

𝐴𝑝 (𝑤;1,𝑚), . . . , 𝐴𝑝 (𝑤;𝑏,𝑚)
]T

=⇒
𝑚→∞ 𝜎𝑝𝒁𝑏 . (3)

Further,
A𝑝 (𝑤;𝑏,𝑚) =⇒

𝑚→∞ 𝜎2
𝑝𝜒

2
𝑏/𝑏. (4)

We also define the nonoverlapping batched quantile (NBQ) variance-parameter estimator

Ñ𝑝 (𝑏,𝑚) ≡ (𝑏−1)−1𝑚

𝑏∑︁
𝑗=1

[
�̂�𝑝 ( 𝑗 ,𝑚) − �̃�𝑝 (𝑛)

]2
, (5)

and the combined variance estimator

Ṽ𝑝 (𝑤;𝑏,𝑚) ≡
𝑏A𝑝 (𝑤;𝑏,𝑚) + (𝑏−1)Ñ𝑝 (𝑏,𝑚)

2𝑏−1
. (6)
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Theorem 3 (Alexopoulos et al. 2023) If {𝑌𝑘 : 𝑘 ≥ 1} satisfies the assumptions of Theorem 1, then

𝑛1/2 [�̃�𝑝 (𝑛) − 𝑦𝑝] =⇒
𝑚→∞ 𝜎𝑝𝑍, (7)

Ñ𝑝 (𝑏,𝑚) =⇒
𝑚→∞ 𝜎2

𝑝𝜒
2
𝑏−1/(𝑏−1), (8)

Ṽ𝑝 (𝑤;𝑏,𝑚) =⇒
𝑚→∞ 𝜎2

𝑝𝜒
2
2𝑏−1

/
(2𝑏−1), (9)

the limiting r.v.’s in Equations (4), (7), and (8) are independent, and the limiting r.v.’s in Equations (7) and
(9) are also independent. Further, for fixed 𝑏 ≥ 2,

�̃�𝑝 (𝑛) ± 𝑡1−𝛼/2,𝑏
(
A𝑝 (𝑤;𝑏,𝑚)/𝑛

)1/2
,

�̃�𝑝 (𝑛) ± 𝑡1−𝛼/2,𝑏−1
(
Ñ𝑝 (𝑏,𝑚)/𝑛

)1/2
, and

�̃�𝑝 (𝑛) ± 𝑡1−𝛼/2,2𝑏−1
(
Ṽ𝑝 (𝑤;𝑏,𝑚)/𝑛

)1/2 (10)

are asymptotically valid 100(1−𝛼)% CIs for 𝑦𝑝 as 𝑚→∞ (their coverage probabilities converge to the
nominal value 1−𝛼 as 𝑚→∞).

Equations (4), (8), and (9) illustrate the potential benefits of the combined estimator Ṽ𝑝 (𝑤;𝑏,𝑚) of
𝜎2
𝑝: since the asymptotic distribution of the latter estimator has nearly twice the d.f. than the limiting

distributions of its components, the CI in Equation (10) will typically be less variable (by a factor of about√
2) than the CIs based solely on either Ñ𝑝 (𝑏,𝑚) or A𝑝 (𝑤;𝑏,𝑚).

3 THE FQUEST ALGORITHM
In this section we present the proposed fixed-sample-size procedure for estimating a steady-state quantile.
The formal algorithmic statement of FQUEST is given in Figure 1 below. FQUEST draws elements from
other procedures with different goals including the sequential methods Sequest (Alexopoulos et al. 2019)
and SQSTS (Lolos et al. 2023) for estimating steady-state quantiles, and the fixed-sample-size N-Skart
method of Tafazzoli et al. (2011) for estimating the steady-state mean.

In Step [0], the simulation model or user provides a sample path {𝑌1, . . . ,𝑌𝑁 } of fixed size 𝑁 , the
probability associated with the quantile 𝑝, and the nominal error probability 𝛼 ∈ (0,1) for the CI for 𝑦𝑝.
Step [1] initializes the experimental parameters. The initial number of batches is set at 𝑏 = 50 to enhance
the power of von Neumann’s randomness test in Step [3], and the initial batch size is set at 𝑚 = 500.
We also define the array of batch counts 𝒔 = [32,24,16,10] for Steps [5]–[9]. Further, we initialize the
counters 𝑙 = 1 and 𝑣 = 1, and set flag = false. At this point the algorithm sets the weight function that
will be used for the calculation of the signed areas and the STS variance-parameter estimator. The level of
significance for the statistical test in Step [3] is set according to the sequence {𝛽𝜓(ℓ) : ℓ = 1,2, . . .}, where
𝛽 = 0.3, 𝜓(ℓ) ≡ exp

[
−𝜂(ℓ−1) 𝜃

]
, 𝜂 = 0.2, and 𝜃 = 2.3. For the statistical tests in Steps [6]–[9] we fix the

significance level at 𝛽. The values of the parameters 𝛽, 𝜂, and 𝜃 were chosen after careful experimentation
to control the growth of the batch size and to avoid excessive truncation during Step [5] which can be
detrimental given the sample-size limitation. Notice that on a potential fourth iteration within Step [3] one
has 𝛽𝜓(4) = 0.025, which makes passing the test easier.

Since the sample size 𝑁 is fixed, it is possible that it is less than the initial assignment 𝑏𝑚 = 25,000.
In this case, Step [2] sets 𝑚 = ⌊𝑁/𝑏⌋, which is the largest allowable value for the current batch count 𝑏.
Step [3] consists of a loop that tests for the randomness of the signed areas {𝐴𝑝 (𝑤; 𝑗 ,𝑚) : 𝑗 = 1, . . . , 𝑏}
computed from the first 𝑏𝑚 observations (with the trailing 𝑁 −𝑏𝑚 observations ignored, but not discarded)
using a two-sided test based on von Neumann’s ratio (von Neumann 1941, Young 1941) with progressively
decreasing significance level 𝛽𝜓(ℓ) on iteration ℓ. If the randomness test fails, we increase the batch size
to

[[
𝑚
√

2
]]

, where [[·]] denotes rounding to the nearest integer. If the updated sample size exceeds 𝑁 , we
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set 𝑚 = ⌊𝑁/𝑏⌋, which is the largest allowable value given the current batch count 𝑏. If the randomness test
fails with the largest allowable batch size ⌊𝑁/𝑏⌋, FQUEST exits Step [3] and moves to Step [4], where it
issues a warning to the user regarding the insufficiency of the sample. Then it seeks permission to continue
with the construction of a CI.

If the randomness test in Step [3] is passed or the user decides to proceed despite the failure of the
randomness test, Step [5] removes the first batch, sets the new sample size to 𝑁∗ = 𝑁 −𝑚, and reindexes the
truncated dataset. Assuming the successful completion of Step [3], the (approximate) independence between
𝐴𝑝 (𝑤;1,𝑚) and the remaining signed areas {𝐴𝑝 (𝑤; 𝑗 ,𝑚) : 𝑗 = 2, . . . , 𝑏} indicates that any initialization
bias due to warmup effects is mostly confined to the first batch. Step [5] restarts with 𝑏 = 𝑠[1] = 32 and
𝑚 = ⌊𝑁∗/𝑏⌋. We chose the entries of the vector 𝒔 = [32,24,16,10] after extensive experimentation. Notice
that 32 batches typically suffice for effective estimation of the variance parameter 𝜎2

𝑝, while fewer than 10
batches may result in unreliable CIs.

In Steps [6]–[9] we conduct the two-sided randomness test of von Neumann (1941) and the one-sided
test of Shapiro and Wilk (1965) for univariate normality to assess whether the signed areas {𝐴𝑝 (𝑤; 𝑗 ,𝑚) :
𝑗 = 1, . . . , 𝑏} and the BQEs {�̂�𝑝 ( 𝑗 ,𝑚) : 𝑗 = 1, . . . , 𝑏} satisfy the asymptotic properties in Equations (3) and
(1), respectively. Each of the Steps [6]–[9] has a very similar structure. First we compute the signed areas
{𝐴𝑝 (𝑤; 𝑗 ,𝑚) : 𝑗 = 1, . . . , 𝑏} or the BQEs {�̂�𝑝 ( 𝑗 ,𝑚) : 𝑗 = 1, . . . , 𝑏} and conduct the pertinent statistical test
using the fixed significance level of 𝛽 = 0.3. The significance level is kept constant and high to avoid
passing a test with an inadequately small batch size leading to unreliable CIs. If the test is passed, FQUEST
proceeds to the next step; otherwise, the batch count decreases to the next element of the array 𝒔. Since 𝒔
contains only four values, we can have up to four failed attempts to pass any of the statistical tests in Steps
[6]–[9]. If at any point a statistical test fails with 𝑏 = 10, then FQUEST advances to Step [10].

In Step [10], if all the statistical tests have been passed, FQUEST computes the combined variance
estimator Ṽ𝑝 (𝑤;𝑏,𝑚) and returns the CI in Equation (10). Otherwise, it issues a warning mentioning that
some of the statistical tests failed (with the significance level of 𝛽 = 0.3) and asks the user for permission
to continue with the calculation of a point estimate and a heuristic CI for 𝑦𝑝.

Figure 1: Algorithm FQUEST

[0] User-Initialization: Provide a sample of fixed size 𝑁 , the probability 𝑝 corresponding to the quantile,
and the error probability 𝛼 ∈ (0,1).

[1] Parameter-Initialization: Set the number of batches 𝑏 = 50, batch size 𝑚 = 500, ℓ = 1, 𝑣 = 1, and
flag = false. Also set 𝛽 = 0.30 and 𝒔 = [32,24,16,10]. Let 𝑤(𝑡), 𝑡 ∈ [0,1], be the weight
function and define the initial significance level for the first hypothesis test in Step [3] as 𝛽𝜓(ℓ) ≡
exp

[
−𝜂(ℓ−1) 𝜃

]
, ℓ = 1,2, . . ., with 𝜂 = 0.2 and 𝜃 = 2.3.

[2] If 𝑁 < 𝑏𝑚: Set 𝑚← ⌊𝑁/𝑏⌋;
[3] Until von Neumann’s test fails to reject randomness or flag = true:

•Compute the signed areas {𝐴𝑝 (𝑤; 𝑗 ,𝑚) : 𝑗 = 1, . . . , 𝑏} from the initial 𝑏𝑚 observations;
•Assess the randomness of {𝐴𝑝 (𝑤; 𝑗 ,𝑚) : 𝑗 = 1, . . . , 𝑏} using von Neumann’s two-sided random-
ness test with significance level 𝛽𝜓(ℓ);

•Set ℓ← ℓ +1 and 𝑚←
[[
𝑚
√

2
]]

;
•If 𝑁 < 𝑏𝑚 and 𝑚 ≠ ⌊𝑁/𝑏⌋: Set 𝑚← ⌊𝑁/𝑏⌋; Else Set flag← true;

[4] If the randomness test in Step [3] failed, then issue a warning that the randomness test failed due to
insufficient size of the dataset and seek permission from the user to continue with the construction
of a CI. If the user declines, then exit without delivering a CI.

[5] Remove the first batch, reindex the truncated dataset, and set 𝑁∗ equal to the size of the truncated
sample. Set the number of batches 𝑏← 𝑠[𝑣] and calculate the batch size as 𝑚← ⌊𝑁∗/𝑏⌋. Ignore
the initial 𝑁∗− 𝑏𝑚 observations.
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[6] Until von Neumann’s test fails to reject randomness or 𝑣 = 5 (a test has failed with 𝑏 = 10):
•Compute the signed areas {𝐴𝑝 (𝑤; 𝑗 ,𝑚) : 𝑗 = 1, . . . , 𝑏} and assess their randomness using von
Neumann’s two-sided randomness test with significance level 𝛽;

•Set 𝑣← 𝑣 +1. Update 𝑏← 𝑠[𝑣] and 𝑚← ⌊𝑁∗/𝑏⌋. Ignore the initial 𝑁∗− 𝑏𝑚 observations.
[7] Until the Shapiro-Wilk test fails to reject normality or 𝑣 = 5 (a test has failed with 𝑏 = 10):

•Compute the signed areas {𝐴𝑝 (𝑤; 𝑗 ,𝑚) : 𝑗 = 1, . . . , 𝑏} and assess their univariate normality
using the Shapiro–Wilk test with significance level 𝛽;

•Set 𝑣← 𝑣 +1. Update 𝑏← 𝑠[ 𝑗] and 𝑚← ⌊𝑁∗/𝑏⌋. Ignore the initial 𝑁∗− 𝑏𝑚 observations.
[8] Until von Neumann’s test fails to reject randomness or 𝑣 = 5 (a test has failed with 𝑏 = 10):

•Compute the BQEs {�̂�𝑝 ( 𝑗 ,𝑚) : 𝑗 = 1, . . . , 𝑏} and assess their randomness using von Neumann’s
two-sided randomness test with significance level 𝛽;

•Set 𝑣← 𝑣 +1. Update 𝑏← 𝑠[𝑣] and 𝑚← ⌊𝑁∗/𝑏⌋. Ignore the initial 𝑁∗− 𝑏𝑚 observations.
[9] Until the Shapiro–Wilk test fails to reject normality or 𝑣 = 5 (a test has failed with 𝑏 = 10):

•Compute the BQEs {�̂�𝑝 ( 𝑗 ,𝑚) : 𝑗 = 1, . . . , 𝑏} and assess their univariate normality using the
Shapiro–Wilk test with significance level 𝛽;

•Set 𝑣← 𝑣 +1. Update 𝑏← 𝑠[𝑣] and 𝑚← ⌊𝑁∗/𝑏⌋. Ignore the initial 𝑁∗− 𝑏𝑚 observations.
[10] Set 𝑛∗← 𝑏𝑚.

If 𝑣 < 5 (no statistical test in Steps [6]–[9] failed), then
•Compute the combined variance estimator Ṽ𝑝 (𝑤;𝑏,𝑚) in Equation (6), deliver the respective
100(1−𝛼)% CI �̃�𝑝 (𝑛∗) ± 𝑡1−𝛼/2,2𝑏−1

(
Ṽ𝑝 (𝑤;𝑏,𝑚)/𝑛∗

)1/2, and exit;
Else

• Issue a warning that a statistical test failed due to insufficient size of the dataset and seek
permission from the user to continue with the construction of a CI. If the user declines, then
exit without delivering a CI;

•Compute the sample mean and sample variance of the BQEs

�̂�𝑝 (𝑏,𝑚) ≡
1
𝑏

𝑏∑︁
𝑗=1

�̂�𝑝 ( 𝑗 ,𝑚) and 𝑆2
𝑝 (𝑏,𝑚) ≡

1
𝑏−1

𝑏∑︁
𝑗=1

[
�̂�𝑝 ( 𝑗 ,𝑚) − �̂�𝑝 (𝑏,𝑚)

]2
,

the quantity

ℎ𝛼,𝑏,𝑚 = max
{
𝑡1−𝛼/2,𝑏

(
A𝑝 (𝑤;𝑏,𝑚)/𝑛∗

)1/2
, 𝑡1−𝛼/2,𝑏−1

(
Ñ𝑝 (𝑏,𝑚)/𝑛∗

)1/2
}
,

and construct the following CIs for 𝑦𝑝 with half-length ℎ𝛼,𝑏,𝑚:

�̃�𝑝 (𝑛∗) ± ℎ𝛼,𝑏,𝑚 and �̂�𝑝 (𝑏,𝑚) ± ℎ𝛼,𝑏,𝑚. (11)

•Calculate the sample skewness of the BQEs

𝐵�̂�𝑝 (𝑏,𝑚) ≡
𝑏

(𝑏−1) (𝑏−2)

𝑏∑︁
𝑗=1

[
�̂�𝑝 ( 𝑗 ,𝑚) − �̂�𝑝 (𝑏,𝑚)

𝑆𝑝 (𝑏,𝑚)

]3
,

compute the skewness-adjustment parameter 𝛾 ≡ 𝐵�̂�𝑝 (𝑏,𝑚)/
[
6
√
𝑏
]
, and define the skewness-

adjustment function 𝐺 (𝜁) ≡ 𝜁 if |𝛾 | ≤ 0.001 or [1+6𝛾 (𝜁 −𝛾) ]
1/3−1

2𝛾 if |𝛾 | > 0.001. Estimate the
sample lag-1 autocorrelation of the BQEs by

𝜙 �̂�𝑝 (𝑏,𝑚) ≡
1

𝑏−1

𝑏−1∑︁
𝑗=1

[ �̂�𝑝 ( 𝑗 ,𝑚) − �̂�𝑝 (𝑏,𝑚)] [ �̂�𝑝 ( 𝑗 +1,𝑚) − �̂�𝑝 (𝑏,𝑚)]
𝑆2
𝑝 (𝑏,𝑚)

,
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and compute the correlation-adjustment factor from

𝜑 = max

(
1+𝜙 �̂�𝑝 (𝑏,𝑚)
1−𝜙 �̂�𝑝 (𝑏,𝑚)

,1

)
.

Set
𝐺1 ≡ 𝐺 (𝑡1−𝛼/2,𝑏−1)

√︃
𝜑𝑆2

𝑝 (𝑏,𝑚)/𝑏, and 𝐺2 ≡ 𝐺 (𝑡𝛼/2,𝑏−1)
√︃
𝜑𝑆2

𝑝 (𝑏,𝑚)/𝑏,
where

𝑆2
𝑝 (𝑏,𝑚) ≡

1
𝑏−1

𝑏∑︁
𝑗=1

[
�̂�𝑝 ( 𝑗 ,𝑚) − �̃�𝑝 (𝑏,𝑚)

]2

and construct the (asymmetric) correlation- and skewness-adjusted CI (Willink 2005; Alex-
opoulos et al. 2019)[

min
(
�̃�𝑝 (𝑛∗) −𝐺1, �̃�𝑝 (𝑛∗) −𝐺2

)
,max

(
�̃�𝑝 (𝑛∗) −𝐺1, �̃�𝑝 (𝑛∗) −𝐺2

) ]
. (12)

•Deliver the full-sample point estimator �̃�𝑝 (𝑛∗) and the smallest interval containing the CIs in
Equations (11) and (12), and exit.

End If

4 EXPERIMENTAL RESULTS
This section contains a precursory empirical evaluation of FQUEST using the waiting-time sequence in an
M/M/1 queueing system with arrival rate 𝜆 = 0.8, service rate 𝜔 = 1 (traffic intensity 𝜌 = 0.8), and FIFO
service discipline. To assess the ability of the FQUEST method to deal with excessive initialization bias,
we initialized the system with one entity beginning service and 112 entities in queue. The steady-state
probability of this initial state is (1− 𝜌)𝜌113 ≈ 2.240×10−12, implying a high probability for a prolonged
transient phase. As we mentioned earlier, we used only the constant weight function 𝑤0(·).

Table 1 contains experimental results for FQUEST using five different sample sizes 𝑁 ∈S ≡ {50,000,
100,000,200,000,500,000,1,000,000} and a nominal 95% (𝛼 = 0.05) CI coverage probability with all
estimates being averages computed from 1,000 independent trials. Specifically, column 1 lists selected
values of 𝑝 and column 2 contains the exact value of the associated quantile 𝑦𝑝. Column 3 lists the
fixed-sample size 𝑁 . Columns 4 and 5 contain the average value of the point estimate �̃�𝑝 (𝑛∗) and the
average value of the absolute error | �̃�𝑝 (𝑛∗) − 𝑦𝑝 |, respectively. Columns 6–8 contain the average value of
the half-length (HL) of the 95% CI for 𝑦𝑝, the average value of the CI’s relative precision expressed as a
percentage, and the estimated coverage of the CI as a percentage, respectively. We report the average CI
half-length and average relative precision despite the fact that the final CI delivered in Step [10] of FQUEST
may be asymmetric for small samples (when a statistical test in Steps [6]–[9] fails with 𝑏 = 10 batches).
The standard errors of the estimated coverage probabilities are approximately

√︁
(0.95×0.05)/1000 = 0.007.

Columns 9 and 10 display the average final batch size (𝑚) and average final batch count (𝑏), respectively,
after the truncation of the initial subset of observations in Step [5]. Finally, Columns 11 and 12 list the
standard deviation of the CI HL and the average number of truncated observations (𝑁 −𝑛∗), respectively.

The experimental results are displayed in Table 1. FQUEST managed to provide satisfactory estimated
CI coverage probabilities, with the worst one being 93.3% for 𝑝 = 0.995 and 𝑁 = 50,000. There were a few
cases with noticeable CI overcoverage for 𝑝 ≤ 0.7. Although the estimated CI relative precision was a bit
excessive for 𝑝 ≥ 0.95 and 𝑁 ≤ 100,000, it dropped as the provided sample size increased. The value of
FQUEST is evident from its ability to provide usable CIs for fixed sample sizes 𝑁 that are smaller than those
required by state-of-the-art sequential procedures. For example, the sequential SQSTS method of Lolos
et al. (2023) required an average sample size near 4 million to compute a 95% CI for the 0.99-quantile
of this waiting-time process (see Table 5.10 in Lolos 2023) under no CI precision requirement. Overall,
FQUEST performed well in this experimental setting.
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5 CONCLUSIONS
In this article, we presented FQUEST, a fully automated fixed-sample-size procedure for computing point
estimators and CIs for steady-state quantiles. Initial experimentation based on the process generated by
successive customer waiting times in a heavily initialized M/M/1 system revealed that FQUEST provided
CI coverage probabilities very close to the nominal level. This feat is remarkable, considering that the
state-of-the-art sequential methods Sequest and SQSTS typically required substantial sample sizes for the
same processes under no CI precision requirement (Alexopoulos et al. 2019; Lolos et al. 2023). Future work
includes: (i) fixed-sample-size methods for simultaneous estimation of multiple quantiles; (ii) expansion of
the experimental test bed with additional processes; and (iii) identification of alternative weight functions
for computing STS area variance estimators.
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