
Proceedings of the 2022 Winter Simulation Conference
B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and
P. Lendermann, eds.

STOCHASTIC ROOT FINDING VIA BAYES DECISIONS

Chuljin Park
Donghyun Kim

Department of Industrial Engineering
Hanyang University

Wangsimni-ro 222 Seongdong-gu
Seoul 04763, SOUTH KOREA

Seong-Hee Kim

H. Milton Stewart School of
Industrial and Systems Engineering

Georgia Institute of Technology
Atlanta, GA 30332, USA

ABSTRACT

We consider the root finding problem of a one-dimensional function when the function can be only estimated
by noisy responses and a unique root exists between given lower and upper bounds. A new approach,
namely the trisection algorithm with Bayes decisions (TAB), is proposed. We investigate the theoretical
properties of TAB and empirically compare the proposed algorithm with several existing algorithms.

1 PROBLEM DESCRIPTION

In this study, we consider a one-dimensional root finding problem where the root is unique and located
between given lower and upper bounds. Specifically, we assume that there exists a stochastic black-box
simulation model (as known as an oracle) which returns an observation at each location x. Let Yj(x) be the
jth observation at location x such that Yj(x) = g(x)+ ε j(x) where g(x) is a real-valued unknown function
and ε j(x) is a zero-mean noise component whose distribution relies on the location x. Let a and b be the
lower and upper bounds of the root, respectively. Throughout the study, we have the following assumption:
For any j = 1,2, . . . and for any x ∈ [a,b] and x′ ∈ [a,b] such that x 6= x′, (i) ε j(x)

iid∼ N(0,1/γ(x)), and
(ii) ε j(x) and ε j(x′) are independent. Normally distributed observations are justified by the Central Limit
Theorem when observations are either within-replication averages or batch means (Law and Kelton 2000).
Let x∗ be the real-valued root such that g(x∗) = 0. To simplify the problem, we further assume that a
and b are given, g(x) > 0 for any a < x < x∗, and g(x) < 0 for any b > x > x∗. The same assumptions
are employed in several past studies including Weaber (2013), Rodriguez and Ludkovski (2020a), and
Rodriguez and Ludkovski (2020b). See Dunkel and Weber (2010) and Rodriguez and Ludkovski (2020a)
for practical examples of this problem.

2 SOLUTION APPROACH

We propose a new approach, namely the trisection algorithm with Bayes decisions (TAB). In TAB, g(x)
for any x ∈ [a,b] is considered as a random variable whose prior and posterior distributions are assumed
to follow normal distributions under the Bayesian settings. Let k be the iteration counter of the algorithm
and Ik be the promising interval that is supposed to include the root at iteration k. Then, the basic structure
of TAB is provided as follows.

(Step 1) Set the iteration counter k = 1 and the promising interval I1 = [a,b].
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(Step 3) Obtain simulation observations among x1
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k , and x4

k , and update posterior distributions
of g(xi

k) for i = 1,2,3,4 if needed.
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(Step 4) Update Ik+1 based on Bayes decisions. If the total simulation budget is consumed, then
return the midpoint of Ik+1 as the best estimate of the root and terminate the algorithm. Otherwise,
update k← k+1 and go to Step 2.

Let Is1
k = [x1
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3
k ], Is2

k = [x2
k ,x
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In Step 4, the algorithm uses Bayes decisions (DeGroot 2005) to set the next promising interval Ik+1. For
` = 1 and 2, let d` be the decision representing that Is`

k includes the root and thus the algorithm selects
either Is1

k or Is2
k as Ik+1. For `= 3 and 4, let d` be the decision representing that the root is located in the

range x < x1
k and x > x4

k , respectively, and thus the algorithm selects either Is3
k or Is4

k as Ik+1.
Let gk be a vector of g(xi

k) for i = 1,2,3,4. Then, a combination of the signs of g(xi
k) determines

whether d` is true or not, and we denote the 0-1 reward function as R(gk,d`) for `= 1,2,3,4. The expected
reward function corresponding to each d` at iteration k is defined as E[R(gk,d`)], and the Bayes reward
function is defined as max`=1,2,3,4 E[R(gk,d`)]. One can find the index of the Bayes decision, denoted by `∗,
which is argmax`=1,2,3,4 E[R(gk,d`)]. Based on the Bayes decision, Is`∗

k is selected as Ik+1. In this study, we
provide theoretical results to calculate or approximate predictive E[R(gk,d`)] when a number of additional
observations is assigned to each candidate location among x1

k ,x
2
k ,x

3
k , and x4

k (but not obtained yet). We
sample additional observations from a location with the largest improvement in E[R(gk,d`)], which leads
to efficient simulation budget allocation before updating the posterior distributions of g(xi

k). The updated
posterior distributions are used to select the algorithm’s next promising interval.

3 RESULTS AND SUMMARY

We compare the performance of the proposed algorithm, TAB, to the performance of several existing
algorithms: Stochastic Approximation (SA) and Polyak-Ruppert (PR) with the settings in Weaber (2013),
two versions of the Generalized Probabilistic Bisection Algorithm (G-PBA) in Rodriguez and Ludkovski
(2020a), and the spatial G-PBA in Rodriguez and Ludkovski (2020b). To compare the performance of the
algorithms, we return the average absolute residual which is defined as the average of |x̂T −x∗| over 1000
macro replications where x∗ is the real root and x̂T is the best estimate of x∗. Each replication terminates
when the total number of observations reaches 100,000.

We first consider a linear g(x) for which the SA-type algorithm is known to perform well. Our
algorithm returns the average absolute residuals similar to or slightly higher than those returned by the
SA-type algorithms (i.e., SA and PR), but clearly outperforms the G-PBAs. When g(x) is a cubic function
known to be more challenging than a linear function, our algorithm achieves a 10 – 40 % reduction in the
average absolute residuals compared with all competing algorithms. In addition, we consider a Bermudan
put option problem with a discretized Black-Scholes model in Rodriguez and Ludkovski (2020a). In the
put option problem, the variance varies at different locations, the random noise may not be normally
distributed, and g(x) whose gradient fluctuates is very close to 0 for x ≤ x∗. The results show that our
algorithm achieves a 15 – 96 % reduction in the average absolute residuals compared with the competing
algorithms. TAB has two key benefits: (1) the trisection structure enables the algorithm to fix incorrect
selections of the promising interval and (2) the Bayes decision leads the algorithm to efficient allocation
of simulation observations.
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