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ABSTRACT

In this paper we consider the contextual multi-armed bandit problem for linear payoffs under a risk-averse
mean-variance criterion. We apply the Thompson Sampling algorithm for the disjoint model, and provide
a comprehensive regret analysis for a variant of the proposed algorithm. For T rounds, K actions, and

d-dimensional contexts, we prove a regret bound of O((1+ρ + 1
ρ
)d lnT ln K

δ

√
dKT 1+2ε ln K

δ

1
ε
) that holds

with probability 1−δ under the mean-variance criterion with risk tolerance ρ , for any 0 < ε < 1
2 , 0 < δ < 1.

The empirical performance of the algorithms is demonstrated via a portfolio selection problem.

1 INTRODUCTION AND PROBLEM SETTING

The multi-armed bandit (MAB) problem is a classical online decision-making problem with limited feedback.
In this paper, we consider the MAB problem with contexts (also known as covariates or side information): at
each round t = 1,2, · · · ,T , a context xi(t)∈Rd is revealed for each arm i∈K. After observing the contexts,
the decision maker plays one of the K arms a(t) and receives a reward ra(t)(t) (also called payoff) of that
arm. We assume the reward for arm i at round t is generated from an unknown distribution νi with mean
xi(t)>µi linear in the context and variance σ2

i , where µi ∈Rd is the mean parameter and σ2
i is the variance

parameter. This model is called disjoint since the mean and variance parameters are not shared among
different arms. In traditional MAB or contextual MAB, the best arm is usually the one with the largest
expected reward. However, in many real-world problems, maximizing the expected reward is not always the
most desirable. For example, in the portfolio selection problem, some portfolio managers are risk-averse and
prefer less risky portfolios with low expected return rather than highly risky portfolios with high expected
return. In this case, the risk of the reward should also be taken into consideration. Motivated by such risk
consideration in real-world problems, we take a risk-averse perspective on the stochastic contextual MAB
and choose the mean-variance criterion given its advantages in interpretability, computation, and popularity
among practitioners. Let the mean-variance of arm i at round t be MVi(t) := xi(t)>µi−ρσ2

i , where ρ ≥ 0
is the risk tolerance that reflects the risk attitude of the decision maker. The goal of the risk-averse decision
maker is to minimize the cumulative regret, defined as R(T ) := ∑

T
t=1 MVa∗(t)(t)−MVa(t)(t), where a(t)

is the action chosen by the algorithm at round t. and a∗(t) := argmaxi∈[K] xi(t)>µi−ρσ2
i .

2 ALGORITHM AND IMPLEMENTATION

To solve risk-averse contextual MAB, we propose an algorithm based on Thompson Sampling (TS). TS
is one of the earliest heuristics for the MAB problems via a Bayesian perspective. Intuitively speaking,
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TS assumes a prior distribution on the underlying parameters of the reward distribution for each arm and
updates the posterior distributions after pulling the arms. At each round, it samples from the posterior
distribution for each arm, and plays the arm that produces the best sampled reward. We assume a Gaussian
likelihood for the reward, and use the normal-gamma conjugate prior for the mean and variance parameters.
Algorithm 1 gives the full mean-variance TS algorithm for the disjoint model.

initialization:
pull each arm i once at round 0 and observe rewards ri(0); set Ai(1) = Id + xi(0)xi(0)>,
bi(1) = xi(0)ri(0), Ci(1) = 1

2 , Di(1) = 1
2(ri(0)2−xi(0)>Ai(1)−1xi(0)), Ti(1) = {0}, for all i ∈ [K];

for t = 1,2, · · · ,T do
observe K contexts x1(t), · · · ,xK(t) ∈ Rd ;
for i = 1,2, · · · ,K do

sample λ̃i(t) from distribution Gamma(Ci(t),Di(t)), set σ̃2
i (t) =

1
λ̃i(t)

;

sample µ̃i(t) from distribution N
(

Ai(t)−1bi(t),(λ̃i(t)Ai(t))−1
)

;

set M̃Vi(t) = xi(t)>µ̃i(t)−ρσ̃2
i (t);

end
play arm a(t) = argmaxi∈[K] M̃Vi(t) with ties broken arbitrarily;

observe reward ra(t)(t)∼ νa(t)

(
xa(t)(t)>µa(t),σ

2
a(t)

)
;

update Ti,Ai,bi,Ci,Di only for i = a(t): Ta(t)(t +1) = Ta(t)(t)
⋃
{t};

Ai(t +1) = Ai(t)+ xi(t)xi(t)>; bi(t +1) = bi(t)+ xiri(t); Ci(t +1) =Ci(t)+ 1
2 ;

Di(t +1) = Di(t)+ 1
2 [bi(t)T Ai(t)−1bi(t)−bi(t +1)>Ai(t +1)−1bi(t +1)+ ri(t)2].

end
Algorithm 1: Mean-variance Thompson sampling for the disjoint model (MVTS-D).

In the numerical experiment, we apply our proposed TS algorithms to a portfolio selection problem.
We empirically evaluate the following algorithms in the portfolio selection problem: (1) our proposed
MVTS-D algorithm; (2) a variant MVTS-DN used in our regret analysis that samples the variance from
a Gaussian distribution instead of the Gamma distribution; (3) a TS algorithm originally designed for the
risk-neutral setting from Agrawal and Goyal (2013), namely TS-A; (4) a mean variance TS algorithm that
makes no use of the contexts from Zhu and Tan (2020), namely MVTS; (5) a uniform sampling algorithm
that randomly chooses an arm to pull at each round. Figure 1 shows that our proposed MVTS-D and
MVTS-DN algorithms achieve better regrets compared to the three benchmarks in all cases, as we take
into consideration the risk of the reward and learn the parameters over time making use of the contexts.

Figure 1: Total regrets comparison with different risk tolerances, averaged over 100 replications.
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