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ABSTRACT

This work compares supervised machine learning methods using reliable data from beyond visual range
air combat constructive simulations to estimate the most effective moment for launching missiles. We
employed resampling techniques to improve the predictive model, and we could identify the remarkable
performance of the models based on decision trees and the significant sensitivity of other algorithms.
The models with the best f1-score brought values of 0.379 and 0.465 without and with the resampling
technique, respectively, which is an increase of 22.69%, and with an appropriate time inference. Thus,
if desirable, resampling techniques can improve the model’s recall and f1-score with a slight decline in
accuracy and precision. Therefore, through data obtained through constructive simulations, it is possible
to develop decision support tools based on machine learning models, which may improve the flight quality
in air combat, increasing the effectiveness of offensive missions to hit a particular target.

1 INTRODUCTION

We compare the application of different machine learning methods to estimate the most effective moment
for launching missiles during a BVR air combat, based on data from constructive simulations run through
a commercial off-the-shelf framework (FLAMES (Ternion 2022)). Since running the simulations is
computationally demanding, machine learning methods can streamline the missile success predictions
for real-time applications. Furthermore, it was observed that, during the simulations, the missiles could
not hit their targets in most of the scenarios due to challenging shooting conditions within our experiment
design, which led to an imbalanced dataset. Therefore, we employed resampling techniques to improve
the predictive model, analyzing accuracy, precision, recall, and f1-score. To the best of our knowledge,
this is the first work to address the imbalance in the missile launch results within air combat simulation.

We model the estimation of the most effective moment for firing missiles in BVR air combat simulations
as a classification problem, employing some of the most relevant supervised machine learning methods:
Logistic Regression (LR), K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Artificial Neural
Networks (ANN), Naive Bayes (NB), Random Forest (RF), and Extreme Gradient Boosting (XGBoost); to the
interested reader, we refer to Géron (2019). Concerning the resampling techniques, we applied oversampling
methods such as Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al. 2002) and Adaptive
Synthetic Sampling Approach (ADASYN) (He et al. 2008). Also, we introduced undersampling methods
such as Tomek Links (TL) (Tomek 1976) and Edited Nearest Neighbor (ENN) (Wilson 1972). Besides,
we analyzed the datasets using hybrid techniques that use oversampling and undersampling together:
SMOTE with Tomek Links (SMOTE-TL) (Batista et al. 2004) and SMOTE with Edited Nearest Neighbor
(SMOTE-ENN) (Batista et al. 2004).
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2 RESULTS

Table 1 shows the metrics, accuracy (ACC), precision (PREC), recall (REC) and F1-score (F1), and the
inference time (IT) in milliseconds (ms) obtained after evaluating the test dataset.

Table 1: Supervised learning classification models metrics and inference time.
MODEL ACC PREC REC F1 IT[ms] MODEL ACC PREC REC F1 IT[ms]
LR 0.877 0.421 0.003 0.006 1.4 ANN + SMOTE-TL 0.757 0.300 0.744 0.428 157.0
LR + SMOTE 0.655 0.215 0.685 0.327 1.1 ANN + SMOTE-ENN 0.730 0.283 0.784 0.416 35.7
LR + ADASYN 0.646 0.212 0.694 0.325 1.3 NB 0.884 0.672 0.096 0.168 4.3
LR + SMOTE-TL 0.661 0.217 0.676 0.328 1.3 NB + SMOTE 0.641 0.208 0.690 0.320 5.0
LR + SMOTE-ENN 0.625 0.204 0.711 0.317 1.1 NB + ADASYN 0.599 0.196 0.736 0.310 3.3
KNN 0.889 0.639 0.208 0.314 3903.1 NB + SMOTE-TL 0.641 0.208 0.691 0.320 3.3
KNN + SMOTE 0.763 0.296 0.678 0.412 5194.4 NB + SMOTE-ENN 0.590 0.194 0.743 0.307 3.2
KNN + ADASYN 0.730 0.272 0.721 0.395 4970.0 RF 0.895 0.686 0.262 0.379 160.8
KNN + SMOTE-TL 0.763 0.297 0.685 0.414 5090.1 RF + SMOTE 0.851 0.415 0.528 0.465 108.3
KNN + SMOTE-ENN 0.725 0.273 0.750 0.400 4632.8 RF + ADASYN 0.844 0.401 0.551 0.464 175.8
SVM 0.891 0.716 0.185 0.294 266.5 RF + SMOTE-TL 0.848 0.408 0.537 0.463 350.0
SVM + SMOTE 0.766 0.308 0.729 0.433 654.7 RF + SMOTE-ENN 0.809 0.351 0.664 0.459 35.2
SVM + ADASYN 0.722 0.276 0.785 0.409 752.8 XGBoost 0.892 0.648 0.255 0.366 17.1
SVM + SMOTE-TL 0.766 0.307 0.727 0.432 614.5 XGBoost + SMOTE 0.826 0.368 0.593 0.454 6.6
SVM + SMOTE-ENN 0.737 0.287 0.775 0.419 321.345 XGBoost + ADASYN 0.811 0.347 0.615 0.444 6.4
ANN 0.890 0.638 0.227 0.335 116.6 XGBoost + SMOTE-TL 0.825 0.369 0.609 0.459 6.2
ANN + SMOTE 0.765 0.308 0.735 0.434 94.4 XGBoost + SMOTE-ENN 0.791 0.332 0.699 0.450 6.8
ANN + ADASYN 0.703 0.267 0.814 0.402 163.1

Without employing resampling techniques, XGboost and RF brought the most consistent results con-
sidering the f1-score. Concerning all oversampling or hybrid methods, it is possible to indicate that these
techniques increase recall and f1-score with a slight decline in accuracy and precision. The model with
the best performance, considering the f1-score, without using any resampling techniques was RF which
brought 0.379, with an inference time of 160.8 milliseconds regarding the time to predict the test dataset.
After employing SMOTE, the RF model got 0.465, the best overall f1-score, increasing 22.69%.

3 CONCLUSIONS

We show through data obtained through constructive simulations that it is possible to develop decision
support tools that may improve flight quality in BVR air combat since they are trying to support effective
missile launches. We can use these models in an attempt to enhance the missile launching process by
unmanned combat aerial vehicles or aid pilots in real air combat scenarios, increasing the effectiveness
of offensive missions. For future work, we suggest analyzing not just the missile launching moment but
a sequence of several timeframes to understand better the coordination of future events in the air combat
scenario.
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