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Automotive Digitalization & Supply Chain Excellence
Infineon Technologies AG

Am Campeon 1-15
85579 Neubiberg, GERMANY

Jan-Philip Erdmann
Patrick Moder

Supply Chain Engineering Innovation
Infineon Technologies AG

Am Campeon 1-15
85579 Neubiberg, GERMANY

ABSTRACT

In situations of scarcity, that is when demand exceeds available supply, a stable allocation of capacities
among customers contributes to a more robust supply chain behavior. Given the input of available capacities
in the first place, this paper presents an analytical approach that models its smooth tactical distribution by
accounting for product-level deviations. The proposed model may serve as input for allocation determination
in situations with demand surges. Simulating the model and conducting experiments using real-world data
from a globally acting semiconductor manufacturer, it provides empirical evidence of results in terms of
supply chain stability. Still, the proposed model ensures sufficient flexibility due to well-defined target
inventory levels.

1 INTRODUCTION

When managing order fulfillment in presence of scarce supply or exceeding demand, suppliers allocate
available capacity quotas (available to promise, ATP) to a proportion of customers. Although there exists
a broad body of research about frameworks, heuristics and analytical approaches to distribute available
supply to customers according to their demand, such approaches prove to be suboptimal in times of demand
surges, supply scarcity or supply chain uncertainties in general (Kleindorfer and Saad 2005; Vogel and
Meyr 2015; Kloos and Pibernik 2020; Niranjan et al. 2022). While suppliers may seek to maximize
expected profit, customers are interested in receiving orders on time in full (OTIF), thus considering any
delay or supply reduction as deviation from their – personal – optimum. Customers try to mitigate these
disruption risks by maintaining sourcing strategies (Jain et al. 2022), nevertheless tending to irrational
behavior, i.e., shortage gaming and order inflation, in situations of scarce supply with the aim to receive
as many orders as possible OTIF (Sterman and Dogan 2015; Armony and Plambeck 2005). To counteract,
suppliers usually establish customer segmentation according to priorities and customer life time value,
among other criteria. In addition, suppliers may mitigate the negative impact of exaggerated orders by
correcting their projected demand according to an expected true demand or schedule padding (Niranjan
et al. 2022). This way, maximized profit is targeted while satisfying the customers that matter most to the
supplier on hand. This strategy is commonly supported by advanced planning systems (APS) in a sequential
manner with increasing granularity, which constitutes advanced ATP (Pibernik 2005). To ensure flexibility,
in some circumstances it is adjusted by subject matter experts according to tacit knowledge and individual
preferences. When customer demand surpasses available capacity, affected products are put ”on allocation”,
thus the supplier closely monitors the available capacity split to customers that request just-in-time (JIT)
delivery. This way, available capacity peaks (and drops) immediately influence the share of supply per
customer. Nevertheless, given a longer observation period, this procedure has proven adverse with regard
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to supply chain stability (Spiliotopoulou et al. 2022; Vogel and Meyr 2015), i.e., potentially evoking the
bullwhip effect (see (Sterman 1989) for a behavioral perspective or (Lee et al. 1997) for an operational
viewpoint). Hence, this study builds on the argument that, when demand exceeds available supply, a
stable distribution of ATP among customers would contribute to a more robust supply chain behavior and
increased service levels in the long run. Given the situation of rule-based and JIT-driven ATP in the first
place, this paper presents an analytical approach that models the smooth tactical distribution of such ATP
by accounting for product-level deviations. In turn, the proposed model may serve as input for allocation
determination in situations with demand surges. Simulating the model and conducting experiments using
real-world data from a globally acting semiconductor manufacturer, it provides empirical evidence of results
in terms of supply chain stability. Still, the proposed model ensures sufficient flexibility due to well-defined
target inventory levels.

The remainder of this paper is structured as follows. Semiconductor supply chain planning as research
environment and related literature streams covering allocation optimization are presented in Section 2. After
describing the design of experiment in Section 3, the model developed in the study on hand is introduced in
Section 4. The results of testing this model in an empirical setting are presented in Section 5. A thorough
discussion of these results is provided in Section 6, before concluding with limitations and future research
avenues in Section 7.

2 RELATED RESEARCH

In semiconductor supply chain, scarce capacity and demand surges are common problem statements. Besides
being extensively described in popular media as ”Chip shortage” since the Covid-19 outbreak recently (Yang
and Sohn 2021), such situations have already been addressed in the past on a regular basis. In addition to
external factors, i.e., pandemics, natural disasters or other disruption sources (Kleindorfer and Saad 2005;
Simchi-Levi et al. 2014), complexity related to the inherent characteristics of semiconductor manufacturing
(and supply chain) is causing such uncertainties (Chien and Zheng 2012; Mousavi et al. 2019). Characteristics
include long cycle times, global manufacturing networks and capital-intense production facilities. In addition,
the upstream position of semiconductor manufacturers increases impacts of the bullwhip effect that accounts
for additional uncertainties in order fulfillment (Lee et al. 1997). Semiconductor manufacturers handle
such situations with advanced planning systems, safety stocks and contractual commitments between their
customers, usually applying control decisions that span the entire organization with detailed granularity
(Kempf 2004; Fordyce et al. 2011). Nevertheless, in situations where demand exceeds supply, some sort
of triage is inevitable. In these situations of tightness, supply is allocated to customers to optimally satisfy
their orders and mitigate negative impacts on customers and the customers’ customers in turn. Like in other
complex supply chain environments, ATP systems integrated with Enterprise Resource Planning systems
are used commonly in the semiconductor industry in order to describe expected supply on product level
and to ensure supply chain flexibility (Seitz and Grunow 2017). Supply network planning serves as input
for demand fulfillment, where in the first place forecasts from customers are balanced against available
ATP during allocation planning. That result from allocation planning in turn serves as an input to balance
this so-called allocated ATP (Kilger and Meyr 2008) against actually incoming orders by customers. The
latter second sub-process of demand fulfillment is often defined as order promising (cf. (Seitz et al. 2016)
(Seitz and Grunow 2017) or (Seitz et al. 2020) for more details). The approach introduced in this paper
aims at a more stable allocated ATP as input for order promising, which is achieved through an automated
smoothening of ATP on product granularity (as shown in this paper) before the manual allocation of ATP
on customer granularity proceeds (as proposed in the outlook). Besides capacity allocation approaches
(Mallik and Harker 2004; Ng et al. 2010; Chien et al. 2013; Mönch et al. 2020), several optimization
approaches for allocating ATP to customers are recently studied in the semiconductor supply chain context,
the most relevant of them being summarized in the following.

While focusing on allocating production lots to orders, (Ng et al. 2010) also reflect on the impacts of
over- and underfulfillment of orders on hand. In their study, penalties for unfulfilled or overfulfilled demand
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are introduced for the mixed-integer optimization problem that is solved via branch-and-price and Benders
decomposition. Here, overfulfillment results in opportunity costs for exceeding demanded quantities, while
unfulfillment results in lost sales, customer dissatisfaction and a higher probability of customer churn.
(Mousavi et al. 2019) developed an optimization approach for product allocation to customers in the
semiconductor supply chain in the form of a Mixed Integer Linear Program. The model is optimizing the
allocation of ATP and buffer stock with different priorities on seller level. The model has a multi-objective
character with the objectives to maximize the allocated quantities from buffer and ATP on the one hand and
to ensure a remaining buffer on the other hand. The weights of these functions are varying to analyze their
impact on the allocation of products to customers. As a verification, the model’s output is compared to the
allocation, which is created by Supply Chain Planners (SCPs). Since the optimization is not implemented
as a recommendation tool for SCPs, an implementation is described as future work. (Mousavi et al. 2019)
conclude that the mathematical description of the customer allocation process, which is developed in the
paper, are close to the SCPs’ allocation and follow the general allocation logic.

(Ziarnetzky et al. 2019) simulate the optimized placement of engineering lots within the semiconductor
supply chain. Engineering lots are reserved quantities of semiconductors for research and development
purposes. Therefore, the lots reduce the quantity which can be allocated to customers. This case can be seen
as one of the different experiment scenarios conducted in this paper. The authors’ optimization is aiming for
a reduced impact on the customer-focused production of semiconductors by minimizing the total costs and
analyzing the impact of engineering costs. The model is based on the general semiconductor supply chain
cost optimization, which was developed by (Ziarnetzky and Mönch 2016). It adds the engineering costs in
different engineering lot configurations and compares different prioritization settings for engineering lots.

Within the literature stream of the semiconductor supply chain, further optimization approaches exist
that are related but follow a different approach than this paper. (Framinan and Perez-Gonzalez 2016) analyse
ATP systems in the industry within a high customer heterogenity environment. They describe the different
modes and configurations in ATP planning systems: different input granularities (plant vs. customer level),
different planning rules (no allocation vs. customer allocation), different ATP consumption modes and the
optional use of ATP reallocation (Framinan and Perez-Gonzalez 2016). On another granularity which is the
capacity allocation of machines and tools to products in the photolithography area, (Ghasemi et al. 2018)
use a genetic algorithm to optimize this allocation problem to maximize the loading level of machines. They
conclude that the algorithm is efficient and potentially helpful if stochasticity is tackled (Ghasemi et al.
2018). Yet another granularity is analysed by (Deenen et al. 2019). They look at wafer-to-order allocation,
in a bin-covering problem, using different algorithms to solve it. Out of the different algorithms, the integer
linear program achieves a reduction to 43.736% of the overallocation within the manual allocation which
outperforms other analyzed heuristics (Deenen et al. 2019).

Besides semiconductor specific research, there is also a broad body of literature on order allocation
and supply chain management under uncertainty in general (see (Govindan et al. 2017) for an extensive
review on supply chain network design under uncertainty). While most allocation studies particularly
aim for optimizing profit, some also provide ideas around maximizing service quality (see (Pibernik and
Yadav 2008) for make-to-order and (Pibernik and Yadav 2009) for make-to-stock settings or (Kloos et al.
2018) for an environment with sales hierarchies. In essence, different dimensions of the allocation and
order promising problem are examined, namely coordination of supply chain triads (Hsieh and Wu 2008),
information exchange in hierarchical settings (Fleischmann et al. 2020), contracts dependent on service
level (Kloos and Pibernik 2020), among others.

To summarize, allocation and order promising are thoroughly discussed in literature, yet with some
limitations that the paper on hand aims to overcome. Namely, the presented allocation model addresses
both the aspect of supply chain stability and the maintenance of service level quality when supply is scarce.
It allows for a flexible supply chain behavior through the precise control of buffer inventory levels, thus
avoiding overfulfillment of demand. Still, by utilizing available capacity, the model enables exhaustive
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demand fulfillment. The model’s decision support capabilities are proven in a semiconductor supply chain
setting with real-world data.

3 METHOD

3.1 Research Environment

During allocation phases, existing buffers are depleted and established procedures to determine target buffer
levels are no longer applicable. In parallel, increasing variability in both demand and supply occurs, adding
instability to supply chain planning. On the demand side, customers try to balance shortages from different
suppliers and prefer to shift production from high volumes to the most profitable (low volume) variants.
These shifts inherently vary over time as single components may determine the weekly availability of
subcomponents. In parallel, customers may place higher forecast or orders to hedge against uncertainty,
oftentimes beyond the levels of the actual demand. On the supplier side, i.e., the semiconductor manufacturer
in the study on hand, challenges arise due to high manufacturing leadtime. Such long leadtimes add another
layer of complexity when determining what ratio of the order level per product can be assumed as true
demand: decisions about production strategies and product mix at wafer start will impact available supply
in periods often more than six months ahead.

Usually, target levels of buffers are calculated by reaches of demand, i.e., multiple of weeks demand.
With hoarding, phantom ordering (Sterman and Dogan 2015) or duplicate ordering (Armony and Plambeck
2005) behavior by customers during allocation, demand is overstated, which likewise holds for the buffer
reach. Hence, a strategy that includes buffer building priority cannot be kept with overall supply being
insufficient. This results in the depletion of buffers on finished and semi-finished goods level. However,
as soon as internal buffers get depleted, one can observe an increase in output variability.

Again, due to long production times in semiconductor manufacturing, production lots have a high
chance to be imposed by multiple shortages, priority changes or other deviations that most probably lead
to altering the initial plan. Multiple kinds of deviations already exist in normal situations, yet there is
usually little impact on the inputs for an ATP engine due to the maintenance of many buffers. However, a
broader portfolio of products is affected when facing unexpected deviations, such as the COVID-19 outbreak
and natural disasters that lead to production shutdowns, transportation limitations or customs restrictions
(cf. (Kleindorfer and Saad 2005)). Therefore, any plan that does not account for existing or projected
variabilities is subject to high error. Human intervention during allocation is one strategy to overcome the
limitation of the systems’ inability to automatically adapt in a flexible manner. Human allocation experts
use two procedures to stabilize commitments towards customers:

1. Using runrates instead of treating the planning output as is. The main benefit of using runrates
is that changes in supply are dampened by some averaging effect. An average of non-negative
numbers is only possible if some portion of the supply drops.

2. Building buffer to react on unplanned supply shortages. However, buffer building beyond the
absolute minimum inherently tightens the supply.

Therefore, a high frequency of reviewing and adjusting to meet an optimal stabilized allocation is required
for both runrate levels and buffers. Nevertheless, skilled allocation experts are a scarce resource, thus the
need for automation is high. The algorithms proposed in this study relief the reviewing and adjustment
processes. Instead of using the entire ATP for allocation per period, it is modified by an optimization
model that introduces stable ATP quantity levels, which are monotonously growing if possible. This leads
to the building of buffer quantities which are limited using a minimum buffer definition in the model. The
minimum buffer increases with the model timeline to address the increasing uncertainty of input values
with the time horizon. However, in the early weeks, the model ensures that available quantities can be
shipped by using a rolling target buffer ramp, which serves as a virtual buffer for uncertain future periods.
Hence, we ensure a more stable allocation in the long run and allow allocation experts to focus on balancing
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other areas, e.g., adjusting the product mix. Moreover, within the described environment, designing robust
supply chains is essential to ensure sustainable supply to customers. The ATP-driven allocation situation
is dependent on supply stability to ensure stable runrates. In this paper, an approach to increase stability
is presented. Due to semiconductor shortages, critical supply chains currently tend to move from a JIT
towards a Just-in-Case (JIC) approach. Thus, confirmed quantities can be met with a higher reliability since
short term reductions and supply losses can be compensated. This paper recommends an approach using a
modified ATP as a JIC setting. Instead of using the entire ATP for allocation per period, it is modified by an
optimization model by introducing stable ATP quantity levels that are monotonously growing if possible.
Hence, we ensure a more stable allocation in the long run.

3.2 Experimental Design

This paper describes the development of such a model as linear optimizer as well as its evaluation in
different allocation situations and circumstances. Within the demand fulfillment process, this model is
located just before the customer allocation process. As this process is undergoing a transition towards
a semi-automated process, the experiment on hand is intended to evaluate the modified ATP in different
situations in terms of its stability as input for order promising purposes. Therefore, the conditions of several
inputs parameters to the optimization model are varied, as listed in the following.

• The optimization is running on product level. All products, which run in the allocation automation,
can be taken. Different representative examples were picked for the experiment.

• The minimum buffer has two levels and a ramp in between within the investigated time period.
The levels and ramp can be designed using the parameters start week buffer, end week buffer and
supply reach.

• The optimization period is defined by the parameters freeze end and opt end.
• Inventory Weight affects the model’s prioritization to build inventory. It is used in the target function

of the model.
• Discount describes the importance of each period’s contribution to the target function. The higher

the discount, the less important are later periods in the optimization model

Here, the minimum buffer serves to cope with increasing uncertainty over the optimization time frame.
It is stated per relative week from the starting week, i.e., relative week 0. Typically, in the beginning,
zero buffer is used to make as much supply available to fulfil customer needs. This period is followed
by a (gradual) ramp of the minimum buffer up to a predefined target level. Finally, the minimum buffer
levels off to a predefined target level. When to start and when to end the ramp and what level of target
buffer to use, is negotiated between the enterprise functions involved in allocation decision making. As
time passes and another optimization run is performed, the minimum buffer for a specific calendar week
is then automatically reduced as target figures are bound to relative weeks.

The experiments are conducted using the pywraplp solver of Google OR Tools in Python with 479
selected products from the real-world environment over a period of 13 weeks.

4 MODEL

The idea of the optimization model is the introduction of constant supply levels slt, which are only allowed
to be increased within the optimization period T under normal circumstances. These circumstances are
defined by the normal allocation situation in which the cumulated ATPt does not exceed the cumulated
Requested Material Arrival Date Quantity RMADt. In these cases, the model is allowed to reduce the
supply level by changing the direction, which is done in Definition (1) and Constraint (6). The supply levels
are maximized while the inventory in minimized in the Target Function (5). It uses Net Present Values npvt
defined in (4) to prioritize early weeks and an inventory weight winventory defined in (3) as parameters. The
decision variables of the model are slt and Inventory it. The inventory before the first period is a boundary
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condition and requires to be non-negative (2). It is calculated as a minimum of ATP, RMAD and original
target allocation (TA) from the week before the optimization period. The growth pattern of the supply
levels is realized in Constraints (6) and (7). The Inventory Constraint (8) calculates the new inventory
from the old inventory and in- and output. Target Inventory Buffer ittarget can be defined as desired and
is then used in Constraint (9) as a minimum for the actual inventory in the model. To not have supply
that exceeds orders in the model, Constraint (10) defines the cumulated RMAD as maximum bound for
cumulated supply levels. Constraint (11) defines the limits of the supply levels slt to 0 as lower bound and
infinity as upper bound by default. The optimization period T are the weeks in which the optimization is
performed, i.e., 13 weeks in the study on hand.

Definitions

directiont =

{
−1, if∑

t
τ=0 RMADτ + itarget

τ −∑
t
τ=0 AT Pτ < 0

1, otherwise
∀t,τ ∈ T (1)

inventory0 ≥ 0 (2)

winventory ≥ 0 (3)

npvt = npvt−1 ∗ (1−discount) ∀t ∈ T (4)

Target Function

max∑
t

npvt ∗ (slt −winventory ∗ it) (5)

s.t.

∆slt = (slt − slt−1)∗directiont ∀t ∈ T (6)

∆slt ≥ 0 ∀t ∈ T (7)

it = it−1 +AT Pt − slt ∀t ∈ T (8)

it ≥ itarget
t ≥ 0 ∀t ∈ T (9)

τ

∑
t=0

slt ≤
τ

∑
t=0

RMADt ∀t,τ ∈ T (10)

sllower ≤ slt ≤ slupper ∀t ∈ T (11)

5 RESULTS

The experiment is analysed in four stages that focus on different aspects with increasing granularity:

1. Mean and variation comparison of all products and time shifts
2. Impact of buffer on the stability between consecutive time shifts
3. Comparison with the original allocation in a split between overallocated and non-overallocated

products
4. Comparison of simulated deliveries with the supply and manual allocation

The analysis is based on real data of product and region combinations which is anonymized for this purpose.
Within the first three stages, the analysis focuses on a rolling time frame. In a first iteration, weeks 0-13,
i.e., a quarter, is analyzed, while in all upcoming 13 iterations the observed time window gets shifted to
the future by one week per iteration. Hence, the overall observation period is half a year, i.e., 26 weeks.
Incoming supply is optimized using the presented model both with and without a buffer. Please note that
optimized supply refers to using the model presented in this paper; this holds for all four stages of the
experiment. The results are then compared with original ATP and manual allocation. In the last stage,
actual deliveries are simulated and their variability is analysed.
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First, the mean values of the 13 week time frames and their coefficient of variation are compared for
optimized supply both with weekly and without buffer, manual allocation and original ATP. This way, the
stability of the optimization is examined. In Figure 1, these four outcomes are visualized. It is found that
the mean results are similar except for the manual allocation, which has 10.2% higher values than the
others’ mean. The coefficient of variation is relatively low for the optimized supply levels compared to the
manual allocation and the original ATP.

Figure 1: Comparison of mean and coefficient of variation between optimized supply levels, ATP and
manual allocation.

Second, the differences of time shifts relative to the total mean of the weekly supply level are compared
and analysed regarding their stability over time as shown in Figure 2. The analysis is focused on the
weeks after the freeze fence of four weeks to gain a more detailed view on the mid-term stability. The
freeze fence is further analysed in the discussion. Original ATP shows a high fluctuation over time with
high difference percentages without a visible trend of increase of decrease of relative difference, which is
visible in Figure 2. Manual allocation has a lower variation with the majority between -1% and +1% per
week. The median of each time shift is 0 in every week. The results for the optimized supply levels start
with a higher variation in the first week with a trend towards a lower fluctuation over time. Compared to
the manual allocation, it is higher by a small margin at the beginning of the analysed time and similar and
even lower for later weeks in the time period. The medians are above zero for both the optimization with
and without a weekly buffer.

Figure 2: Time shift variability of original ATP compared with optimized supply levels and manual allocation.

Third, the data set was split into cases with overallocation and cases without overallocation in the manual
allocation setting to have a more detailed look into the performance comparison of the optimized results
with the manual ones, which is visualized in Figure 3. In the comparison of means for non-overallocated
products, a generally increased mean for the optimized products scenarios can be detected compared to the
manual allocation setting. For overallocated products, the mean of the manual setting is higher than the
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ones of the optimized supply level allocation, i.e., more packaging units are overallocated in the manual
setting.

Figure 3: Overallocation analysis and average supply level comparison for overallocated and non-
overallocated products.

Fourth, the actual supply based on the optimized cases was simulated to see the behavior of supply
levels with progressing time. The simulation for the ATP is shown in Figure 4 as a comparison. This is
again compared to manual allocation. The visualization shows – similar to stage 2 – relative fluctuations
between each of the weeks. Here, the optimized results have a lower fluctuation of deliveries compared
to the original ATP and the manual allocation. Their median is 0 for all weeks. Comparing the optimized
supplies, within weeks 5-8, some cases with a positive delta occur in the buffered setting compared to the
case without buffer-building. Fluctuations of original ATP are approximately ten times higher compared
to the manual allocation. Both do not have a trend like the optimized ones. The manual allocation has a
high amount or variety in fluctuation for week 6.

Figure 4: Analysis of simulated supply within the first 13 weeks of optimization used after freeze phase
for the original ATP and the simulated supply for optimized and manual scenarios.

6 DISCUSSION

The discussion follows the four stages introduced above. Stage 1 compares the means and the coefficients
of variation of the rolling 13-week time series for the four cases optimized supply level with buffer building,
optimized supply level without buffer building, manual allocation and original ATP. The mean of the weekly
buffer optimization is in general a bit lower than the zero-buffer cases due to the quantity which is put
into inventory to absorb unexpected changes. The mean of the original ATP is similar to the zero-buffer
case, which shows that most of the quantity is used. Thus, the optimized supply configuration does not
unnecessarily hold back quantity or decreasing sales and profits. The manual allocation is higher than
the other cases, since the allocation for some cases is higher than the actual ATP. This can have several
reasons, which is further discussed in Stage 4. The original aim of the ATP optimization is an introduction
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of more stable and mostly monotonously increasing supply levels. Therefore, the variation within the
13-week rolling time series should be lower than both, the manual allocation and the original ATP, which
is proven within the analysis on hand. With a decreased variation, the supply is more stable in general,
which not only increases customer satisfaction but also decreases the impact of unforeseen supply changes
on delivery reliability in the long run.

Stage 2 focuses further on supply level variability by examining relative increases and decreases between
the different 13-week time series with increasing starting weeks. The diagrams show high fluctuation of
the ramp up phase in weeks 0-4 for the optimized results (not shown due to scaling reasons), which appears
due to pre-optimization (inventory calculation) and hence not problematic for applications in reality. After
this phase, variability is still higher than in the manual allocation but it shows a trend of further reduction.
This appears due to necessary adaptions towards starting inventory after the freeze fence, which reduce
with time for the weekly buffer and the zero buffer case. The manual allocation has a lower variability at
the beginning but it does not show a trend of variability reduction with time. All of the three methods of
supply level placement show a lower variability than the original ATP. The high ATP variability results from
fluctuations: for instance, the supply can be low in some weeks due to engineering lots or production shifts
to other products, while peaking in other weeks leading to a high variability. This effect is the original
motivation for the introduction of the optimization model. Due to the reduced variability, the optimized
supply is more robust than the original one. Short term supply problems only affect the inventory and not
the supply level itself. Therefore, confirmations are not affected and the delivery plan can be fulfilled in
cases of supply changes.

In Stage 3, overallocation was analysed to explain the reason for a higher manual allocation compared
to the optimized results from Stage 1. Therefore, the product data was first split into a data set with
overallocated products and one without overallocation to analyse them separately. First, the analysis of
the manual allocation with overallocation shows an increase of overallocation over time. This is since
manual allocation is not reacting fast enough to adapt to supply changes accordingly, which in turn leads to
overallocation. Then, the overallocation case shows a higher mean of manual allocation supply levels than
with the optimized supply level configuration. This additional allocated quantity cannot be fulfilled with
the current supply picture, which makes the optimized configuration the preferable option, although being
lower. Furthermore, this explains the higher supply level mean for the manual allocation in Stage 1. For
the data set without overallocation, the manual allocation is lower than the optimized one in general. This
shows that the supply is not used optimally and unnecessary buffer is built up. Therefore, the optimized
supply level build-up outperforms manual allocation in every case.

In Stage 4, a simulation of the supply is developed to investigate operating the supply level optimization.
Here, weekly variation is compared to the actual manual allocation and original ATP without using 13-week
time series. In this analysis, it becomes visible that – for the weekly buffer case and the zero buffer case
– variability of the optimized supply level is significantly lower than for manual allocation and original
ATP. This proves that the general aim of achieving more stable supply levels is working. Furthermore, the
effect of buffer building is clearly visible. With time, the target buffer for each week decreases since it
gets closer to the freeze fence. Therefore, buffer inventory can be released for allocation, which explains
the higher supply level gradients shown in Figure 4.

In general, the four stage analysis shows the applicability of an optimized supply build-up. It fulfills
both goals, (i) a decrease of variability to increase robustness towards unexpected supply changes, and (ii)
an optimized allocation level to increase supply quantities (and thus service level) to the customer.

Concerning a potential implementation of the optimizer into the Infineon Supply Chain, there are several
possibilities. On the one hand, the optimization can serve as a recommendation to the SCPs by indicating a
maximum usable ATP. However, this option would not decrease the manual effort and only positively affect
the supply chain if seriously considered by the SCP. On the other hand, our proposal can be implemented
as a replacement of the actual ATP after the planning system and for the following processes as shown in
Figure 5. This ensures an automated and stabilized customer allocation with reduced manual effort.
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Figure 5: Conceptual proposal of the implementation of modified and stabilized ATP optimization.

7 CONCLUSION

In times of semiconductor shortage, having a robust supply to changes is crucial to ensure delivery reliability.
The approach presented in this paper uses an optimization to introduce stable supply levels that are derived
from the demand and the actual ATP. These stable supply levels ensure a higher robustness towards short-
term supply losses or shifts and improve customer allocation by reducing quantity fluctuations. To analyze
the output of the optimization in form of the supply levels, a four-stage result analysis was conducted
comparing buffer-building optimization, zero-buffer-optimization, manual allocation and original ATP. The
fluctuations of supply are reduced significantly compared to the original ATP and they are similar to the
manual allocation. The supply quantity is optimized and therefore avoiding overallocation like it occurs
in the manual setting. A supply-simulation, which is shown in Stage 4 shows that the fluctuations of the
actual supply are lower than the manual allocation’s. This shows that the optimized solutions is suiting
the allocation problem on the reviewed granularity. It improves robustness by eliminating overallocation,
stabilizing supply and maximizing allocation quantity. There are limitations to the optimization, which
need to be respected in a potential application. First, the optimization and the analysis assume that the
ATP, which is taken as the model input, matches the actual supply. Forecast inaccuracies might lead to
differences between ATP and supply, especially in the long-term view. The benefits of the optimization are
in the short-term allocation which has a more accurate ATP compared to long-term forecasts. Second, the
optimization is carried-out on product-plant granularity which does not imply relations between distribution
centers on the same product. An approach which accumulates the same products in different centers can
lead to improvement. This approach was not taken to match the optimization’s environment of manual and
automated allocation. One solution to that would be an additional pre-processing step which accumulates
the quantities of different regions before the optimization which would need to be modified to suit the
problem changes. This can be conducted by further research about ATP optimization.

There are different ways of implementing the optimization in the allocation process of a semiconductor
supply chain. The recommended one is visualized in Figure 5. One important aspect that needs to be
taken into consideration is supply chain planners’ reaction on the optimized supply. A less fluctuating
supply can only be realized with building and using inventory in different supply phases. Therefore,
supply quantities need to be held back from allocation, which reduced the planners’ freedom of decision.
Therefore, a potential application could focus more on data-driven decision support that respects the
boundary conditions of human-technology interaction. This way, it might present an optimized solution to
the planner, while keeping the freedom of decision, especially in situations when human cognitive abilities
are clearly superior. The environments’ reaction to the implementation of the optimization would need to
be analyzed within further research to use the optimization’s potential to increase supply chain robustness.
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