
Proceedings of the 2022 Winter Simulation Conference
B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and
P. Lendermann, eds.

SIMULATED-BASED ANALYSIS OF RECOVERY ACTIONS UNDER VENDOR-MANAGED
INVENTORY AMID BLACK SWAN DISRUPTIONS IN THE SEMICONDUCTOR INDUSTRY:

A CASE STUDY FROM INFINEON TECHNOLOGIES AG

Manuel Fernando Lopera Diaz
Hans Ehm

Abdelgafar Ismail

Infineon Technologies AG
Am Campeon 1-15

Neubiberg, 85579 , GERMANY

ABSTRACT

The current pandemic outbreak unlike other types of events has impacted many firms’ supply and demand
with unprecedented consequences. The scope of these effects greatly depends on the characteristics of
the industry. This research evaluates the performance of a specific implementation of vendor-managed
inventory (VMI) in a case study from a semiconductor company. A multi-period, multi-echelon serial
supply chain consisting of the customer VMI warehouse (facing the end demand), the supplier distribution
center and the supplier manufacturing plant is studied with agent-based and discrete event simulation. The
results suggest that the severity of the demand reduction plays a big role in the replenishment process of
the VMI, creating a bullwhip effect which reduces the speed of recovery. The behavior of the customer in
terms of the quality of the forecast and whether or not it is been inflated allows the supplier to better plan
when dealing with limited capacity.

1 INTRODUCTION

The effects of the pandemic affected many Supply Chains (SC)s in different ways. Some faced supply issues
due to transportation restrictions or shutdowns on their supplier’s production facilities. Many companies
on the other hand experienced a sharp increase in demand while simultaneously dealing with a shortage
in raw material (Paul and Chowdhury 2020).

In regards with the automotive industry, auto sales plummeted as much as 80% in Europe, 70% in China
and nearly 50% in the United States during the first part of the outbreak (January - April 2020) (Burkacky
2021). As Reinhard Ploss; Infineon Technologies AG Chief Executive Officer expressed, Just-in-Time
practices led to orders cancellations from multiple Original Equipment Manufactures (OEMs) towards their
Tier 1 suppliers (T1), responsible for example for different power train components and engine control
units. Due to a reduction in consumer demand and the reaction of OEMs, T1 put on hold some of their
production plants affecting their own suppliers in the process; these included semiconductor companies
(Jones 2021), also refereed to as Tier 2 suppliers (T2). Such situation resulted in unbalanced inventories
for two specific reasons; first, given the industry specific implementation of a continuous replenishment
practice like Vendor-Managed-Inventory (VMI) which highly relies on customer’s forecasts and stock reach
for its production planning and second, due to the intrinsic long lead time of the semiconductor SC.

Under type of contracts like VMI, instead of placing an order, the customer pulls the required material
from an inventory which the supplier must replenish and keep between certain agreed levels (Marquès et al.
2010). These levels depend on the desired reach, or number of weeks for which the current stock should
maintain the average demand. A lack of pulling which no one was able to predict caused an extended pause
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in the replenishment processes; which led to an inventory buildup at the supplier’s stocking points, increasing
the risk of material scrapping and overall cash flows reductions. Customer ordering behaviour changed
once again after a quick marked recovery that followed the second half of the year (LMC-Automotive
2022). High stock levels served as buffer at the beginning, allowing some flexibility during the supply
allocation, but were quickly depleted due to the growing demand. The situation got worsened by additional
governmental lock-downs affecting now the supply side of the network (reduced production capacity),
resulting in a severe and extended chip shortage distressing particularly the automotive sector. Without
enough chips, registration of new passenger cars in the European Union experienced a historic fall of 24%
in 2020 and again of 2.4% in 2021, reaching a value of 9.7 million vehicles (worst performance since
statistics started in 1990) (News-Wires 2022). As Plott mentiones, it wouldn’t be fair to put all the blame
on the shoulders of semiconductor manufacturers. Automakers cannot assume semiconductor firms to bear
all this risk of the SC, especially when complex manufacturing processes distributed around the globe make
it hard to adapt to drastic changes in downstream member’s behavior (Miller 2021).

Recent statistics demonstrate the rise of catastrophic events over the last decade, affecting more and
more organization’s productivity and performance across a wide range of industries (Paul and Chowdhury
2020; Blos and Wee 2018). Unlike other SC disruptions which are normally centralized, of limited duration
and affecting specific nodes of a network, pandemic disruptions are considered black swam events. They
are even less frequent than other natural or man-made disasters, simultaneously or sequentially affecting the
structure of one or more SCs, altering demand, distribution, production and supply (Ivanov and Das 2020).
Due to the uncertainty about its development, authors like Ivanov and Das (2020) argue that management
efforts should be directed in recovery strategies to increase SC resilience.

The ripple effect of such type of disruptions gets amplified in modern complex and global SCs, and
the semiconductor industry perfectly fits as an example. Considering that over the last few years, more
and more industries began to adopt initiatives based on VMI, including multiple semiconductor companies
where the share of such practices could go beyond half of the storage locations worldwide (Marquès et al.
2010), the importance of analysing this type of collaboration practices becomes evident. The same applies
from the academic perspective, not much research or cases of study have analyzed how such type of
practices perform during this type of exceptional events; but it is of utmost importance to investigate what
the learnings are in order to recover faster when dealing with similar future black swan disruptions.

This paper is organized as follows: Section 2 presents related literature followed by the description of
the methodology in Section 3. The results of the simulation model are discussed in Section 4. Finally, the
paper ends with the concluding remarks in Section 5.

2 LITERATURE REVIEW

The first part about SC resilience theory offers an overview about the main concepts and definitions. The
second part refers to the definition and characteristics of VMI applied in the semiconductor industry. Finally,
the usage of multi-echelon analysis and simulation as a decision support tool is addressed in the third part.

2.1 Supply Chain Resilience Theory

Supply Chain Management (SCM) refers to the coordination of multiple companies in the logistic network
in order to establish an optimal strategy for the whole SC (Simchi-Levi et al. 2008, p. 2). Among the
many aspects involved in SCM, Ivanov et al. (2019) highlight the importance of SC Risk Management,
which deals with what the authors call ”Operational” and ”Disruption” Risks. Operational Risks describe
expected recurrent events that appear due to inhered system uncertainties affecting the demand (quantities,
frequencies) and supply (availability, lead-time). On the other hand, Disruption Risks involve exceptional
events affecting mostly the SC structure. Such events, often referred to as disruptions, are by nature
unanticipated and of unforeseen magnitude, natural or man made (Ivanov et al. 2019; Chowdhury et al.
2021). While analyzing existing literature in the field of risk management and Disruption Risks, Ivanov
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et al. (2014) and Dolgui et al. (2018) adopted the term Ripple Effect (RE) to describe the impact of severe
disruptions that have structural-level consequences as well as long-term recovery periods.

In the RE context, quantitative research studies usually involve proactive and reactive measures, put in
place with the common aim of increasing SC resilience (Ivanov and Dolgui 2021; Ivanov 2020). In this sense,
resilience is understood as the ability of a system to withhold and restore its performance and functionality
after a significant change of itself or the environment (Macdonald et al. 2018; Aven 2017). Traditional
disruptions are often discrete-event oriented, with single feedback control (normal state, disruption, return
to normal) and localized to a limited number of nodes (Ivanov and Dolgui 2021). COVID-19 on the other
hand has been present for more than two years. Its simultaneous disruption and outbreak propagation has
affected suppliers, facilities and markets (Ivanov and Dolgui 2021). A RE has therefore emerged from
changes in customer behaviour across multiple industries, in addition to government mandated lockdowns
which have led to the closure of plants, warehouses and logistics networks (Paul and Chowdhury 2020).
By studying the resource requirements and overall sphere of influence, Chowdhury et al. (2021) state that
strategies that mitigate the impact and enable a fast recovery tend to exist and overlap in the following
domains: collaboration, redundancy, flexibility and visibility. A literature review conducted by Duong and
Chong (2020) on SC collaboration practices in the presence of disruptions, reveal that 94,9% of the studies
consider either disruptions in the supply or the demand, but not simultaneously.

2.2 Vendor Managed Inventory

Southard and Swenseth (2008) describes VMI as a collaboration practice in which the supplier has the
responsibility of making replenishment decisions (timing, amounts) about the customer’s inventory. The
customer on the other hand, may share inventory level information as well as future forecasts or historical
data about the demand, while only pulling the required material without placing any orders (Kaipia et al.
2002). Waller et al. (1999) considers reduced costs (lower customer inventory management expenses) and
increased customer service levels to be the major benefit. It was concluded however, that its benefits are
limited to industries with short lead time and small demand variations. Both of which are not the case of
the semiconductor industry or the effects of a pandemic type disruption.

Studies on VMI performance measurement is divided into cost and non-cost oriented approaches.
Non-cost based performance measurements are calculated according the the amount of violations that take
place in a given time period (Stockout ”SO”, Understock ”US” or Overstock ”OS”). A violation may
occur whenever the inventory is out of a minimum and maximum range (No violation ”NV” zone) (Danese
2004; Sari 2007). Non-cost oriented methods seem to be more used in practice, specially in the automotive
sector. Whenever the performance of a VMI stock is not at a desired level, multiple perspectives of the
situation may emerge from both the customer and the supplier. From the first point of view, the other may
be either replenishing too few or too much, driving the inventory to an US or an OS state. The second one
may argue that the replenishment timing and quantities are fine, but that the customer is not pulling what
was forecasted. In this context, a generic performance measurement algorithm was proposed by Ehm et al.
(2018). Their method, other than assessing the VMI performance, allows future improvements through an
algorithm that finds a responsible in case of a bad performance by means of a Root Cause Analysis (RCA),
being specially designed for partners in the semiconductor industry.

2.3 Multi Echelon Inventory Analysis and Simulation

Multi Echelon Inventory Optimization (MEIO) has the objective of optimizing the inventory allocation
among different SC members, achieving a required service level while reducing costs. The configuration
of the network is what determines the type of SC, whether it is serial, assembly, distribution or a general
SC (Vandeput 2020, p. 204).

MEIO aims to perform a global optimization, which requires the exchange of information among
members of the SC, specially in regards to the inventory level at all the stocking points. The connection
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between VMI and MEIO is evident, as the benefits of VMI can only be achieved if the SC conducts a
MEIO (Chu et al. 2015). Inventory optimization problems are usually hard to solve without the help of
simulation-based techniques. The implementation of a simulation based-analysis in this research can be
justified from three different perspectives. From the business point of view, the severe competition and
the willingness to constantly gain a competitive advantage have pushed many firms in the semiconductor
industry to conduct model-based decisions when analyzing their SCs (Dayhoff and Atherton 1987). Then,
the flexibility provided by simulations as a quantitative analysis tool, which unlike some mathematical
approaches, don’t always require the same set of assumptions put in place in order to obtain an analytical
solution, relying mostly on iterative processes (Costantino et al. 2014). Finally, the characteristics of
a disruption in terms of the magnitude of the impact, the length of the duration and the frequency of
occurrence are often easier to evaluate in simulation models than in direct mathematical optimization
approaches (Ivanov and Rozhkov 2019).

3 METHODOLOGY

The justification in the usage of simulation for multi echelon SCs has been presented in the previous section.
Likewise, so has its application in the study of the RE for networks which operate under collaboration
practices put in place to increase the SC Resilience and accelerate the recovery after large scale disruptions
such as the pandemic outbreak. This section introduces the methodological approach of the simulation of
our research.

3.1 Simulation Paradigm

According to Grigoryev (2012), the selection of a simulation paradigm depends both on the characteristics of
the problem and the required level of abstraction. Three modelling techniques are then presented: Discrete
Event simulation (DES), Agent-Based (AB) and System Dynamics (SD). DES is normally used when the
behaviour of the system is defined by events that occur deterministically or randomly at certain points
in time, at which the system state variables change instantaneously (Banks, Carson, Nelson, and Nicol
2000, p. 14). It has been extensively used by researches in production planning and logistics transportation
problems, as well as in the context of disruptions analysis (Ivanov and Rozhkov 2019). AB on the other
hand, considers independent agents with internal decisions logic, interacting with each other and with the
environment (Borshchev 2013, p. 57).

In the context of VMI, AB modelling allows an accurate representation of the exchange of information
and goods, by creating different type of object-agents in addition to specific parties-agents with defined
functions. A hybrid approach of DES and AB is then selected, due to the characterization of a disruption
as a random event and the focus on multiple rule-based processes involving different type of objects, with
multiple decision-makers and roles.

3.2 Model Conceptualization and Formulation

The mathematical equations governing the behaviour of the system follows a similar notation than the one
presented in Vandeput (2020), (p. 109). The SC time frame consist of days d which belong to a week
t. The total number of weeks considered is equal to T . If a variable is defined using ∀d or ∀t, it should
be interpreted as ∀d ∈ {1, . . . ,7} or ∀t ∈ {1, . . . ,T} (unless otherwise specified). A serial SC (each node
has only one downstream and upstream node) consist of 3 echelons ( j = 1 : Supplier Manufacture, j = 2 :
Supplier Distribution Center (DC), j = 3 : Customer Warehouse (WH)) with 2 stocking nodes (Supplier
DC, Customer WH). If a variable is defined using ∀ j, it should be interpreted as ∀ j ∈ {1,2,3} (unless
otherwise specified). The Customer WH serves an immediate demand from the end-user on a daily basis
(Dd,t : Demand signal D on Customer WH on day d of week t). Each echelon j in the SC experiences a
deterministic and constant order lead time L j (weeks). The Customer WH stocking node ( j = 3) follows a
periodic inventory policy (R,s3,S3), where R is the review period, s3 is the re-order point and S3 is the order
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up-to level. The Supplier DC ( j = 2) implements a periodic base-stock inventory policy (R,s2 = S2−1,S2).
R is fixed and equal for all stocking nodes to 7 days (1 week).

The following collaboration practices are implemented in the SC:

• Regarding information Sharing (IS), at each review period R of week t, the supplier receives
from the customer a forecasted weekly demand for the next N weeks ahead (units): FDt =
( f dt,1 f dt,2 · · · f dt,N). For any week t when ∑

d=7
d=1 Dd,t > 0, let pet,i be the percentage error of

the forecast provided in week t for the target week t + i compared to the demand signal of the
correspondent period. This situation would be referred to as the”forecast error evolution” over the
time horizon N. Equation 1 presents this error.

pet,i =
∑

d=7
d=1 Dd,t+i− f dt,i

∑
d=7
d=1 Dd,t+i

∀t, i ∈ {1, . . . ,N} (1)

• A VMI contract is implemented in the SC, in which the supplier makes replenishment decisions
for the customer in addition to production orders for its manufacturing site. This also means that
the supplier has access to both the current inventory level of the customer WH and its own DC.

3.2.1 Notation and Assumptions

• IL j
d,t denotes the inventory level of stocking node j at day d of week t.

• Pd,t represents the actual amount of units pulled from the Customer WH on day d of week t by the
end-user. Equation 2 is limited by the available inventory at the Customer WH.

Pd,t = min{IL3
d,t , Dd,t} ∀ d, t (2)

• USd,t (equation 3) is the excess demand (units short) on day d of week t, whenever the end-user
can’t pull the required quantity that was intended from the Customer WH. Any excess demand
(units short) becomes a lost sale and is in practice not possible to estimate.

USd,t = Dd,t −Pd,t ∀ d, t (3)

• WIPd,t denotes the amount of Work in Progress (WIP) in the Supplier Manufacture at day d of
week t.

• The Customer WH tends to evenly inflate their future forecast whenever they experience a shortage
in a previous period. This effect depends on a factor γ ∈ [0, 1], which increases each individual
forecast contained in FDt . Equation 4 describes this behaviour.

FDt ←− FDt +

(
γ ∗ ∑

d=7
d=1USd,t−1

N

)
∀ t (4)

• Likewise, there is no constrain in regards to the amount of material requested by the Supplier
Manufacture. An order received by an echelon is instantly processed and a single product flows
through the SC. There is no constraint in regards to the amount of units that can go from the Supplier
DC to the Customer WH. Moreover, the lead time experienced by the Supplier Manufacture is
equal to zero (L1 = 0).

• Due to the characteristics of the fabrication processes, the Supplier Manufacture experiences a
stochastic production yield. Since data about this characteristic is not easily accessible, a triangular
distribution can be used as a good estimation to represent this uncertainty (Banks, Carson, Nelson,
and Nicol 2000, p. 26): yt ∼ triangular(minimum, maximum, peak)(%)

• The sum of the daily demand signal (Dd,t) over a week (i.e. the weekly demand signal) follows a
normal distribution:

(
∑

d=7
d=1 Dd,t

)
∼N (µDS, σ2

DS).
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• The percentage error of the forecast pet,i is assumed to follow a normal distribution. It is also
expected to be unbiased over the period T and time horizon N, which means that for any week t
and target week i: pet,i ∼N (µpe = 0, σ2

pe).
• The standard deviation of the percentage error of the forecast follows a normal distribution:

σpe ∼N (µStd , σ2
Std). This takes relevance due to the relationship between pet,i, f dt,i and Dd,t

presented in equation 1.

3.2.2 Decisions and Constraints

On each review period R (every week t), the supplier decides:

• How many units (if any) should be shipped from the Supplier DC to the Customer WH, so that
there is enough stock to fulfill the daily demand from the end-user while trying to remain between
the minimum and maximum level.

red,t : Amount of units shipped from the Supplier DC to

the Customer WH in day d of week t

The replenished quantity red,t , which depends on the available inventory on site at the Supplier DC
(equation 5). At the same time due to logistics requirements, this quantity should be a multiple of
a given package size pz (equation 6).

red,t ≤ IL2
d,t ∀ d, t (5)

red,t

pz
∈ N≥0 ∀ d, t (6)

• How many units should enter the production at the Supplier Manufacture, considering its demand
(the replenishment orders calculated) and supply, as well as the required inventory level at the
Supplier DC.

pod,t : Requested amount of units sourced by the Supplier

Manufacture in day d of week t

A minimum production order mipo must be also considered. Since the Supplier DC follows an
(R,s2 = S2−1,S2) policy, this condition becomes relevant only when the Inventory Position (IP)
at the DC (IP2

d,t) is not below the desired level S2. This may happen for instance if a major
disruption drastically reduces the demand from the end-user. Such unforeseen event may affect the
replenishment process from the Supplier DC to the Customer WH, leading to an inventory built
up at the first one. If the inventory level at the DC becomes too high, the Supplier Manufacture
could severely reduce the production quantities. Equation 7 describes this condition. The quantities
that enter production must also consider the available bottleneck capacity cap at the Supplier
Manufacture (equation 8).

pod,t > mipo ∀ d, t (7)

pod,t ≤ cap ∀ d, t (8)

• red,t depends on the current IP (IP3
d,t), the re-order point and the order up-to level values of the

Customer WH. Since the forecast received by the end-user changes every week, the parameters of
the policy must reflect the new demand situation with the same frequency (Chu et al. 2015).

s3
t : Reorder point of the Customer WH in week t

S3
t : Order up-to level for the Customer WH in week t
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• Similar to the calculations of s3
t and S3

t , the decision on the amount of units sourced by the Supplier
Manufacture pod,t must consider changes in the demand picture when determining the target level
at the Supplier DC. Therefore, the target level must change as well accordingly.

S2
t : Order up-to level for the Supplier DC in week t

3.2.3 Disruption Consideration

The total period analyzed T is divided in three phases (ph = 1: Normal times, ph = 2: Disruption times,
ph = 3: Recovery times). The forecast accuracy is affected by the pandemic disruption and the post-
pandemic conditions, and consequently so is the percentage error pet,i. Therefore, the standard deviation of
the percentage error of the forecast (σpe) depends on the phase ph in which week t is. In order to incorporate
in the model the change of the customer behaviour during the disruption and post-disruption times, the
same logic is applied to the distribution of the weekly demand signal, specifically to its mean and standard
deviation. During Phase1, the SC works under the previously described equations in a disruption free
environment. The Phase2 contains two parts with non-consecutive effects of a pandemic type disruption,
affecting first the end-user behaviour (equation 9) and then the supplier’s capacity (equation 10).

• Phase2a: szd weeks after the end of Phase1 and for a given amount of weeks wnd, the demand
signal coming from the end-user to the Customer WH drops to zero. ep2a denotes the end of
Phase2a (ep2a = ep1+ szd +wnd). During this period, equation 2 must consider this fact.

Dd,t = 0 ∀ d, t ∈ {ep1+ szd, . . . , ep2a} (9)

• Phase2b: src weeks after the end of Phase2a and for a given amount of weeks wrc, the production
capacity at the Supplier Manufacture cap is reduced by a factor λ ∈ [0, 1]. ep2 marks the end of
both Phase2b and Phase2 (ep2 = ep2a+ src+wrc). During this period, inequation 8 becomes:

pod,t ≤ (1−λ )∗ cap ∀ d, t ∈ {ep2a+ src, . . . , ep2} (10)

In Phase3, the Supplier Manufacture capacity has recovered. The model concept described above is
implemented in Anylogic software version 8.7.10, using Rstudio 2021.09.1 for the data analysis. Figure
1 presents the adaptation of the previously described model to the case study of the semiconductor firm,
where the Supply Chain Planer (SCP) determines the production quantities (po) and the Customer Logistics
Managers (CLM) is involved in the replenishment quantities (re). Due to the implementation of VMI, the
customer just pulls material from its WH without placing any orders.

Figure 1: Model concept representation of the case study at the semiconductor company.

3519



Lopera Diaz, Ismail, and Ehm

3.2.4 Model Output

For the development of the simulation and the study of the previously described SC, the generic performance
measurement from Ehm et al. (2018) is going to be used. Three categories for the model output are identified,
namely VMI-Performance-Related Metrics (with special focus on the inventory at the Customer WH), SC-
Resilience-Related Metrics (considering the the RE, the bullwhip effect and the actual stock reach) and
Disruption-Recovery-Related Metrics (considering the speed of the SC to restore its performance without
the disruption’s effects existence). 23 different key performance indicators (KPIs) are developed in total,
which can be seen in table 1.

Table 1: Model output (KPIs) and categories.

KPI Meaning KPI Meaning KPI Meaning

R1
Time to recover supplier
DC from supply effect
(days)

R9 Cycle service level (%) R17
Percentage of weeks with
bad performance supplier
responsible (%)

R2
Time to recover supplier
DC from demand effect
(days)

R10
Percentage of days with no
violations (%)

R18
Percentage of weeks with
bad performance customer
responsible (%)

R3
Time to recover supplier
manufacture from supply
effect (days)

R11
Forecast accuracy during
normal times (%)

R19
Percentage of weeks with
good performance (%)

R4
Time to recover supplier
manufacture from demand
effect (days)

R12
Forecast accuracy during
the disruption period %)

R20
Bullwhip effect on sup-
plier manufacture

R5
Real stock reach at cus-
tomer WH (weeks)

R13
Forecast accuracy during
the recovery period (%)

R21
Bullwhip effect on sup-
plier DC

R6
Real stock reach at the sup-
plier DC (weeks)

R14
Average weekly perfor-
mance during normal
times (%)

R22
Bullwhip effect on cus-
tomer WH

R7
Total average difference to
desired level at customer
WH (%)

R15
Average weekly perfor-
mance during the disrup-
tion period (%)

R23
Maximum difference to
average inventory at sup-
plier DC (%)

R8 Volume fill rate (%) R16
Average weekly perfor-
mance during the recovery
period (%)

VMI performance related SC related Recovery related

4 RESULTS: CASE STUDY

The model presented in the previous section is evaluated with a 2k factorial experimental design, using first
real data from the semiconductor firm of the case study to estimate the parameters of the SC and of the
random variables. After further validation, synthetic generated data is utilized. 4 Multivariate Analysis of
Variance (MANOVA) procedures are conducted with the purpose of identify the relationship between the
inputs (factors) and outputs (responses). There are in total 10 factors, each of them with two levels and
30 replications per simulation run. The factors’ levels and their meanings are explained in table 2. The
MANOVA procedures consider the factors related with the disruption on different KPIs according to the
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performance category. The factors which are not related to the disruption are used to construct 8 context
scenarios for the SC, summarized in table 3. The results from the MANOVA procedures can be found in
table 4.

Table 2: Factors levels considered for the experimental design.

Category Factor Description Level 1 Level 2

Demand related F1
Standard deviation of the random weekly
demand signal during normal times
(units/week)

35.000 45.000

Forecast error related F2
Mean of the standard deviation for the ran-
dom forecast percentage error (%)

0,15 0,25

Disruption related

F3 Duration of the demand effect (weeks) 4 8

F4
Weeks between the demand and supply ef-
fect (weeks)

35 60

F5 Duration of the supply effect (weeks) 5 9
F6 Capacity reduction (%) 0,4 0,9

Customer related F7 Forecast inflation factor (%) 0,1 0,8

Supplier related
F8 Available bottleneck capacity (units/week) 640.000 750.000
F9 Demand-Supply change believe 0,25 1
F10 Package size (units) 1.000 2.500

Table 3: Scenarios considered for the MANOVA analysis.

Factors F1 F2 F7 F8 F9 F10 Description
Scenario 1 1 1 1 1 2 2 Base scenario
Scenario 2 2 1 1 1 2 2 Higher demand uncertainty
Scenario 3 1 1 1 1 1 2 Reduced believe on changes in demand
Scenario 4 1 1 1 1 2 1 Reduced package size
Scenario 5 1 2 1 1 2 2 High uncertainty in the forecast error
Scenario 6 1 1 2 1 2 2 High degree of forecast inflation
Scenario 7 1 1 1 2 2 2 More capacity available

Scenario 8 2 2 2 1 2 2
High uncertainty in demand and forecast error, forecast
inflation, reduced capacity

Figure 2 demonstrates the logic behind the results analysis that took place with an individual example.
The procedure concluded that the levels in F4 were not significant in regards with the total average difference
to the desired level at the customer WH (R7). With only 3 factors left, 23 = 8 experiments from the total
output are needed (per scenario). The number of experiments are represented along the x axis. For each
experiment, there are 8 context scenarios, resulting in 8 different values for the studied response per
experiment. Red and green are assigned to the worst and best values. In this case, the levels in experiment
1 scenario 7 yield the best measurement, whereas the worst result are found in experiment 8 scenario 8.
The numeric values of the levels can be obtained using the information in tables 2 and 3, allowing us to
realize that having more available capacity is crucial when facing the effects of a pandemic outbreak in
order to keep the inventory at the customer WH as close as possible to the desired levels. The results for
all the responses using the previously described process are presented in table 5.

They suggest that the forecast inflation performed by the customer drastically slows down the recovery
process of the SC as a whole, even though it may be beneficial for the customer node in the short term. At
the same time, VMI based on reach during periods of unforeseen low demand becomes a bullwhip effect
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Table 4: Results from MANOVA procedures.

MANOVA
#

Responses involved KPI’s Category
Significant
factors

Experiments
considered

1 R7, R9, R10, R17 VMI performance related F3, F5, F6 8
2 R12, R13, R15, R16 VMI performance related F3, F4, F5, F6 16
3 R5, R6, R20, R21, R22, R23 SC related F3, F4, F5, F6 16
4 R1, R2, R3, R4 Recovery related F3, F4, F6 8

Figure 2: Example on how to read the results from the experimental design according to MANOVA
procedures.

generator for the upstream members, specially in industries with long cycle times. Recovery actions which
increase capacity during the supply effect of the disruption could eventually double the speed of recovery
during the post-disruption period. In terms of SC related KPIs, the demand effect has a greater and long
lasting impact than the supply effect. Finally, knowing the ”true”demand for a VMI setting allows the
supplier to improve the planning process once the demand is back.

5 CONCLUSIONS

This study contributes to the field of supply chain disruptions by first using empirical research methodologies
based on a case study and experts interview, which always measure causal relationships in the system
(Li et al. 2009). Through simulation modeling, our research highlights the interactions of key system
parameters in a disruption phase under different scenarios. The results highlight the importance of a clear
communication between the VMI partners when facing limited supply. Likewise, replenishment processes
based on reach have proven to be a bullwhip effect generator factor when an unforeseen event completely
stops the demand pull at the VMI WH, leading to inventories build up for the upstream member.
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Table 5: Results from experimental design analyzed with MANOVA.

Best Worst
Variable

Value Exp Sce Value Exp Sce
Difference

R7 28.2 1 7 48.3 8 8 71.28%
R9 100 1,2,3,4 7,7,6-1,1-7 75.8 8 8 24.20%
R10 52.1 1,2,3,4 7 30 8 8 42.42%
R17 58.9 2,4,6,8 7 70 7 6 18.85%
R12 93.2 7,15 2 82.5 2 5 11.48%
R13 98.7 1,2,3,4,5,6,7,8 6,7 92.4 16 8 6.38%
R15 54.8 2 4 3.65 12 3 93.34%
R16 51.6 1,2,3,4 7 0.16 16 8 99.69%
R5 2.33 4,8 7 1.66 13 3 28.76%
R6 2.225 4 7 1.108 13 8 50.20%
R20 1.93 1 8 3.33 13 3 72.54%
R21 0.77 13 3 1.1 7 4 42.86%
R22 0.291 1 7 0.44 5 13 51.20%
R23 6 14 8 3 3 7 50.00%
R1 83 6 4 7 7 3 91.57%
R2 30 4 4 5 6 3 83.33%
R3 25 7 3 4 2 7 84.00%
R4 34 8 3 9 2 3 73.53%

REFERENCES
Aven, T. 2017. “How Some Types of Risk Assessments Can Support Resilience Analysis and Management”. Reliability

Engineering & System Safety 167:536–543.
Banks, J., J. S. Carson, B. L. Nelson, and D. M. Nicol. 2000. Discrete-Event System Simulation. 3rd ed. Upper Saddle River,

New Jersey: Prentice-Hall, Inc.
Blos, M. F., and H.-M. Wee. 2018. “A supply Chain Vulnerability Map for the Automotive and Electronic Industries in Brazil”.

International Journal of Service Management and Sustainability 3(2):83–95.
Borshchev, A. 2013. The Big Book of Simulation Modeling: Multimethod Modeling with AnyLogic 6. 1st ed. Chicago, Illinois:

AnyLogic North America.
Burkacky, Ondrej 2021. “Coping with the Auto-Semiconductor Shortage: Strategies for Success”. https://www.mckinsey.com/

industries/automotive-and-assembly/our-insights/coping-with-the-auto-semiconductor-shortage-strategies-for-success ac-
cessed 25th of May.

Chowdhury, P., S. K. Paul, S. Kaisar, and M. A. Moktadir. 2021. “COVID-19 Pandemic Related Supply Chain Studies: A
Systematic Review”. Transportation Research Part E: Logistics and Transportation Review 148(102271):2.

Chu, Y., F. You, J. M. Wassick, and A. Agarwal. 2015. “Simulation-Based Optimization Framework for Multi-Echelon Inventory
Systems Under Uncertainty”. Computers & Chemical Engineering 73:1–16.

Costantino, F., G. Di Gravio, A. Shaban, and M. Tronci. 2014. “Replenishment Policy Based on Information Sharing to Mitigate
the Severity of Supply Chain Disruption”. International Journal of Logistics Systems and Management 18(1):3–23.

Danese, P. 2004. “Beyond Vendor Managed Inventory: The Glaxosmithkline Case”. Supply Chain Forum: An International
Journal 5(2):32–40.

Dayhoff, J. E., and R. W. Atherton. 1987. “A Model for Wafer Fabrication Dynamics in Integrated Circuit Manufacturing”.
IEEE Transactions on Systems, Man, and Cybernetics 17(1):91–100.

Dolgui, A., D. Ivanov, and B. Sokolov. 2018. “Ripple Effect in the Supply Chain: An Analysis and Recent literature”.
International Journal of Production Research 56(1-2):414–430.

Duong, L. N. K., and J. Chong. 2020. “Supply Chain Collaboration in the Presence of Disruptions: A Literature Review”.
International Journal of Production Research 58(11):3488–3507.

Ehm, H., F. Jankowiak, V. Filser, T. Lauer, and A. Nguyen. 2018. “A Generic VMI Measurement and Application in
the Semiconductor Industry”. In Proceedings of the 2018 Winter Simulation Conference, edited by M. Rabe, A. Juan,

3523

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/coping-with-the-auto-semiconductor-shortage-strategies-for-success
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/coping-with-the-auto-semiconductor-shortage-strategies-for-success


Lopera Diaz, Ismail, and Ehm

N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, 3449–3460. Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc.

Grigoryev, I. 2012. AnyLogic 6 In Three Days: A Quick Course In Simulation Modeling. 1st ed. Chicago, Illinois: AnyLogic
North America.

Ivanov, D. 2020. “Viable Supply Chain Model: Integrating Agility, Resilience and Sustainability Perspectives Lessons From
and Thinking Beyond the COVID-19 Pandemic”. Annals of Operations Research:1–21.

Ivanov, D., and A. Das. 2020. “Coronavirus (COVID-19/SARS-CoV-2) and Supply Chain Resilience: A Research Note”.
International Journal of Integrated Supply Management 13(1):90–102.

Ivanov, D., and A. Dolgui. 2021. “OR Methods for Coping With the Ripple Effect in Supply Chains During COVID-19
Pandemic: Managerial Insights and Research Implications”. International Journal of Production Economics 232:107921.

Ivanov, D., A. Dolgui, and B. Sokolov. 2019. “Ripple Effect In the Supply Chain: Definitions, Frameworks and Future Research
Perspectives”. In Handbook of Ripple Effects in the Supply Chain, edited by D. Ivanov, A. Dolgui, and B. Sokol, 1–33.
Manhattan, New York.

Ivanov, D., and M. Rozhkov. 2019. “Disruption Tails and Revival Policies in the Supply Chain”. In Handbook of Ripple Effects
in the Supply Chain, edited by D. Ivanov and M. Rozhkov, 229–260. Manhattan, New York.

Ivanov, D., B. Sokolov, and A. Dolgui. 2014. “The Ripple Effect in Supply Chains: Trade-off Efficiency-Flexibility-Resilience
in Disruption Management”. International Journal of Production Research 52(7):2154–2172.

Jones, Ash 2021. “Automakers May Have to Overhaul Supply Chains to Address Chip Shortage”. https://industryeurope.com/
sectors/transportation/automakers-may-have-to-overhaul-supply-chains-to-address-chip-shortage/ accessed 2nd of March.

Kaipia, R., J. Holmström, and K. Tanskanen. 2002. “VMI: What Are You Losing If You Let Your Customer Place Orders?”.
Production Planning & Control 13(1):17–25.

Li, S., Z. Zhu, and L. Huang. 2009. “Supply Chain Coordination and Decision Making Under Consignment Contract With
Revenue Sharing”. International Journal of Production Economics 120(1):88–99.

LMC-Automotive 2022. “Global Light Vehicle Sales In 2022: Reasons to Be Cheerful?”. https://lmc-auto.com/news-and-insights/
global-light-vehicle-sales-in-2022-reasons-to-be-cheerful/ accessed 24th of January.

Macdonald, J. R., C. W. Zobel, S. A. Melnyk, and S. E. Griffis. 2018. “Supply Chain Risk and Resilience: Theory Building
Through Structured Experiments and Simulation”. International Journal of Production Research 56(12):4337–4355.

Marquès, G., C. Thierry, J. Lamothe, and D. Gourc. 2010. “A Review of Vendor Managed Inventory (VMI): From Concept to
Processes”. Production Planning & Control 21(6):547–561.

Miller, John 2021. “Europes Largest Chipmaker Tells Car Companies to Overhaul Supply Chain”. https://www.ft.com/content/
d85e271c-387c-469f-a22d-71780522d6f7 accessed 22th of March.

News-Wires 2022. “Computer Chip Shortage Pushes European Car Sales to Record Low”. https://www.france24.com/en/business/
20220118-computer-chip-shortage-pushes-european-car-sales-to-record-low accessed 18th of January.

Paul, S. K., and P. Chowdhury. 2020. “A Production Recovery Plan In Manufacturing Supply Chains For a High-Demand Item
During COVID-19”. International Journal of Physical Distribution & Logistics Management 51(2):104–1251.

Sari, K. 2007. “Exploring the Benefits of Vendor Managed Inventory”. International Journal of Physical Distribution & Logistics
Management 37(7):529–545.

Simchi-Levi, D., P. Kaminsky, E. Simchi-Levi, and R. Shankar. 2008. Designing and Managing the Supply Chain: Concepts,
Strategies and Case Studies. 1st ed. Manhattan, New York: Tata McGraw-Hill Education.

Southard, P. B., and S. R. Swenseth. 2008. “Evaluating Vendor-Managed Inventory (VMI) In Non-Traditional Environments
Using Simulation”. International Journal of Production Economics 116(2):275–287.

Vandeput, N. 2020. Inventory Optimization: Models and Simulations. 1st ed. Berlin: Walter de Gruyter GmbH & Co KG.
Waller, M., M. E. Johnson, and T. Davis. 1999. “Vendor-Managed Inventory In the Retail Supply Chain”. Journal of Business

Logistics 20(1):183.

AUTHOR BIOGRAPHIES
MANUEL FERNANDO LOPERA DIAZ is a MSc. in Management from the Technical University of Munich. He was part of the
simulation team at Infineon Technologies AG from November 2019 until May 2022. His email address is manulop92@gmail.com.

HANS EHM is Senior Principal Engineer Supply Chain of Infineon Technologies AG. Since one decade he is heading the
Supply Chain Innovation department of Infineon Technologies AG. His email address is hans.ehm@infineon.com.

ABDELGAFAR ISMAIL MOHAMMED HAMED has a MSc. in Environmental and Geomatics Engineer from the Poly-
technic University of Milan. He leads the Supply Chain Simulation team at Infineon Technologies AG. His email address is
abdelgafar.ismail@Infineon.com.

3524

https://industryeurope.com/sectors/transportation/automakers-may-have-to-overhaul-supply-chains-to-address-chip-shortage/
https://industryeurope.com/sectors/transportation/automakers-may-have-to-overhaul-supply-chains-to-address-chip-shortage/
https://lmc-auto.com/news-and-insights/global-light-vehicle-sales-in-2022-reasons-to-be-cheerful/
https://lmc-auto.com/news-and-insights/global-light-vehicle-sales-in-2022-reasons-to-be-cheerful/
https://www.ft.com/content/d85e271c-387c-469f-a22d-71780522d6f7
https://www.ft.com/content/d85e271c-387c-469f-a22d-71780522d6f7
https://www.france24.com/en/business/20220118-computer-chip-shortage-pushes-european-car-sales-to-record-low
https://www.france24.com/en/business/20220118-computer-chip-shortage-pushes-european-car-sales-to-record-low
mailto://manulop92@gmail.com
mailto://hans.ehm@infineon.com
mailto://abdelgafar.ismail@Infineon.com

	INTRODUCTION
	LITERATURE REVIEW
	Supply Chain Resilience Theory
	Vendor Managed Inventory
	Multi Echelon Inventory Analysis and Simulation

	METHODOLOGY
	Simulation Paradigm
	Model Conceptualization and Formulation
	  Notation and Assumptions
	  Decisions and Constraints
	  Disruption Consideration
	  Model Output


	RESULTS: CASE STUDY
	CONCLUSIONS

