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ABSTRACT

Production scheduling decisions have a large impact on efficiency and output, especially in complex
environments such as those with sequence- and machine-dependent setup times. In practice, these scheduling
problems are usually solved for a fixed time ahead. In semiconductor back-end manufacturing, given the
dynamics of the environment, it is commonly observed that a schedule is no longer optimal soon after it is
made. Here, we propose time-based rescheduling heuristics that can mitigate the effect of these deviations
from the schedules. We build a simulation model to represent the dynamics of the shop floor as well as its
interaction with the upper management level that decides how orders are released. The simulation model,
which is built and validated using real-world data, enables us to evaluate the performance of the rescheduling
heuristics. By comparing the results to the case without rescheduling, it is shown that rescheduling can
significantly improve relevant performance measures.

1 INTRODUCTION

Electronic devices require integrated circuits in order to operate, communicate and interact with their
environment. All of these integrated circuits are produced in the semiconductor industry. The semiconductor
market has increased to an annual worth of over 500 billion USD and is expected to reach an annual worth
over 720 billion USD by 2027 (Fortune 2020). The market will continue to grow, driven by factors as
increasing number of data centers, the use of advanced technologies and the growing popularity of Internet
of Things (IoT) devices and smart homes (Albers 2022). In order to keep up with the high demand,
semiconductor manufacturers need to optimize their production schedules in order to reach the maximum
output of their facilities.

An overview of the production scheduling problems found in semiconductor manufacturing systems
has been provided by Mönch et al. (2011). One of these problems is unrelated parallel machine scheduling
with sequence- and machine-dependent setups; we refer the reader to Chen et al. (2022) for a recent
overview of the related literature. A common approach in this literature is to focus on ideal environments
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with a fixed number of jobs, each having known parameters and constant machine capacities with no
unexpected events or machine breakdowns. However, in reality, a production schedule which is generated
under such assumptions may be inefficient or even infeasible to follow and may require some adjustments
in response to deviations from the original production schedule. Advances in data and artificial intelligence
technologies create the potential to track the real-time status of the shop floor and automate such adjustments
to adaptively control the production activities, leading to what we refer to as autonomous scheduling. It is
of key importance to be able to quantify the potential gain from such an autonomous scheduling setting,
which will eventually use real-time data to make rescheduling decisions itself.

In this paper, we focus on back-end semiconductor manufacturing (i.e., making the final products
from the wafers received from the front-end) and assume the availability of an existing algorithm to
solve the unrelated parallel machine scheduling problem with sequence- and machine-dependent setups.
This algorithm sends production schedules to the shop floor in periodic intervals. Motivated from real-
life practice of Nexperia, a global semiconductor manufacturer producing more than 90 billion products
annually (Geurtsen et al. 2022), we consider that the adjustment on a schedule can be made via a so-called
rescheduling action. At the rescheduling moment, the scheduling algorithm is run with the new information
(i.e., obtained via real-time monitoring of the shop floor). However, it is unknown in practice when to
do the rescheduling. In addition, it is necessary for an effective rescheduling policy to have the ability to
influence the amount of orders that are released to the shop floor (so that the available production capacity
can be used as much as possible without introducing extra work in process inventory).

The objective of our paper is to address the following research questions: (1) How to represent the
dynamics in the shop floor and its interaction with the upper level that controls the order release to the shop
floor? (2) What is the potential benefit that can be obtained in real-life practice by using the rescheduling
actions? We address the first question by building a simulation model that is calibrated with real-life data
and equipped with a feed-back loop architecture that passes the current status of production (i.e., the status of
equipment and jobs) to the so-called job-generator module in the simulation model. We use this simulation
model to answer the second research question. In particular, we propose a simple rescheduling rule that
triggers the running of the scheduling algorithm based on the time passed since the last schedule generation,
frequently referred to as time-based or periodic rescheduling (Liu et al. 2016). We test the performance of
this policy by using our simulation model and quantify the effects on the key performance measures such
as tardiness, production quantity, the idle time of the equipment, and the number of rescheduled jobs.

The remainder of the paper is organized as follows. In Section 2, we provide an overview of the
link between several layers of decision making in a typical back-end production setting. In Section 3,
we provide the details of our simulation model with an emphasis on its architecture that links shop floor
execution to how orders are released to shop floor. We also explain how the simulation model is validated
by using real-life data from Nexperia. In Section 4, we present our computational results. Finally, Section 5
concludes the paper with some recommendations for future work.

2 BACK-END PLANNING AND CONTROL

At large enterprises, supply chain management is commonly decomposed into multiple hierarchical manage-
ment levels (Steven 2004). Typically, the highest level aggregates production facilities, products and time
periods, whereas the lowest level focuses on a particular production facility and product, on a much smaller
timescale. This work focuses on the bottom three levels, i.e., from top to bottom: (i) the enterprise-wide
tactical level, (ii) the operational management level and (iii) manufacturing execution.

The tactical level comprises the bulk of production planning. Based on demand forecasts, its main task
is to match supply and demand over several months up to a year. It oversees the entire chain: from external
suppliers, through front-end and back-end production facilities, to customers. However, the level of detail
is limited and rough-cut models are used to provide quick feasibility checks. On a regular basis, usually
weekly, the tactical management releases orders to the back-end facilities. According to the rough-cut
models, these orders supposedly fill the facility’s production capacity up to the next order release.
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Operational management is on the receiving side of this order release. The main task of the operational
layer is to plan and control the manufacturing process, on the daily to weekly timeframe. Contrary to the
tactical level, the operational management level has the complete overview of the available equipment and
other manufacturing resources. With this information, it prepares a schedule. This schedule has a horizon
roughly up to the next order release. Since the tactical level makes use of rough-cut models, the actual
horizon may lie before or after this point.

Subsequently, this schedule is communicated to the manufacturing execution layer, i.e., the shop floor.
Although the shop floor is instructed to adhere to the schedule, the production area is a highly stochastic
environment. Under normal circumstances the schedule is adhered to, however, uncertain events (e.g.
machine breakdowns) may necessitate to deviate from the original schedule. Mostly, such necessary
adjustments are made ad hoc and rarely ever communicated back to the operational management layer.

3 MODELING APPROACH

A simulation model is developed to mimic the flow of jobs from the tactical management layer all the way
to the finished products. In this section, we present the details of this modeling approach. Specifically, the
data acquisition is described first. Then, the simulation model, which comprises four main components (a
job generator, scheduler, shop floor, and rescheduler) will be explained in detail. At last, several settings
are specified and an example experiment is conducted to illustrate and verify the behavior of the simulation
model.

3.1 Data Acquisition

To develop a simulation model that imitates the flow of jobs through the supply chain, as described previously,
historical data of these jobs is required. This work focuses on a specific part of the back-end manufacturing
at Nexperia. Particularly, the focus is on 35 machines that process a certain group of products. These
machines are of different ages and use different technologies, i.e., using standard scheduling terminology,
they are unrelated. Furthermore, the group of products processed on these machines consists of roughly 600
unique products. For more information about the back-end manufacturing process, the reader is referred
to (Deenen et al. 2020).

Over a period of about one year, a data set that contains the past realizations of the jobs processed
on these machines was constructed. Each job in this data set contains a unique identifier, a product type,
as well as several other product level characteristics. This data can be obtained relatively easily from the
manufacturing execution system (MES). However, to gain insight regarding the production of a particular
job, another data source needs to be consulted.

In 2001, Nexperia introduced its so-called advanced warning and data collection system, abbreviated
AWACS. This information system is directly connected to the equipment, and it records events into event
log files. Each log entry starts with a timestamp and is followed by an event description. Events include
equipment state changes, product handles and a wide range of other actions such as the start of a job or
scanning a new batch of raw material (e.g. a new wafer or lead frame). To gain insight into the behavior
of the equipment, these event logs are the most reliable and accurate data source available. It is a reliable
source because these events are triggered automatically and do not rely on any manual actions of an operator.
For example, when a sensor detects that a certain limit is exceeded, the equipment state automatically
changes to the error state. Although an operator is required to resolve the error, the system does not rely on
an operator to record the occurrence of the error; this happens in a fully automatic fashion. Furthermore,
the system is highly accurate as it records events with a nanosecond precision.

For the purpose of this study, three quantities are derived from AWACS, for each of the historic job
realizations. The simplest of the three is the product quantity of a job. The second value that is derived
from the event logs is the average process speed in the production state. Some products may be processed at
lower speeds compared to others (e.g. due to quality related restrictions), whereas some machines process
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faster or slower in general (e.g. newer versus older machines). The third measure that is derived is the
fraction of time that the machine is in the non-production state. Although the machine can be in various
states, in this context it is only relevant to consider the production state (i.e., machine is processing) and
the non-production state. The latter is an aggregate of all the states wherein the machine is not processing,
regardless the variety of possible reasons (e.g. an error occurred or it is waiting for a raw material). Thus,
this third measure is an indication of the amount of disturbances that occurred during processing of a
particular job.

In summary, the data set contains a total of 5500 historical realizations of jobs. Each job has a unique
identifier, and is further described by various product level characteristics and three measures that capture
the details regarding its production process. How this data is used within the simulation model is covered
in the next section.

3.2 Simulation Model

The entire simulation model is programmed in C# 6.0 and makes use of the CSSL library to ease
implementation (Adan, Deenen, and Geurtsen 2020). The simulation model constitutes multiple components
that interact with one another to produce an accurate imitation of the real-world environment, i.e., each
element functions as an individual entity which is also present within the supply chain management hierarchy
described previously in Section 2. Before jobs are scheduled and released to the shop floor, the arrival of
jobs to the operational management level within the factory is simulated. Typically, this task is performed
on the tactical level, which is modeled in the simulation as the Job generator component. Once jobs are
generated, a schedule can be created which is generally a task performed on the operational management
level. Within this simulation system, this process is contained within the Scheduler constituent. Afterwards,
the jobs are sent to the shop floor where they are produced by the assembly lines, i.e., the manufacturing
execution level. This highly stochastic process is modeled in the Shop floor component. At last, the
Rescheduler monitors the progress at the shop floor through key performance indicators and may trigger the
Scheduler when deemed necessary, e.g. in case significant delays from the original schedule are observed.
This way, the Rescheduler establishes a closed loop between the operational management level and the
manufacturing execution level. A schematic overview of the entire system and its elements is shown in
Figure 1. Next, the content of each component is explained in further detail.

Sample of jobs

SchedulerJob generator

Pending jobs

Shop floor

Rescheduler

Active and pending jobs, idle time

Schedule

Figure 1: Schematic overview of the complete simulation model.

Job generator At regular intervals of N days, this module creates a batch of jobs which is sent to the
Scheduler component. This way, it mimics the interaction of the tactical with the operational management,
which usually occurs on a weekly or biweekly basis (i.e., N = 7 or N = 14). As mentioned, the tactical
management layer uses rough-cut models to estimate the available capacity. Here, a rough estimate is made
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in three steps: (i) determine the maximum capacity, (ii) estimate the remaining work from the previous
period and (iii) obtain the idle time during the previous period. Note that the capacity is measured in
time. The maximum capacity represents the capacity if the system is empty, i.e., the number of machines
multiplied by the length of the N day period. However, when the estimate is made, there may be unfinished
jobs in the system, and some capacity must be allocated to these unfinished jobs in the coming period. To
account for this, the expected duration of these jobs is subtracted from the maximum capacity. Similarly,
some machines may already be idle for some time, meaning that the previous batch of jobs was not sufficient
to fill the available capacity for N days. Thus, the workload of the next sample should be increased. Hence,
for every machine, this idle time (if any) is added, yielding a final estimate for the total capacity to fill:
the target capacity C.

Now that the target capacity is known, the next step is to fill this capacity with jobs. This is done by
randomly sampling jobs from a sample pool, which consists of historical jobs. Given the large number of
historical realizations, this pool is a realistic representation of the size distribution as well as the type mix,
referring to different product types. Sampling a job from this pool is done is two steps. First, the product
type p is sampled. Then, the quantity Q is sampled from a subset of the pool that only contains historical
realization of jobs for product type p. This is to account for the fact that some product types always come
as small jobs, whereas others (so-called high-runners) always come as large jobs. Now, given p and Q, its
effective process time (EPT ) can be estimated. The effective process time, or simply the total duration of
the job from start to finish, constitutes three components: (i) setup time, (ii) process time and (iii) down
time:

EPT = tsetup + tprocess + tdown

where the setup time tsetup is sequence dependent, i.e., it depends on the job itself as well as on the job
previously processed on the machine. The process time tprocess and the downtime tdown depend on the
machine and the product type. However, as the schedule is yet not constructed, the machine assignment is
unknown at this point. Therefore, an estimate for the EPT (denoted as EPT est.) is calculated as follows:

EPT est. =
tmin.
setup +Q/v̄p

1− f̄down,p
(1)

where tmin.
setup is the minimal setup time, i.e., the time that is always incurred regardless of the product type

or scheduling decisions, v̄p is the average process speed of jobs for product type p over all machines
measured in products per time unit, and f̄down,p is the average fraction of the time that a job for product
type p was in the down state over all machines. Although almost certainly EPT est. will differ from the
eventual simulated realization, a rough estimate is sufficient at this stage and also mimics the actual way
of working at the tactical management level. The estimate of the sampled job is subtracted from the total
capacity that needs to be filled and the sampling procedure continues until the entire sample of jobs fills
this total capacity. The complete procedure in summarized in Algorithm 1. When the sample is complete,
it is sent to the Scheduler.

Scheduler After the sample of jobs is received from the Job generator, a new schedule is created. This
schedule includes the new jobs together with the unfinished jobs that were already scheduled previously.
As jobs are non-preemptive, only jobs that are unfinished and not started are included. The remaining
time of a job that is currently in process is accounted for by the scheduler. The scheduling problem
is characterized by unrelated parallel machines, sequence and machine dependent setup times, machine
eligibility constraints and job specific release and due dates. The problem is treated as deterministic,
meaning that the scheduler does not consider the stochasticity of the shop floor in making scheduling
decisions. However, contrary to the rough capacity estimate made earlier by the higher management, the
scheduler does consider machine dependencies. For this purpose, the scheduler uses a machine learning
(ML) model that accurately predicts the EPT of a job, given its characteristics as well as the position in
the schedule (machine, predecessor, successor). This ML model was developed in a previous study, where
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Algorithm 1: Job sampling procedure

Input: Target capacity C
Result: Sample of jobs

1 while C > 0 do
2 p ← Uniform random sample from historical data
3 Q ← Uniform random sample from historical data of product type p
4 Add job for product type p and quantity Q to sample
5 EPT est. ← Equation (1)
6 C ← C−EPT est.

7 end

it was exported to the open neural network exchange (ONNX) format, facilitating facile inclusion of the
ML model into the scheduler (Shridhar et al. 2020). Furthermore, the scheduler itself utilizes a hybrid
genetic algorithm (HGA) that was also developed in a previous study and specifically designed for the
problem at hand (Adan et al. 2018). A genetic algorithm is a metaheuristic optimization method that
simulates the process of natural evolution. In this algorithm, a population of candidate solutions within
the search space, so-called individuals, evolves toward better solutions through an iterative evolutionary
process. Each candidate solution in the population represents a schedule. Eventually, the best schedule
from the population is chosen. In this case, the objective is to minimize the makespan. Hence, the schedule
with the lowest makespan value is selected. This schedule is sent to the shop floor.

Shop floor The shop floor receives a schedule from the operational management level and follows this
during execution. Specifically, the shop floor is modeled as a discrete event simulation that consists of
multiple parallel machines with queues (one queue for each machine). The jobs in each queue and their
sequence are dictated by the received schedule. When a machine is available and the queue is not empty,
the next job is started. At this point, the “real” EPT (denoted as EPT real) is determined:

EPT real =
tsetup +Q/vp

1− fdown,p
(2)

which is very similar to Equation (1) except that here tsetup is the actual setup time, and vp as well as fdown,p
are random samples from the respective empirical distributions (whereas Equation (1) uses the averages
of these distributions). Note that the setup time is deterministic in Equation (2). Although in reality the
setup time is a stochastic value, attempts to extract this value from the available historical data were not
successful. Hence, the sequence- and machine-dependent deterministic setup times used by the operational
management are also used here.

Rescheduler While the schedule is executed at the shop floor, progress is continuously monitored. Specific
key performance indicators (KPIs) can quantify progress and deviation from the original schedule. These
can in turn be used by heuristics or other methods that decide when to trigger a new scheduling action in
order to optimize a certain objective, e.g. throughput or tardiness. When a decision is taken to perform
a rescheduling action during schedule execution, the Scheduler is triggered again. A new schedule will
then be generated based on the jobs that at that time are still waiting in the queue (recall that jobs are
non-preemptive). From that point onward, the Shop floor will adhere to the newly created schedule until
a new rescheduling decision is made or the end of the N day period is reached (which means that a new
sample of jobs is released from the Job generator that also triggers the Scheduler).
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3.3 Simulation Settings

Several settings have to be specified before a simulation can be executed. First, regarding the Job generator,
for all simulations in this work the length of the interval between subsequent job releases is set to a week,
as is common in practice.

The second aspect of the settings concerns the Scheduler module. As explained in the previous section,
this module uses an HGA. The number of evolutionary cycles that is necessary for the objective to converge
depends on the size of the problem instance. Based on preliminary experiments, the number of iterations
is set to 400, as this appeared sufficient to always reach convergence. Furthermore, the algorithm is always
run four times (in parallel). In the end, the best schedule in terms of the objective is selected.

Third, the type of the simulation needs to be specified. To obtain statistically accurate results, either the
length of the simulation must be sufficiently long or, if this is not the case, a large number of replications
is required (Banks 1998; Law et al. 2007). The choice is made to perform the former as it is of interest to
know the long-run average of the performance measures. As the simulation starts off completely empty,
the behavior during the first few weeks is slightly different compared to the steady-state behavior. To safely
eliminate this start-up effect, every simulation starts with a warm-up period of 20 weeks (meaning that
during this period all the observations are discarded). After the warm-up phase, the simulation continues for
another 400 weeks. The relative confidence interval (RCI) is defined as the confidence interval normalized
with the mean. For the relevant performance measures (which will be introduced shortly), preliminary
experiments have shown that with these settings the RCI is sufficiently low, i.e., well below 0.05.

3.4 Validation

The purpose of the simulation model described in the previous section is to mimic the real-world scheduling
and production, in combination with the interactions between the various management layers. This section
evaluates whether the simulation model fulfills its purpose. First, the behavior of the job generator is
evaluated, and second, the shop floor is addressed.

Workload When the Job generator releases a sample of jobs (a workload), its intention is to occupy all
the available capacity at the Shop floor from that moment up to the next time it generates a sample of
jobs, which are separated by a specifiable regular time interval. This interval is set to a week (which is
common in practice) and a simulation is run. During this simulation, two quantities are tracked: (i) the
workload released by the Job generator, and (ii) the workload at the Shop floor (i.e., active jobs plus jobs
in the queue). In both cases the workload is estimated using EPT est. from Equation (1). Figure 2 shows
a snapshot of both quantities at an arbitrary time during the simulation. The total workload in the system
(blue) increases instantaneously at regular intervals, corresponding to the moment where the Job generator
releases new jobs. Then, the workload at the Shop floor decreases steadily over the course of a week as
jobs are processed. However, at the end of each weekly period, right before the new jobs are released,
there is some workload remaining. It can clearly be seen that the Job generator adjusts the next release
of jobs (red) accordingly, as is the intended behavior.

Additionally, Figure 3 shows the number of active machines over the time period. Clearly, some
machines become idle near the end of a week, despite the fact that the workload on the shop floor is far
from zero (recall Figure 2). This suggests that during the course of the week, the stochasticity of the
system developed an imbalance in the distribution of the workload over the machines, which is a promising
prospect for the potential of rescheduling.

Effective processing speed The effective process time at the shop floor is modeled by Equation (2). To
visualize and verify whether this model is in accordance with the historical realizations, these realizations
need to be compared to the simulated values. To enable this, all realized EPT values are first normalized
by the product quantity Q, yielding the effective process speed (EPS). This simulation produced a total of
66000 values while the historical data contains 20000 observations. Figure 4 shows box-and-whisker plots
of the historical and the simulated values for two different machine types. In addition, the historical and
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Figure 2: A snapshot of the released workload according to the Job generator and the workload perceived
by the Shop floor. In this example, the Job generator is triggered every week.

simulation data for each machine type is sorted based on a product characteristic that has a high influence
on the speed. Clearly, the shape of the distributions and the medians are very similar for each machine type
and product characteristic. In most cases, the variation of the simulated values is slightly higher compared
to the history. This is not entirely surprising, as it may be due to the fact that a simulation requires two
values (the process speed vp and the average fraction of the time in the down state tdown,p) to be sampled,
which may increase variation.

4 COMPUTATIONAL EXPERIMENTS

This section focuses mainly on the rescheduling module, previously introduced in Section 3.2. In its most
abstract sense, this module continuously monitors the shop floor progress and triggers rescheduling when
deemed necessary. Progress can be described by various performance indicators, and rescheduling does not
necessarily affect all the jobs, but may be limited to a selected subset. In other words, various heuristics
can be implemented in this module. To demonstrate this setup and determine the value of rescheduling,
a series of simple time-based rescheduling heuristics are implemented. Then, to compare these heuristics
mutually, a simulation is run for each heuristic. Also, a simulation is run without any rescheduling to serve
as a general benchmark.

The job generator evaluates the remaining workload in the system at regular time intervals and samples
new jobs such that the system contains a specified target workload, as explained earlier. During the interval,
the rescheduling module is kept active. In case of a time-based heuristic, rescheduling is triggered at
fixed times, regardless of the progress at the shop floor. These triggers are spread over time, such that the
interval contains H equidistant triggers, as illustrated in Figure 5. Varying H leads to a series of time-based
heuristics.

To evaluate the potential of these rescheduling heuristics, multiple simulations are conducted. For
each heuristic, the settings stated in Section 3.3 are used. Throughout the course of 400 weeks, every
week, several measures are recorded, namely: the total quantity that was processed, the total idle time, the
average tardiness and the total number of rescheduled jobs. All these measures are of significant practical
relevance. The results for each heuristic, characterized by the number of triggers H within a weekly period,
are summarized in Figure 6. Here, the case where H equals zero refers to the scenario without rescheduling.
First of all, it can be seen that rescheduling more frequently (from left to right) increases the number of
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Figure 3: A snapshot of the number of active machines on the Shop floor. In this example, the Job generator
is triggered every week, i.e., H = 7.
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Figure 4: Distribution of the effective process speed from historical data (filled) and simulation data
(non-filled) for two different machine types.

products that are produced (Figure 6a), which is perfectly in line with the decreasing trend of the idle
time (Figure 6b). More precisely, the throughput difference between the scenario without rescheduling
and the case where rescheduling is triggered every day is 2.15%. While this appears as a small gain, in
the semiconductor industry this leads to large revenue benefits. The tardiness also improves significantly,
see Figure 6c. A large difference is observed between the scenario without rescheduling (H = 0) and all
cases with rescheduling (H > 0). Interestingly, as rescheduling is triggered more frequently, the tardiness
increases slightly. A probable explanation for this phenomenon is that as rescheduling reduces the idle
time, it fills this idle time with jobs. Although this is beneficial for the throughput, this also poses a risk,
as a job may unexpectedly take longer than predicted. As a result, the job may incur tardiness itself, but
also translates the delay to jobs later in the queue. At last, Figure 6d shows the number of jobs involved
in rescheduling. To place these numbers in perspective: the total number of jobs that comprise a weekly
workload lies around 160 to 170. Frequent rescheduling may not be desired by the shop floor workers, since
it may disrupt an orderly way of working and make preparations useless – effects that are not included in
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Figure 5: Time based heuristics with one (H is 1) and two (H is 2) triggers in case the job generator is
triggered every week. A single machine is considered and the blocks represent jobs.

this model. All in all, these experiments clearly quantify the potential benefit that can be achieved through
rescheduling.
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Figure 6: Results for the various time based heuristics each characterized by a different number of
rescheduling triggers H: (a) weekly total processed quantity, (b) the weekly total idle time, (c) the average
tardiness and (d) the weekly total number of rescheduled jobs. The bars indicate the 95% confidence
interval.
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5 CONCLUSIONS AND FUTURE WORK

We consider a back-end semiconductor manufacturing setting with a focus on production scheduling.
Motivated by the real-life observation that actual production schedules executed on the shop floor often
deviate from the planned schedules, we propose an approach that can easily be followed in practice to
minimize the effect of such deviations by effectively triggering the construction of new production schedules,
referred to as rescheduling in the paper. The approach uses a simulation model that is validated with real-life
data from a semiconductor manufacturer. An important feature of the simulation model is its ability to
mimic not only the shop floor but also the interactions with higher management levels. In this way, the
amount of jobs released to the shop floor can be controlled for the purpose of a more effective rescheduling.
In our study, we use the simulation model to quantify the benefit from a time-based rescheduling heuristics.

Despite the improved performance measures, the rescheduling heuristics proposed in this study considers
the entire schedule being executed on the shop floor, which is not desirable in practice. A future research
direction is to develop improved rescheduling heuristics that can identify machines that need rescheduling
(e.g. delayed or break down) and then reschedule only a specific part of the schedule to minimize the
disturbance to the shop floor.
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