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ABSTRACT 

In this paper, we consider a scheduling problem for a single batch processing machine in semiconductor 

wafer fabrication facilities (wafer fabs). An integrated objective function that combines the total weighted 
tardiness (TWT) and the electricity cost (EC) is considered. A time-of-use (TOU) tariff is assumed. A 
genetic programming (GP) procedure is proposed to automatically discover dispatching rules for list 
scheduling approaches. Results of designed computational experiments demonstrate that the learned 
dispatching rules lead to high-quality schedules in a short amount of computing time. 

1 INTRODUCTION 

Integrated circuits (ICs) on silicon wafers, thin discs made from silicon or gallium arsenide, are produced 
in semiconductor manufacturing. Wafer fabrication, sort, assembly, and final test are the major production 
stages (Mönch et al. 2013). Among the four stages, the wafer fabrication stage that is performed in wafer 
fabs is the most challenging one. Although dispatching is the major production control approach in wafer 
fabs, with the recent dramatic increase in computer efficiency, scheduling approaches have become more 
competitive (Mönch et al. 2011). It is well-known that the semiconductor industry consumes more energy 

than other industries such as the steel or petrochemical industry (Yu et al. 2017; Mönch et al. 2018). 
Therefore, it is desirable that sustainability issues are taken into account in scheduling approaches for wafer 
fabs.  

Up to now energy-aware scheduling approaches are only rarely discussed for wafer fabs. We are only 
aware of Rocholl et al. (2020) where a scheduling problem for the diffusion furnace tool group is studied. 
A TOU tariff is assumed in this paper. Genetic algorithms (GAs) are used to compute the set of all Pareto-

optimal schedules for the TWT and EC measures. Diffusion furnaces belong to the machines with the 
largest energy consumption in wafer fabs (Singapore Government 2022) since the diffusion process is a 
high temperature process that disperses material on the wafer surface. Hence, from a sustainability point of 
view it is crucial to look for efficient energy-aware scheduling approaches for diffusion furnaces. 

In the present paper, we consider a scheduling problem for a single batch processing machine with a 
TOU tariff. A GP approach is proposed to automatically discover dispatching rules that can be applied 

within list scheduling approaches. In contrast to Rocholl et al. (2020), we consider an integrated objective 
function based on the TWT and the EC measure, respectively. We will demonstrate by designed 
computational experiments that the learned dispatching rules are able to compute high-quality schedules 
for this model problem under many experimental conditions.  

The remainder of this paper is organized as follows. In the next section, we will describe the problem 
and discuss related work. The proposed learning approach will be discussed in Section 3. This includes the 
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discussion of a reference approach based on the apparent tardiness cost (ATC) dispatching rule. Results of 
computational experiments with the automatically discovered dispatching rules are presented in Section 4. 
Finally, conclusions and future work directions are discussed in Section 5. 

2 PROBLEM SETTING 

2.1 Problem Statement 

A finite scheduling horizon consisting of 𝑡 = 1,… , 𝑇 periods of equal length is assumed. We consider 𝑛 
jobs that are processed on a single batch processing machine. A batch is a group of jobs that are processed 
at the same time, i.e. in parallel, on the same machine. This setting is called p-batching. Each job 𝑗 has a 
due date 𝑑𝑗 and a weight 𝑤𝑗. All the jobs are ready to be processed at the beginning of the scheduling 

horizon. The jobs belong to incompatible families. The families are labeled by 𝑓 = 1,… , 𝐹. Only jobs of 
the same family 𝑓 can be batched together. All jobs belonging to a family 𝑓 have the same processing time 
𝑝𝑓 . We assume that 𝑛𝑓  jobs are in family 𝑓. The family of job 𝑗 is 𝑓(𝑗). The maximum batch size 𝐵 is 

measured in number of jobs. After a batch is started, it cannot be interrupted. The EC is modeled as a 
piecewise constant function over the periods of the scheduling horizon, i.e., we have 𝐸𝐶 = ∑ 𝑒(𝑡)𝑧𝑡

𝑇
𝑡=1  

where 𝑒(𝑡) is the EC in period 𝑡 and 𝑧𝑡  is an indicator variable that is 1 if a batch is processed in period 𝑡 
and 0 otherwise. The TWT is given by 𝑇𝑊𝑇 = ∑ 𝑤𝑗max(𝐶𝑗 − 𝑑𝑗, 0),

𝑛
𝑗=1  where 𝐶𝑗 is the completion time 

of job 𝑗.  
Using the three-field notation from deterministic machine scheduling theory (Graham et al. 1979), the 

scheduling problem at hand can be represented by 
 
        1|𝑝 − 𝑏𝑎𝑡𝑐ℎ, 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒|𝜆𝑇𝑊𝑇 + (1 − 𝜆)𝐸𝐶,      (1) 

 
where p-batch refers to parallel batch processing and incompatible to incompatible job families. The 
parameter 𝜆𝜖[0,1] is used to balance the two objectives that are in conflict. The integrated performance 
measure for (1) is not regular since including idle time in a schedule might be beneficial for the EC measure. 

It is easy to see that each optimal solution of (1) is Pareto-optimal too. Since the 1||𝑇𝑊𝑇 problem, a 
special case of the 1|𝑝 − 𝑏𝑎𝑡𝑐ℎ, 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒|𝑇𝑊𝑇  problem for 𝐵 = 1 , is already NP-hard (Lawler 
1977) the bi-criteria scheduling problem (1) is also NP-hard (T’kindt and Billaut 2002). Hence, we have to 
look for efficient heuristics. 

2.2 Related Work 

We refer to Fowler and Mönch (2022) for a recent survey of scheduling methods for p-batching problems. 
A GP procedure (Nguyen et al. 2017) to learn dispatching rules for scheduling problems for a single batch 
processing machine with incompatible families and the total completion time (TC) and total tardiness (TT) 
measure is proposed by Geiger and Uzsoy (2008). Their approach based on the Scheduling Rule Discovery 
and Parallel Learning System (SCRUPLES) from Geiger et al. (2006) outperforms the best performing 

algorithms from Uzsoy (1995) and is competitive with the Batched ATC (BATC) rule of Mehta and Uzsoy 
(1998). However, only manufacturing-related  performance measures are considered by Geiger and Uzsoy 
(2008). In the present paper, we apply GP to a scheduling problem with an energy-aware, non-regular 
performance measure. Hildebrandt et al. (2014) and Kück et al. (2017) use GP to discover appropriate 
dispatching rules for a wafer fab. Discrete-event simulation is used to assess the quality of the dispatching 
rules. However, sustainability issues are not taken into account in these papers. 

There are only very few papers that tackle energy-aware scheduling problems for batch processing 
machines with the TWT performance measure. Liu (2014) consider a bi-criteria scheduling problem for a 
single batch processing machine. TWT and an EC-related measure are considered. The set of all Pareto-
optimal schedules is computed. However, the problem does not contain incompatible families and a TOU 
tariff. Moreover, several hybrid GAs are proposed by Rocholl et al. (2020) to tackle a parallel-machine 
version of problem (1). Again, the set of Pareto-optimal schedules is computed. 
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In the present paper, we consider a special case of the problem of Rocholl et al. (2020). However, only 
an integrated performance measure is used. We are not interested in computing the set of all Pareto-optimal 
schedules. The main goal is to automatically determine appropriate dispatching rules for list scheduling 

approaches.  

3 LEARNING APPROACH FOR ENERGY-AWARE DISPATCHING RULES  

3.1 List Scheduling Approach 

We start by sketching a list scheduling scheme for scheduling problem (1). A dispatching rule is the main 
ingredient of a list scheduling approach. The jobs are sorted with respect to the index value of the rule. The 
job with the highest index value is selected to be processed next on an available machine. Hence, 

appropriate problem-specific dispatching rules are required. We use the BATC rule proposed by Mehta and 
Uzsoy (1998) to form and sequence batches which is known to provide often high-quality schedules for the 
TWT measure (cf., for instance, Almeder and Mönch 2011). The BATC rule is based on the ATC index: 
 

    𝐼𝑗(𝑡) ≔ 𝑤𝑗 𝑝𝑓(𝑗)𝑒
(−max(𝑑𝑗−𝑝𝑓(𝑗)−𝑡,0) 𝜅�̅�⁄ )⁄ ,        (2) 

 
where 𝑡 is the point in time where the dispatch decision is made, 𝜅 is a look-ahead parameter, and �̅� is the 
average processing time of the unscheduled jobs.  

The jobs of each family are sorted with the respect to (2) in non-increasing order. The number of 

unscheduled jobs of family 𝑓 is denoted by 𝑙(𝑓). The first min(𝑙(𝑓), 𝐵) jobs of family 𝑓 are used to form a 

batch 𝑏(𝑓).  We then compute the BATC index: 

 

          𝐼𝐵𝐴𝑇𝐶(𝑓, 𝑡) = ∑ 𝐼𝑗(𝑡)𝑗𝜖𝑏(𝑓) .               (3) 

 

The batch of the family with the largest BATC value (3) is chosen to be processed next. We refer to this 

batch as 𝑏𝑛𝑒𝑥𝑡. Since it might be beneficial to include idle time into the schedule to avoid periods with large 

EC values, a decision theory heuristic (DTH) similar to the one proposed by Mönch et al. (2005) is applied. 

For a given batch that can be scheduled in period 𝑡  it determines the consequences of an idle period, i.e. of 

postponing the batch, with respect to the TWT and EC measures. The DTH for a given batch 𝑏𝑛𝑒𝑥𝑡 and an 

available machine at time 𝑡 works as follows: 

 

DTH Procedure 

1. Compute the increase of the TWT and EC values of the schedule caused by the scheduling decision for 

batch 𝑏𝑛𝑒𝑥𝑡. We obtain 𝑇𝑊𝑇(𝑏𝑛𝑒𝑥𝑡, 𝑡) ≔ ∑ 𝑤𝑗max(𝑡 + 𝑝𝑓(𝑗) − 𝑑𝑗, 0)𝑗𝜖𝑏𝑛𝑒𝑥𝑡  and 𝐸𝐶(𝑏𝑛𝑒𝑥𝑡, 𝑡 ) ≔

∑ 𝑒(𝜏)
𝑡+𝑝𝑓(𝑗)
𝜏=𝑡  where 𝑡 is the time for making the scheduling decision. 

2. In addition to 𝑏𝑛𝑒𝑥𝑡, it is desirable to consider the set of unscheduled jobs. Therefore, we estimate an 

average delay 𝑃∗  of the unscheduled jobs 𝐽𝑢  excluding the jobs of 𝑏𝑛𝑒𝑥𝑡  by 𝑃∗ =

1 𝐵⁄ (∑ 𝑝𝑓(𝑗)𝑗∈𝐽𝑢−𝑏𝑛𝑒𝑥𝑡
). The estimated TWT increase is given by 𝑇𝑊𝑇(𝐽𝑢, 𝑡): =

∑ 𝑤𝑗max(𝑡 + 𝑃
∗ + 𝑝𝑓(𝑗) − 𝑑𝑗 , 0)𝑗∈𝐽𝑢−𝑏𝑛𝑒𝑥𝑡

 and the estimated EC increase is 𝐸𝐶(𝐽𝑢, 𝑡): =

∑ 𝑒(𝜏)
𝑡𝑒𝑛𝑑
𝜏=𝑡+𝑝𝑓(𝑗)+𝑃

∗  where 𝑡𝑒𝑛𝑑(𝑡) ≔ min(𝑇, ⌈𝑡 + 𝑝𝑎𝑣𝑔 + 𝑃 |𝐽𝑢| 𝐵⁄ ⌉). Here, 𝑝𝑎𝑣𝑔  is the average 

processing time of all jobs, and 𝑃 is the current number of right-shifts in periods. 

3. We look at maximum 𝑃max := ⌈𝑝𝑎𝑣𝑔 2⁄ ⌉  periods into the future. For all 𝑃 ≤ 𝑃max  we compute 

𝑇𝑊𝑇(𝑏𝑛𝑒𝑥𝑡, 𝑡 + 𝑃), 𝐸𝐶(𝑏𝑛𝑒𝑥𝑡, 𝑡 + 𝑃 ), 𝑇𝑊𝑇(𝐽𝑢, 𝑡 + 𝑃), and 𝐸𝐶(𝐽𝑢, 𝑡 + 𝑃). Initially, we set 𝑃 ≔ 1. The 

quantities 

𝑇𝑊𝑇△(𝑏𝑛𝑒𝑥𝑡, 𝑡, 𝑃) ≔ 𝑇𝑊𝑇(𝑏𝑛𝑒𝑥𝑡, 𝑡 + 𝑃) −  𝑇𝑊𝑇(𝑏𝑛𝑒𝑥𝑡 , 𝑡) 
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𝐸𝐶△(𝑏𝑛𝑒𝑥𝑡, 𝑡, 𝑃) ≔ 𝐸𝐶(𝑏𝑛𝑒𝑥𝑡, 𝑡 + 𝑃) −  𝐸𝐶(𝑏𝑛𝑒𝑥𝑡, 𝑡) 
 

𝑇𝑊𝑇△( 𝐽𝑢, 𝑡, 𝑃) ≔ 𝑇𝑊𝑇(𝐽𝑢, 𝑡 + 𝑃) −  𝑇𝑊𝑇(𝐽𝑢, 𝑡) 
 

𝐸𝐶△(𝐽𝑢, 𝑡, 𝑃) ≔ 𝐸𝐶(𝐽𝑢, 𝑡 + 𝑃) −  𝐸𝐶(𝐽𝑢, 𝑡) 
 

are computed. Next, we introduce the increase of the objective function (OF) given by  

 

𝑂𝐹△(𝑏𝑛𝑒𝑥𝑡, 𝑡, 𝑃) ≔ 𝜆𝑇𝑊𝑇△(𝑏𝑛𝑒𝑥𝑡 , 𝑡, 𝑃) + (1 − 𝜆) 𝐸𝐶△(𝑏𝑛𝑒𝑥𝑡 , 𝑡, 𝑃) 
 

𝑂𝐹△(𝐽𝑢, 𝑡, 𝑃) ≔ 𝜆𝑇𝑊𝑇△(𝐽𝑢, 𝑡, 𝑃) + (1 − 𝜆) 𝐸𝐶△(𝐽𝑢, 𝑡, 𝑃). 
 

We introduce the idle period when 𝑂𝐹△(𝑏𝑛𝑒𝑥𝑡, 𝑡, 𝑃) + 𝑂𝐹△(𝐽𝑢, 𝑡, 𝑃) < 0 holds, i.e., when introducing 

idle time for 𝑃 periods is beneficial with respect to the integrated objective function. The approach goes 

to Step 4 when we decide for a given 𝑡 and 𝑃 ≤ 𝑃max to include 𝑃 idle periods into the schedule. If such 

a 𝑃 value does not exist we schedule 𝑏𝑛𝑒𝑥𝑡 at time 𝑡 and terminate the algorithm. 

4. Repeat the Steps 1.-3. for 𝑡 ≔ 𝑡 + 𝑃  until 𝑡 does not exceed the scheduling horizon. 

 

Note that the DTH scheme works for an arbitrary index (2) and its batched version (3). Hence, it will be 

applied in the GP approach too. When the DTH is applied with the BATC rule, we refer to it as BATC-DTH 

scheme. 

3.2 GP Approach 

GP is an approach to construct tree structures based on a given set of primitives (Michalewicz 1996; Nguyen 
et al. 2017). These primitives belong to a set of relational and conditional functions denoted by 𝐹 and a set 
of problem-specific terminals 𝑇. The relational and conditional functions are unary and binary operators 
and functions. Variables and numerical constants form the set of terminals. Terminals model the attribute 
values within the priority indices of dispatching rules. 

The logical expression of a priority index can be transformed into an intermediate representation using 
prefix notation. The prefix notation is based on the idea that the function is written before the arguments it 
operates on. On the one hand, an expression tree can be derived from the priority index in prefix notation 
in an automated manner. Functions correspond to nodes in the tree whereas terminals form the leaves of 
the expression tree. On the other hand, an expression tree can be transformed automatically into an 
expression in prefix notation by carrying out an preorder traversal of the tree. As a result, a priority index 

can be represented by an expression tree.  
A GP is a special GA type that operates on tree structures of variable lengths to represent solution 

candidates. A GP starts from a candidate set of solutions, a so-called population. The individuals belonging 
to the population are called chromosomes. Each chromosome represents a dispatching rule. The 
chromosomes of the initial population are randomly chosen. Genetic operators such as crossover and 
mutation are applied. Two chromosomes are randomly chosen with a crossover probability 𝑝𝑐. A subtree 

is randomly determined in the tree that belongs to a parent chromosome. The two subtrees are swapped 
between the two parent chromosomes. The mutation operator first randomly chooses two disjoint subtrees 
from the tree that is associated with the chromosome with a probability of occurrence of 𝑝𝑚. The selected 
subtrees are then swapped. Note that the chosen crossover and mutation operators ensure feasibility of the 
expression trees. Crossover and mutation are illustrated in Figure 1. A steady-state replacement with a 
replacement rate of 𝑟𝑟 is used. Roulette wheel selection is applied. 

The applied terminals for scheduling problem (1) are summarized in Table 1. We see that both TWT- 

and EC-related terminals are used. The set of functions is shown in Table 2. In order to assess the fitness 
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of a chromosome, the chromosome is decoded, i.e., the priority index is computed. Based on this index and 

its batched counterpart, an instance of (1) is solved by applying list scheduling together with the DTH 

procedure sketched in Subsection 3.1. Note that we have to replace the objective function 𝜆𝑇𝑊𝑇 +
(1 − 𝜆)𝐸𝐶 by 𝜆𝑇𝑊𝑇 + 𝛼(1 − 𝜆)𝐸𝐶 where 𝛼 is a scaling factor that relates the magnitude of the TWT and 

EC value to each other. We use 𝛼 = 𝑇𝑊𝑇max 𝐸𝐶max⁄  where 𝑇𝑊𝑇max is the TWT value obtained by list 

scheduling and the DTH scheme based on the earliest due date (EDD) rule and 𝐸𝐶max is the sum of 𝑒(𝑡) 
values over the entire scheduling horizon. On the one hand, the TWT value obtained by the EDD rule is 

large since this dispatching rule only relies on the due dates of the jobs and not on the weight. On the other 

hand, the 𝐸𝐶max value is also large enough since it is calculated on the assumption that no idle time is 

included in the schedule. 

 

Figure 1: Crossover and mutation operators. 

Table 1: Expression tree terminals. 

Terminal Description 
𝑑 due date of the current job 
𝑝 processing time of the current job 
𝑤 weight of the current job 
𝑡 current time 
𝑠 slack of the current job 
𝑎𝑝 average processing time of all jobs 
𝑟𝑝 average processing time of the remaining jobs 
C constant value from [0,9] 
𝑒𝑐 𝑒(𝑡) value of the current period 
𝑎𝑒𝑐 average 𝑒(𝑡) value of all periods 
𝑟𝑒𝑐 average 𝑒(𝑡) value of the remaining periods 

 
The fitness value of the chromosome is obtained from the integrated objective function value. It is 

desirable to limit the depth of the expression trees and to allow only a maximum number of child nodes for 
each tree node. This avoids that only very specific dispatching rules are discovered.  

An initial population is formed as follows. All terminals and functions from the Tables 1-2 have the 
same probability to be selected to form expression trees to be included into the initial population. A 
maximum initial depth of the trees is ensured during the generation process. Moreover, it is respected for 
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the initial population that only a maximum allowed number of child nodes is possible. Feasibility is ensured 
by repeating the random selection process until an appropriate number of child nodes is chosen and the 
depth of the trees is not too large. A dispatching rule is learned for a single problem instance or an entire 

set of problem instances for problem (1). This is called the training phase The overall GP approach, i.e. the 
training phase, is depicted in Figure 2. 

Table 2: Set of functions. 

Function Description 
+ 𝑎 + 𝑏 
− 𝑎 − 𝑏 
∗ 𝑎 ∗ 𝑏 
/ 𝑎 𝑏⁄ , if 𝑏 ≠ 0, 1 otherwise 
𝐻 max(𝑎, 𝑏) 
𝐿 min(𝑎, 𝑏) 
∧ 𝑎𝑏 
𝑁 −𝑎 
𝐸𝑋𝑃 𝑒𝑎 = exp(𝑎) 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

Figure 2: GP-based learning approach to discover new dispatching rules. 

Afterwards, the specific dispatching rule is applied to problem instances with similar instance 
properties, for instance with respect to tightness of the due dates, than the instances used in the training 
phase. This application of the learned rule is called testing phase. This phase aims to assess the 
generalization capabilities of the learning scheme. 

4 COMPUTATIONAL EXPERIMENTS 

4.1 Design of Experiments 

The performance of the discovered dispatching rules is assessed based on randomly generated problem 
instances. We expect that the performance of the learning scheme depends on the number of jobs 𝑛, the 
number of incompatible families 𝐹, the due date setting, namely the percent of tardy jobs 𝑇, the range of 
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the due dates 𝑅, and the maximum batch size 𝐵. The generation scheme for the instances is summarized in 
Table 3. Overall, we consider 2880 instances, 40 per factor combination. We use a TOU tariff appropriate 
for the winter time that consists of four time windows over the course of the scheduling horizon. Low, 

medium, and high EC values are assumed. We obtain: 
 

𝑒𝑊 ≔

{
 

 
𝐸𝐶ℎ ,   1 ≤ 𝑡 < 𝑇 3⁄            

𝐸𝐶𝑚,       𝑇 3⁄ ≤ 𝑡 < 𝑇 2⁄  

𝐸𝐶𝑙 ,    𝑇 2⁄ ≤ 𝑡 < 5𝑇 6⁄    
𝐸𝐶𝑚,    otherwise             

, 

 

where 𝐸𝐶ℎ, 𝐸𝐶𝑚, and 𝐸𝐶𝑙 refer to a high, medium, and low EC value, respectively. Moreover, we use a 

summer tariff consisting of two time windows over the scheduling horizon. We have 

 

𝑒𝑠 ≔ {

        
𝐸𝐶ℎ ,     1 ≤ 𝑡 < 𝑇 2⁄

𝐸𝐶𝑙 ,   otherwise.     
 

 
We use 5, 10, and 20 instances from the same factor combination to learn a single rule in the training phase. 
The settings 𝜆𝜖{0.25,0.75} are used in the experiments.  

A maximum computing time of 450, 900, and 1800s per GP run is used for 5, 10, and 20 instances 
applied in the training phase, respectively. The increasing amount of computing time covers the higher 
computational burden caused by a larger number of problem instances in the training phase. Here, the 5, 
10, and 20 instances are always the first ones from the 40 independent instances for each factor combination. 

The last 20 instances per factor combination are used in the testing phase. Three independent GP runs are 
conducted per considered set of instances during the training phase. The resulting three dispatching rules 
are then applied in the testing phase. 

Table 3: Instance generation scheme. 

Factor Level Count 

Number of jobs 𝑛 𝑛 ∈ {120,160,200} 3 

Processing time of the jobs 𝑝𝑓 

𝑝𝑗 ≔

{
 
 

 
 
2 with probability 𝑝 = 0.2 
4 with probability 𝑝 = 0.2
10 with probability 𝑝 = 0.3
16 with probility 𝑝 = 0.2
20 with probability 𝑝 = 0.1

 

1 

Weight of the jobs 𝑤𝑗 𝑤𝑗~𝑈[0,1] 1 

Percentage of tardy jobs 𝑇 ∈ {0.3,0.6} 2 

Range of the due dates 𝑅 ∈ {0.5,2.5} 2 

Due date setting 𝑑𝑗~𝑈[𝜇(1 − 𝑅 2⁄ ), 𝜇(1 + 𝑅 2⁄ )] 

𝜇:= �̂�max(1 − 𝑇) 

�̂�max:= 𝑛 (𝐹𝐵)⁄ ∑𝑝𝑓(𝑗)

𝑛𝑓

𝑗=1

 

1 

Number of job families 𝐹 𝐹 ∈ {2,4,6} 3 

Maximum batch size B 𝐵 ∈ {4,8} 2 

Factor combinations  72 

Independent instances per factor combination  40 

Total number of problem instances  2880 
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4.2 Parameterization and Implementation Issues 

We use the following parameters shown in Table 4 in the GP scheme. They are determined following a trial 
and error strategy based on preliminary computational experiments with a limited number of instances from 

Table 3. 

Table 4: Parameter settings. 

Parameter Value 

Population size 500 

Crossover probability 𝑝𝑐 0.80 

Mutation probability 𝑝𝑚 0.05 

Replacement rate 𝑟𝑟 0.50 

Maximum initial depth of a tree 8 

Maximum depth of a tree 12 

Maximum number of child nodes 4 

 
The look-ahead parameter 𝜅 in the ATC rule is taken from the grid 𝜅 = 0.1𝑘, where 𝑘 = 1,… ,50. The 

𝜅 value that leads to smallest TWT value is used for comparison with the GP approach. We set the length 
of the scheduling horizon by estimating the makespan by  

 

�̂� ≔ ⌈(1 + 𝛾)1 𝐵⁄ ∑ (𝑛𝑓(𝑗) + 1)𝑝𝑓(𝑗)
𝑛
𝑗=1 ⌉  

 

where 𝛾 = 0.80 is a safety factor. All algorithms are coded in the C++ programming language. The GP is 

implemented using the GaLib framework (Wall 2022). The computational experiments are carried out on 

a PC with an Intel Core i5-6400 processor with 2.70 GHz and 16 GB of RAM. 

4.3 Computational Results 

In the experiments, the relative error of the GP approach with respect to the BATC-DTH in % 
 

𝐼𝑚𝑝 ≔ ((𝜆𝑇𝑊𝑇 + (1 − 𝜆)𝐸𝐶)(𝐺𝑃) (𝜆𝑇𝑊𝑇 + (1 − 𝜆)𝐸𝐶)⁄ (𝐵𝐴𝑇𝐶 − 𝐷𝑇𝐻))100% 
 

is reported. It is shown for all factor combination in Table 5 when 5 instances are simultaneously used in 
the training phase.  

The abbreviation CT is used for the computing time of a single GP run. We present first the Imp values 
for the training phase, followed by the value for the testing phase after the slash. Improvements of the GP 

over the BATC-DTH are marked bold. Instead of comparing problem instances individually, the problem 
instances are grouped according to factor level values. We always report the average (Avg.), maximum 
(Max.), and minimum (Min.) values among comparable problem instances.  

The corresponding results for 10 instances used in the training phase are reported in Table 6. We show 
again the results for the training and also the testing phase.  

The corresponding results for 20 instances used in the training phase are reported in Table 7. The 

presentation of the results is the same as the one found in Tables 5 and 6. Due to space limitations, we show 
the results for the summer tariff only in an aggregated way in Figure 3. The results for 5, 10 and 20 training 
instances used in a single GP run are reported. 

4.4 Analysis and Interpretation of the Results 

We see from the Table 5 – 7 that the learned dispatching rules are on average slightly better than the BATC-
DTH which can be considered as a rule that leads to high-quality schedules especially when the due dates 
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are tight (Mehta and Uzsoy 1998, Almeder and Mönch 2011). We observe from the tables that 
improvements up to 8.82% are possible for the training phase. Especially the factor combinations with 𝑇 =
0.3 lead to the largest improvements. This is caused by the fact that the ATC rule does not work well in 

this situation when the number of tardy jobs is fairly small (Almeder and Mönch 2011). In the testing phase, 
improvements up to 10.29% are possible.  

The setting 𝜆 = 0.75 usually leads to larger improvements of the GP approach over the BATC-DTH 
than 𝜆 = 0.25 for both the training and the testing phase. This observation can be explained by the fact that 
the room for improvement is smaller when the TWT measure is less important. We also see that 𝐵 = 8 
leads to larger improvements than 𝐵 = 4. The same is true for a large number of incompatible families, i.e. 

𝐹 = 6. 

Table 5: Computational results for the winter tariff for 5 instances and CT=450s per GP run. 

Factor/Level Avg. Max. Min. Avg. Max. Min. 

 𝜆 = 0.75 𝜆 = 0.25 

𝑛 = 120 1.51/1.12 6.71/9.17 -3.88/-6.16 0.50/0.61 3.19/3.17 -5.26/-2.75 

𝑛 = 160 1.24/1.36 6.62/6.36 -5.98/-7.31 0.62/0.41 4.45/2.12 -1.51/-2.56 

𝑛 = 200 0.47/0.63 7.70/7.34 -6.06/-11.14 0.34/0.33 2.90/2.06 -2.02/-2.30 

𝑇 = 0.3, 𝑅 = 0.5  0.72/1.09 4.75/6.36 -2.80/-5.10 -0.28/0.37 0.83/1.21 -5.26/-0.61 

𝑇 = 0.3, 𝑅 = 2.5  2.70/2.41 7.70/9.17 -6.06/-5.24 0.77/0.51 4.45/3.17 -2.02/-1.70 

 𝑇 = 0.6, 𝑅 = 0.5 -0.95/-1.21 1.67/1.80 -5.98/-7,31 0.70/0.50 1.91/1.71 -1.09/-0.54 

 𝑇 = 0.6, 𝑅 = 2.5 1.81/1.85 7.54/6.15 -2.19/-11.14 0.77/0.42 3.19/2.12 -1.98/-2.75 

𝐹 = 2 0.95/0.21 5.39/5.87 -3.00/-11.14 -0.02/0.03 1.49/1.01 -5.26/-2.56 

𝐹 = 4 0.99/1.18 7.70/9.17 -6.06/-5.72 0.77/0.65 4.45/3.17 -1.81/-1.89 

𝐹 = 6 1.27/1.71 7.54/7,24 -5.98/-7.31 0.72/0.67 3.19/2.41 -2.02/-2.75 

𝐵 = 4 0.51/0.32 5.39/6.08 -6.06/-11.14 0.32/0.30 2.33/1.87 -2.02/-2.30 

𝐵 = 8 1.63/1.75 7.70/9.17 -5.45/-5.72 0.65/0.59 4.45/3.17 -5.26/-2.75 

Overall 1.07/1.04 7.70/9.17 -6.06/-11.14 0.49/0.45 4.45/3.17 -5.26/-2.75 

 

Table 6: Computational results for the winter tariff for 10 instances and CT=900s per GP run. 

Factor/Level Avg. Max. Min. Avg. Max. Min. 

 𝜆 = 0.75 𝜆 = 0.25 

𝑛 = 120 0.90/1.15 7.23/10.29 -9.15/-9.96 0.51/0.70 3.29/2.61 -4.90/-1.96 

𝑛 = 160 1.19/1.53 8.33/7.99 -6.36/-4.28 0.76/0.63 3.49/2.06 -0.91/-0.85 

𝑛 = 200 0.38/1.03 6.90/6.01 -7.11/-6.96 0.49/0.42 4.10/2.46 -1.35/-1.72 

𝑇 = 0.3, 𝑅 = 0.5  -0.17/1.04 5.87/5.17 -9.15/-9.96 -0.05/0.29 0.72/1.01 -1.35/-1.00 

𝑇 = 0.3, 𝑅 = 2.5  3.10/2.63 8.33/10.29 -4.67/-5.34 1.06/0.82 4.10/2.61 -4.90/-1.96 

 𝑇 = 0.6, 𝑅 = 0.5 -0.87/-0.76 1.81/1.48 -4.97/-4.77 0.60/0.52 1.99/1.63 -0.88/-0.82 

 𝑇 = 0.6, 𝑅 = 2.5 1.24/2.03 4.75/6.30 -8.41/-9.95 0.74/0.71 3.01/2.06 -0.76/-1.58 

𝐹 = 2 0.83/0.72 5.87/5.17 -5.80/-9.96 0.26/0.26 1.75/1.68 -1.35/-1.72 

𝐹 = 4 0.33/1.33 5.46/10.29 -8.41/-9.95 0.45/0.67 3.49/2.61 -4.90/-1.96 

𝐹 = 6 1.31/1.65 8.33/7.55 -9.15/-5.77 1.05/0.83 4.10/2.41 -0.76/-1.19 

𝐵 = 4 0.15/0.28 7.23/6.10 -9.15/-9.96 0.31/0.37 3.29/1.79 -4.90/-1.96 

𝐵 = 8 1.49/2.19 8.33/10.29 -6.36/-3.74 0.86/0.80 4.10/2.61 -1.35/-1.19 

Overall 0.82/1.24 8.33/10.29 -9.15/-9.96 0.59/0.58 4.10/2.61 -4.90/-1.96 
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Table 7: Computational results for the winter tariff for 20 instances and CT=1800s per GP run. 

Factor/Level Avg. Max. Min. Avg. Max. Min. 

 𝜆 = 0.75 𝜆 = 0.25 

𝑛 = 120 1.29/1.64 8.82/10.08 -6.30/-7.83 0.60/0.83 3.86/3.03 -2.97/-2.54 

𝑛 = 160 1.26/1.98 7.15/8.78 -4.44/-4.45 0.74/0.66 2.54/2.37 -0.71/-1.86 

𝑛 = 200 0.19/0.89 5.67/7.36 -6.79/-9.64 0.55/0.63 2.62/2.91 -1.58/-1.48 

𝑇 = 0.3, 𝑅 = 0.5 -0.11/1.41 4.78/6.41 -6.79/-7.83 0.05/0.36 1.03/1.09 -0.71/-1.86 

𝑇 = 0.3, 𝑅 = 2.5 3.53/3.32 8.82/10.08 -2.71/-1.92 1.09/1.07 3.86/3.03 -2.31/-1.48 

𝑇 = 0.6, 𝑅 = 0.5 -1.22/-1.02 1.32/1.44 -4.44/-4.45 0.73/0.67 1.81/1.90 -0.71/-0.65 

𝑇 = 0.6, 𝑅 = 2.5 1.44/2.29 5.17/5.70 -6.76/-9.64 0.64/0.72 2.62/2.37 -2.97/-2.54 

𝐹 = 2 0.68/0.96 5.43/4.86 -6.79/-5.82 0.31/0.31 1.84/1.93 -0.81/-1.86 

𝐹 = 4 0.78/1.78 6.95/10.08 -6.76/-9.64 0.55/0.86 2.54/2.91 -2.31/-2.02 

𝐹 = 6 1.27/1.76 8.82/7.30 -6.30/-7.83 1.03/0.95 3.86/3.03 -2.97/-2.54 

𝐵 = 4 0.57/0.82 8.82/6.34 -6.76/-9.64 0.42/0.53 2.43/1.98 -2.31/-2.02 

𝐵 = 8 1.25/2.18 8.11/10.08 -6.79/-5.82 0.84/0.87 3.86/3.03 -2.97/-2.54 

Overall 0.91/1.50 8.82/10.08 -6.79/-9.64 0.63/0.70 3.86/3.03 -2.97/-2.54 

 

Figure 3: Aggregated computational results for the summer tariff. 

Moreover, the discovered rules are able to generalize, i.e., they perform well beyond the limits of the 

training instance set. We also observe that more instances for training purposes increase the generalization 
ability of the proposed method. Regarding the difference of winter and summer tariff, the GP performs 
slightly better for the summer than for the winter tariff (see Figure 3 and the Tables 5-7). 

5 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

In this paper, we studied an energy-aware scheduling problem for a single batch processing machine. A 
TOU tariff was assumed. The TWT and EC measures were considered within an integrated performance 

measure. A GP approach was designed for this problem. Computational experiments demonstrated that the 
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GP approach outperforms often a conventional list scheduling approach based on the BATC rule combined 
with the DTH scheme. 

There are several directions for future research. First of all, it is interesting to include unequal release 

dates into the scheduling problem at hand. It is also interesting to extend the approach for more sophisticated 
machine environments such as parallel machines or flexible flow shops. Moreover, we are interested in 
using parallel programming techniques to speed up the population-based GP procedure. 
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