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ABSTRACT

Scheduling of manufacturing systems in practice is challenging due to dynamic production environments,
such as random job arrivals and machine breakdowns. Dispatching rules are often used because they can
be easily applied even in such dynamic manufacturing environments. However, dispatching rules often
fail to provide a satisfactory production schedule because they cannot consider overall system states when
assigning jobs. Therefore, we develop a real-time scheduling method using imitation learning, especially
behavior cloning, to solve job shop scheduling problems. We define a set of available actions, a target
optimal policy, and a dynamic graph-based state representation method for imitation learning. The proposed
method is size-agnostic, which then can be applied to unseen larger problems. The experimental results
show that the proposed method performs better to minimize makespan than other dispatching rules in
dynamic job shops.

1 INTRODUCTION

A job shop scheduling problem (JSSP) is known to be NP-hard (Garey et al. 1976). In the JSSP, a job
has multiple operations, each of which is conducted in a specific machine sequentially. It is required to
determine the operation sequence on each machine while minimizing the makespan. The JSSP can be found
in many manufacturing areas, especially for semiconductors, liquid crystal displays (LCDs), and automotive
industries (Tanev et al. 2004; Fayad and Petrovic 2005; Liu et al. 2014; Lee et al. 2021). Some studies
have proposed exact optimization methods for the JSSP (Manne 1960; Lomnicki 1965), but numerous
studies have applied problem-specific heuristics (Mason et al. 2005; Pfund et al. 2008), meta-heuristics
(Gonçalves et al. 2005; Elmi et al. 2011), or dispatching rules (Dominic et al. 2004; Chen and Matis 2013)
due to the high complexity of the problem. Among them, dispatching rule-based scheduling methods are
widely used in practice because they can make decisions on assigning jobs instantly for dynamic production
environments. Several companies have tried to use some exact or heuristic optimization approaches beyond
dispatching rules (Klemmt et al. 2017), but many of manufacturing lines in Korea have still been using
dispatching rule-based real-time scheduling programs (Ko et al. 2013; Lee et al. 2018) due to the complexity
and dynamics of scheduling environments. The real-time dispatcher is especially useful for manufacturing
systems with various job types which arrive randomly (Hu 2013; Wang et al. 2017).

In general, the simple dispatching rules do not provide satisfactory schedules in the JSSP. Therefore,
many studies have proposed machine learning-based approaches to provide more sophisticated dispatching
rules. Lee et al. (2020) proposed a supervised learning-based method with sample schedules obtained
from sequential simulation to provide weights used for dispatching rules. Aydin and Öztemel (2000)
and Chen et al. (2010) proposed Q-learning algorithms to choose an appropriate dispatching rule and
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Figure 1: Disjunctive graphs: (a) initial state, (b) complete state.

a combination of rules, respectively, in each state. The states are defined only with a certain range of
processing times on machines and WIP (work in process) in Aydin and Öztemel (2000) and Chen et al.
(2010), respectively. Note that if dispatching rules are used as the action set instead of individual operations,
the solution space is restricted because they choose only an operation with the extreme value of a certain
criteria, especially processing time for the shortest processing time(SPT) rule, and better schedules cannot
be obtained compared to combinations of dispatching rules. Lin et al. (2019) and Yang et al. (2021) used
deep reinforcement learning (DRL) for selecting a certain dispatching rule in each state. They have used
statistical values as state features, such as the average processing times and maximum processing time of
jobs. Hence, it is not possible to differentiate the production states of different instances as long as their
statistical values are the same.

Zhang et al. (2020) and Park et al. (2021) proposed reinforcement learning (RL) methods using
disjunctive graphs. They represented the state of the scheduling environment by using the disjunctive
graph. A disjunctive graph has conjunctive arcs and disjunctive arcs which represent the precedence
between operations of each job and in each machine, respectively. Figure 1 shows two examples of
disjunctive graphs. Node oi, j represents the jth operation of job i, and the nodes (or operations) requiring
the same machine have the same color. After determining the sequence of operations in each machine,
the direction of disjunctive arcs is determined. Their proposed approaches are size-agnostic in that the
number of operations can be changed because the relationship learned between nodes by using a graph
neural network (GNN) model can be applied to new nodes. In the methods of Zhang et al. (2020) and Park
et al. (2021), selecting an action usually means choosing an available node, which represents an operation,
and states include features each node has, such as the processing time of the corresponding operation.
Zhang et al. (2020) considered all the first unscheduled operations of each job as a set of available actions
regardless of whether the operation is waiting to be processed or not. Hence, selecting an action (or an
operation) can change the start time of operations already scheduled, which makes it impossible to be
used for real-time scheduling. Park et al. (2021) used real-time features in a state but only considered the
operations, which can start immediately or soon, as an available action set. This action set can make only
partial solution space, so we propose a novel definition of a set of available actions which can make wider
solution space. The definition is described in Section 2.1.

Imitation learning is one of the methods used to learn expert decisions without explicit reward (Hussein
et al. 2017; Attia and Dayan 2018). There are two approaches in imitation learning, behavioral cloning (BC)
and apprenticeship learning (AL); AL proceeds a learning process by generating a reward function from the
expert demonstrations, but BC uses supervised learning to predict actions based on states. RL algorithms
search for many trajectories including actions not giving good schedules in exploration. Therefore, it can
be very beneficial to use the information of optimal solutions while searching for nodes as in imitation
learning.

Therefore, we propose an imitation learning approach based on a graph for real-time job shop scheduling
problems. The method first builds optimal policies from optimal schedules of small-sized JSSPs and then
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train them by using BC with a dynamic disjunctive graph. Zhang et al. (2020) proposed an adding-arc
strategy to reduce the number of disjunctive arcs in the graph, but it cannot have the machine information
on which the unscheduled nodes should be assigned. As an alternative, we propose a dynamic disjunctive
graph to make the original one sparse and efficient. The optimal policy generation method is described
in Section 2. We then train an agent by imitation learning to learn the optimal action selections using a
complex GNN model described in Section 3. We test the method in dynamic environments where jobs arrive
randomly as well as deterministic ones. The experimental results in Section 4 show better performance of
the proposed method compared to dispatching rules.

2 OPTIMAL POLICY DATA SET FOR JSSP

We first derive a data set containing optimal policies in order to learn a scheduling agent which dynamically
assigns operations to idle machines. Optimal schedules are obtained from constraint programming (CP)
(Zhou 1996). From the beginning, at each decision-making point (state) where there are one or more idle
machines that have multiple available actions (nodes), an operation assigned in an optimal schedule, the
set of available actions, and node features that show the states of remaining operations and machines, are
stored in the data set. We do not consider the situations where there is only one available operation node
for an idle machine as a state because the machine can just start the operation. We explain the definition
of available actions and node features, and procedure of policy generation in this section.

2.1 Action Set

Each time a machine becomes idle, choosing one of the operations waiting can lead to a sub-optimal
solution. For example, Figure 2 shows three schedules that can be derived according to different definitions
of available action set for a JSSP with four jobs and four machines. The boxes with the same color indicate
the operations from the same job, and the value in the box represents the processing time of each operation.
Assume that the current time is 1 (t = 1) where machines 3 and 4 have completed operations and machine
1 and 2 are processing the blue and green job, respectively. For machine 3, only the second operation
of the purple job is waiting to be processed, and choosing the operation leads to the complete schedule
as illustrated in Figure 2 (c). Many dispatching rules consider the only job at t = 1, however, a better
solution in terms of makespan can be obtained if machine 3 keeps idle for one more second. Therefore,
it is important to consider not only operations waiting but also operations that can start soon. Park et al.
(2021) consider the green job too because it may soon enter machine 3 because its first operation is being
processed on machine 2. Hence, they can reserve the green one at t = 1 on machine 3, and the machine
maintains idle status until t = 2. The definition of an available action set of Park et al. (2021) can lead to
the complete schedule illustrated in Figure 2 (b).

Furthermore, we can generate a larger number of schedules than Park et al. (2021) when we allow
reserving more operations. Figure 2 (a) shows better makespan than Figure 2 (b) because Figure 2 (a) also
considers the blue job at t = 1 on machine 3. We propose the novel definition of an available action set
which can generate the case of Figure 2 (a). The following shows our proposed definition of the set of
available actions at a state.
Definition 1 Set of available actions: The set of available operations A is defined as {oi j ∈Wk ∪Rk | k ∈
Kidle, |Wk ∪Rk|> 1}, where Wk is a set of operations waiting for machine k, and Rk is a set of reservable
operations for machine k, Kidle is a set of idle machines. Rk is defined as {oi′ j′ | ri′ j′ < pi j,∀oi j ∈Wk,oi′ j′ ∈
Uk \Wk}, where Uk is a set of operations that have to be processed on machine k but not been assigned
yet, pi j is the processing time of oi j, and ri j is the ready time of oi j.

The ready time of an operation indicates the earliest possible arrival time to the corresponding machine.
It is computed by ri j = max{Cini +∑

j−1
l=ni+1 pil,Cini+1 +∑

j−1
l=ni+2 pil, · · · ,Ci j−1} where Ci j is the earliest

completion time of oi j, and ni is the index of the operation of job i that is being processed or waiting to be
processed. For ni, oini is being processed or waiting to process. Ci j is the remaining processing time of oi j
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Figure 2: Three schedules that can be derived according to different definitions of available action set: (a)
proposed definition, (b) Park et al. (2021), (c) only waiting job.

if oi j is being processed and also considers jobs that have not arrived yet but are reserved for processing
in the machine. In Figure 2 (a), selecting the blue job for machine 3 as an action at t = 1 is the operation
reservation. The blue job will be processed between t = 3 and t = 7 in machine 3. After reserving the blue
one for machine 3 at t = 1, the ready time of the green operation for machine 3 becomes 7.

The definition allows considering all the unscheduled operations as potential candidates with a proportion,
while Park et al. (2021) consider only unscheduled operations that have all their predecessors within the
job route have already been scheduled. From the above definition, the set of available actions includes
not only operations waiting but also operations that have not arrived yet and have less ready times than
processing times of all operations waiting. We further provide Proposition 1 to reduce the number of
available actions. Actions satisfying the condition in the proposition are eliminated from the action set.
This has been applied to Definition 1.
Proposition 1 For oi j ∈Wk and oi′ j′ ∈Uk \Wk, selecting oi′ j′ is dominated by selecting oi j if ri′ j′ ≥ pi j.

Proof. If ri′ j′ ≥ pi j, oi′ j′ arrives after completing oi j, and therefore, there is no need to select oi′ j′ instead
of oi j. Note that, selecting oi j can make an active schedule but selecting oi′ j′ makes an inactive schedule.

2.2 Optimal Policy Generation

An optimal policy is to select an optimal action at each decision-making point. An agent is going to
learn the optimal policy as a target in our proposed imitation learning method. However, when multiple
machines become idle at the same time, multiple actions should be assigned simultaneously. Figure 3
shows intermediate states and different transitions which can be appeared from S0 to state S7. States S0,
S1, · · · , S6 are detected at the same time. If S7 is found in an optimal schedule, we have to generate target
optimal policies of the intermediate states to learn a scheduling agent. Each state S4, S5, and S6 has one
optimal action. For instance, the optimal action of state S4 is O21. However, states S0, S1, S2, S3 have
multiple optimal actions. For S0, the three actions (selecting O12, O32, and O21) are optimal actions, and
the scheduling agent should be learned to select one of them with the same probability. Hence, the target
optimal policy of S0 has the value 1/3 for each of the optimal actions. In the same way, the optimal policy
of state S1 is to have the probability of 1/2 for selecting O32 and O21, respectively. The generated target
optimal policies are used in the learning step.

2.3 Graph-based State Representation

We propose a dynamic graph to represent the state of a decision-making point. In the graph for the JSSP,
disjunctive arcs are changed to conjunctive arcs each time an operation is assigned. Once an operation is
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Figure 3: Intermediate states and transitions at a same time.

completed, choosing one of the remaining operations is required. Therefore, completed operations have
little effect on future decisions. We hence propose a dynamic graph that has no finished nodes as illustrated
in Figure 4(b). The proposed dynamic disjunctive graph in Figure 4(b) does not contain completed nodes
compared to the original disjunctive graph in Figure 4(a). The reservation nodes, which are not yet ready
to be processed but are selected by the agent, do not affect disjunctive arcs because the other operations
can be processed before the reserved operations.

(a) (b)

Figure 4: The graph representation: (a) disjunctive graph, (b) dynamic disjunctive graph.

We define the node features to embed the current schedule by considering dynamic situations as follows:

• Operation status: [1, 0] and [0, 1] indicate that the operation has not been scheduled yet and has
been scheduled, respectively. [0, 1] also considers the operation being processed or having been
reserved.

• Processing time: The processing time of each operation is used. If the operation is being processed,
the current remaining processing time is used.

• Tail processing time: It is the sum of processing times of succeeding operations that have to be
performed to complete its job excluding itself.

• Relative processing time: The ratio of the processing time of the node to the total remaining
processing time in its job. The total remaining processing time is equal to the sum of the tail
processing time and its processing time. If the operation is the last one in its job, the value becomes
1.

• Number of succeeding operations: The number of succeeding operations from the operation excluding
itself is used. If the operation is the last one in its job, the value becomes 0.

These features have no information about the operation nodes completed before. Note that the processing
time-related features, processing time and tail processing time, are normalized with the maximum processing
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time. If a dynamic disjunctive graph is not used, an additional dimension for completed operations and
the original processing times of the nodes are required.

3 LEARNING FOR OPTIMAL POLICY

A GNN model is used for node embedding from the graph-based state, and it computes selection probabilities,
called a policy, for available actions. The parameters of the GNN model are updated in the learning step to
minimize loss with optimal policies previously generated, and the agent selects an action in the execution
step with the highest selection probability for every decision-making point. Since the GNN model learns
the relation between nodes, it can be applied with no additional learning even if the graph size is changed
after learning step, and the selection probabilities are also able to be computed even if the number of nodes
is changed. In this section, we first describe how to compute the selection probabilities by GNN models
we use and then describe the learning step.

3.1 GNN Model

A GNN model provides embedding vectors as the output by aggregating node features. We design two
GNN models denoted as GNN1 and GNN2. They are modified from GNN models proposed by Park et al.
(2021) and Park et al. (2020), respectively. We further consider an attention mechanism to learn with
different weights for nodes (Vaswani et al. 2017), which means that a GNN model learns which nodes are
important for the current state described by a graph. We also add a global embedding vector to reflect the
structure information of the graph (Park et al. 2020).

For the first model, GNN1, the lth embedding vector of a node v, hl
v, is represented as follows:

hl
v = f1

(
A1

(
hl−1

u ,u ∈ Np(v)
)
∥A2

(
hl−1

u ,u ∈ Ns(v)
)
∥

A3

(
hl−1

u ,u ∈ Nd(v)
)
∥act

(
∑

u∈V

hl−1
u

)
∥hl−1

v ∥xv

)
where Np(v), Ns(v), and Nd(v) are the sets of neighbor nodes connected with node v by input and output
conjunctive edges and a disjunctive edge, respectively, V is a set of all nodes, xv is the node features
of node v, act(·) is an activation function, fz(·)(z ∈ N) is a learnable multi-layer network built with Nl
layers and act(·), Az(·)(z ∈ N) is a learnable attention network (Vaswani et al. 2017), and ∥ is the vector
concatenation operator. Np(v) and Ns(v) are /0 for the first and last operations of each job, respectively.
For the other operations, the size of Np(v) and Ns(v) becomes one in a JSSP. This GNN model aggregates
the (l −1)th embedding vectors of neighbors and itself into its lth embedding vector. The initial embedding
vector of node v, h0

v , becomes e(xv) where e is a non-linear transformation function built with Nl layers.
The final embedding vector hv becomes hNa

v where Na is the number of aggregation of the GNN model.
The attention network is described as follows:

A
(

hv,u ∈ N (v)
)
= f2

(
∥Y

y=1

(
∑

v∈N

α
y
v hv

))

αv =
exp

(
f3(hv)

)
∑u∈N (v) exp

(
f3(hu)

)
where Y is the number of heads of attention network, α

y
v is normalized attention score of head y for node

v.
The second model, GNN2, embeds the node features into each layer composed of the same type of

edges, which are input conjunctive edges, output conjunctive edges, and disjunctive edges. There are three
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Figure 5: Structure of the proposed multiplex GNN model

layers (p: input conjunctive edges, s: output conjunctive edges, d: disjunctive edges) on the disjunctive
graph from the three types of edges. The lth embedding vectors for the layers are represented as follows:

h(p)l
v = f4

(
A4

(
h(p)l−1

u ∥xu,u ∈ Np(v)
))

h(s)lv = f5

(
A5

(
h(s)l−1

u ∥xu,u ∈ Np(v)
))

h(d)lv = f6

(
A6

(
h(d)l−1

u ∥xu,u ∈ Np(v)
))

The final embedding vector hv becomes the average vector of f7(h
(p)Na
v ||h(s)Na

v ||h(d)Na
v ) for v ∈ V .

Finally, we consider the global embedding vector in order to get a policy for the available actions. The
selection probability of node v, φ(v), is calculated by using the softmax function as follows:

φ(v) =
exp

(
f8(hv||g)

)
∑u∈A exp

(
f8(hu||g)

)
where A is the set of available actions, and g is the global embedding vector that is the average vector of
hv for all operation nodes in the current graph. The network f8(·) outputs a scalar score for each node in
order to compute a probability.

3.2 Learning Process

The parameters of the GNN model are updated to minimize the loss, which is the mean squared error
(MSE) between the target optimal policy and the predicted policy of the GNN model. During the learning
process, we use a cyclical learning rate so that the best value of a learning rate can be obtained without
many experiments (Smith 2017). After learning, the agent selects an available operation node with the
highest selection probability at each decision-making point.
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4 EXPERIMENTAL RESULTS

4.1 Optimal Decision Generation

We train the scheduling agent we propose by using the optimal policies derived from JSSP. We generate
various JSSP instances in order to learn the characteristics of JSSP without being biased. Each one has
one or more decision-making points (states).

An instance in the problem set titled ‘hun mxn’ has m jobs and n machines. There are 120 instances
for each problem size, and the characteristics according to an instance index are shown in Table 1. The
third column of Table 1 indicates the ratio of machines that are processed by jobs. If it is 1, all jobs have
to visit all machines. Among the 120 instances, 20 instances are flow shop problems. We train the model
by simultaneously using problem sets, hun 4x4, hun 6x6, hun 8x8, and hun 10x10, and choose the policy
which has the best objective value for the largest problem set hun 10x10. The hyper-parameters used for
training are provided in the Appendix A.

Table 1: Characteristics of JSSP instances ‘hun mxn’.

Instance index Range of processing times Ratio of machines to go Additional feature
1-20 [1,20] 1 -
21-40 [1,100] 1 -
41-60 [81,100] 1 -
61-80 [1,20] 0.8 -

81-100 [1,20] 0.6 -
101-120 [1,20] 1 Fixed machine flow

Since the proposed model has a GNN-based size-agnostic structure, we test the model for some of
‘tai’ benchmark instances for which the optimal solutions are known as well as the instances used for
training with no additional learning (Taillard 1993). We also test the model to several dynamic job arrival
environments extended from ‘tai’ benchmark instances that have 50 jobs. The operation sequences and
processing times are the same as the original ‘tai’ benchmark instances. Among the 50 jobs, 20 jobs are
ready at the beginning, and the remaining 30 jobs arrive at intervals of 400 in a batch of 10 jobs. The last
batch of 10 jobs arrives at 1200.

4.2 Performance

We evaluate the scheduling performance of the proposed method by computing the optimality gap defined
as follows:

Optimality gap(%) =
Makespan from the proposed method−Optimal makespan

Optimal makespan
×100

The optimal schedules are obtained by using CP in Zhou (1996). The performance of the proposed method
is compared with random selection and several dispatching rules listed as follows:

• Shortest processing time (SPT)
• Longest processing time (LPT)
• Shortest total processing time (STPT)
• Longest total processing time (LTPT)
• Shortest tail processing time (STT)
• Longest tail processing time (LTT)
• Least operation remaining (LOR)
• Most operation remaining (MOR)
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Table 2: Optimality gap(%) for JSSP instances according to methods.

Train problem sets Test problem sets
Method hun 4x4 hun 6x6 hun 8x8 hun 10x10 tai 15x15 tai 50x15 tai 50x20
random 12.72 18.02 21.99 23.9 31.37 25.03 31.40

SPT 10.01 13.73 19.28 21.29 25.89 24.11 26.86
LPT 17.58 24.49 28.33 29.97 41.22 41.21 45.15

SRPT 17.45 23.94 31.39 34.07 47.68 38.47 48.12
LRPT 8.80 11.51 14.37 15.37 19.15 16.86 19.15
STT 20.38 26.4 33.73 34.95 44.6 41.10 47.24
LTT 5.44 9.72 12.23 12.64 19.49 14.28 16.36
LOR 16.05 23.45 30.57 31.96 40.93 35.56 45.00
MOR 7.46 11.97 14.59 15.33 20.53 17.37 18.88
IL 1 2.48 7.42 13.84 17.42 23.16 30.31 33.54
IL 2 3.37 7.14 16.45 22.92 38.82 38.54 49.44

IL dyn 1 2.25 7.42 12.69 16.73 20.81 18.56 27.31
IL dyn 2 2.82 6.48 13.84 19.57 39.99 35.69 49.22
IL rsv 1 3.03 6.62 11.59 15.95 33.24 28.47 42.87
IL rsv 2 5.39 7.3 9.84 12.34 19.35 16.75 23.6

IL rsv dyn 1 2.3 5.73 11.46 15.55 27.67 41.27 55.78
IL rsv dyn 2 4.92 7.41 9.65 12.81 18.84 11.46 14.86

The performance of the proposed method and rules are shown in Table 2. The values in the table are
the average optimality gaps of the JSSP instances. In Table 2, the average gap from 20 simulations is
used for the random selection, and operation reservation is not considered in the dispatching rules. The
performance of the proposed method is evaluated according to different action maskings, graph types,
and GNN models. ‘IL’ indicates the proposed imitation learning method, ‘dyn’ means to use a dynamic
disjunctive graph, ‘rsv’ represents that the agent considers operation reservation (Definition 1), and the
number indicates the GNN model type the method used.

Overall, the proposed imitation learning shows better performance than dispatching rules. Among the
dispatching rules, the LTT rule has the smallest gap, but IL rsv dyn 2 performs better than LTT for all
instances except for hun 10x10. The average optimal gap of IL rsv dyn 2 is 11.42% where the LTT rule
has a gap of 12.88%.

The performance with the operation reservation (Definition 1) is better than the performance by
considering only jobs waiting now. IL rsv dyn 2 and IL rsv 2 show better results than IL dyn 2 and IL 2,
respectively, for instances that have eight or more jobs. In terms of the GNN model, the proposed multiplex
GNN model (GNN2) has a smaller gap when considering the operation reservation together. IL rsv dyn 2
and IL rsv 2 perform better than IL rsv dyn 1 and IL rsv 1 for instances that have eight or more jobs,
respectively. Especially, the operation reservation and GNN2 are more effective for larger instances, which
are in tai 15x15, tai 50x15, and tai 50x20, which are not used for the learning steps. Also, the model
with a dynamic disjunctive graph shows better performance for the unseen larger instances. Comparing
IL rsv dyn 2 and IL rsv 2, the gap of IL rsv dyn 2 is larger than IL rsv 2 by 0.02% for learning instances
but smaller by 4.85% for test instances.

We additionally test the best model, IL rsv dyn 2, and rules for scheduling environments with dynamic
job arrivals. Their results are shown in Table 3. The performance is compared with makespan because it
is hard to obtain an optimal solution in this case. The LTT rule has the best value among the dispatching
rules, and IL rsv dyn 2 shows a 1.44% improvement over the LTT rule on average.
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Table 3: Makespan for dynamic JSSP instances according to methods.

Test problem sets
Method dynamic tai 50x15 dynamic tai 50x20
random 3628.1 4237.1

SPT 3585.3 4096.7
LPT 4054.4 4546.2

SRPT 3993.5 4610.9
LRPT 3410.4 3713.4
STT 3999.5 4672.6
LTT 3357.0 3679.8
LOR 3889.7 4527.1
MOR 3389.4 3738.2

IL rsv dyn 2 3291.1 3646.1

5 CONCLUSION

We have proposed an imitation learning-based method to minimize makespan for a JSSP. We have defined
a data set from optimal schedules, which consists of available actions, a target optimal policy, and dynamic
graph-based state representations. The agent is then learned by using a GNN model for the dynamic
disjunctive graph. The proposed method shows better performance than dispatching rules for unseen larger
benchmark instances as well as the instances used for learning. Additionally, we may apply meta-learning
methods to improve the performance of the unseen environment in the future.
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A HYPER-PARAMETERS

• Activation function: leaky ReLU (Maas et al. 2013)
• Learning optimizer: Adam (Kingma and Ba 2014)
• Number of learning steps: 1000
• Learning batch size: 512
• Base learning rate: 0.01
• Max learning rate: 0.0001
• Step size up: 5
• Step size down: 15
• Number of layers Nl: 2
• Number of aggregations Na: 2
• Number of heads for attention Y : 3
• Dimension of embedding vector: 8
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Aydin, M. E., and E. Öztemel. 2000. “Dynamic Job-shop Scheduling using Reinforcement Learning Agents”. Robotics and

Autonomous Systems 33(2-3):169–178.
Chen, B., and T. I. Matis. 2013. “A Flexible Dispatching Rule for Minimizing Tardiness in Job Shop Scheduling”. International

Journal of Production Economics 141(1):360–365.

3294

https://arxiv.org/abs/1801.06503
https://arxiv.org/abs/1801.06503


Lee and Kim

Chen, X., X. Hao, H. W. Lin, and T. Murata. 2010. “Rule Driven Multi Objective Dynamic Scheduling by Data Envelopment
Analysis and Reinforcement Learning”. In 2010 IEEE International Conference on Automation and Logistics, 396–401.
IEEE.

Dominic, P. D., S. Kaliyamoorthy, and M. S. Kumar. 2004. “Efficient Dispatching Rules for Dynamic Job Shop Scheduling”.
The International Journal of Advanced Manufacturing Technology 24(1):70–75.

Elmi, A., M. Solimanpur, S. Topaloglu, and A. Elmi. 2011. “A Simulated Annealing Algorithm for the Job Shop Cell Scheduling
Problem with Intercellular Moves and Reentrant Parts”. Computers & Industrial Engineering 61(1):171–178.

Fayad, C., and S. Petrovic. 2005. “A Fuzzy Genetic Algorithm for Real-world Job Shop Scheduling”. In International Conference
on Industrial, Engineering and Other Applications of Applied Intelligent Systems, 524–533. Springer.

Garey, M. R., D. S. Johnson, and R. Sethi. 1976. “The Complexity of Flowshop and Jobshop Scheduling”. Mathematics of
Operations Research 1(2):117–129.
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