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ABSTRACT 

Queue-time constraints (QTC) define a limit on the time that a lot can wait between two process steps in 
its flow. In semiconductor manufacturing, lots that exceed that time limit experience yield loss, need 
rework, or get scraped. QTCs are difficult to schedule, since a lot needs to wait to be released to the first 
process step until there is available capacity to process the final step. However, exactly calculating if there 
is enough capacity is computationally expensive. In this work we propose a deep Reinforcement Learning 

(RL) method to manage releasing lots into the queue time constraint. We analyze the performance of our 
RL method and compare it to seven baseline solutions. Our empirical evaluation shows that the RL method 
outperforms the baselines in five performance metrics including the number of queue-time violations and 
makespan, while requiring negligible online compute time. 

1 INTRODUCTION 

Scheduling lots in a semiconductor manufacturing fab can be represented as a job-shop with reentry. 

Minimizing the makespan in such a setting is a known NP-Hard scheduling problem (Pinedo 2012).  
Any scheduling decision requires considering many constraints such as the lots’ critical ratio, due date, 
priority, and the stations’ processing times, batching requirements, qualifications, down-time, bottleneck 
utilization, and more. In practice, real-time dispatching (RTD) rules use heuristic logic to aggregate all the 
constraints and considerations, and to prioritize the lots in each queue. However, relying entirely on 
dispatching can result in many lots experiencing queue-time violations (Cho 2014). 

 Queue-Time Constraints (QTC) define a maximum time limit between two processing steps, for 
example, between the wet bench and the furnace steps. Lots that finish processing on the wet bench station, 
must start processing on the furnace station within a certain time interval before chemical reactions such as 
oxidation, or contamination reduce the wafers’ yield to a level that requires rework or even scraping the 
lots completely.  

In order to prevent QTC violations, A Queue-Time Management System (QMS) is used to manage 

releasing lots into queue-time constraints via a pre-gate step – a virtual step upstream of the wet bench step. 
The QMS considers all the QTCs in the fab, and produces a release plan, which determines how many lots 
of each part type to release into the queue time loop at every timestep. The rationale for separating the QMS 
from dispatching is that dispatching logic must run very quickly whenever a station becomes idle, while 
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the QMS solution takes time to compute. The separation allows the QMS system to run asynchronously 
every fixed time interval and produce a release plan. 

 Figure 1 shows the route we will use in this paper. It includes a virtual pre-gate step and two process 

steps with a QTC between them. Lots wait at the pre-gate step until they are released into the queue-time 
constraint, after which they process the wet bench and furnace steps. The furnace step must start within the 
queue time limit after completing the wet-bench step.  

There are different approaches to control releasing lots, each offering different tradeoffs between 
violations, makespan, and computational complexity. Conservative heuristics such as the fixed-queue 
Kanban method (Scholl and Domaschke 2000) can minimize the number of violations with simple online 

compute, however optimally determining the length of the queue for minimizing makespan is challenging 
(Kopp et al. 2020). More complicated methods employ techniques such as constraint optimization (Cho 
2014), or mixed integer programming (Klemmt and Mönch 2012) to accurately calculate a schedule which 
minimizes makespan without causing any violations, however due to the combinatorial complexity of the 
problem, finding an optimal solution and validating that no QTCs are violated is computationally intractable 
for large instances.  

In this paper we propose a deep Reinforcement Learning (RL) based approach to solve the QTC 
problem which produces near optimal solutions quickly at runtime and can be used with any wet bench and 
furnace dispatching rules. We compare our method to seven other heuristic methods and show that it 
outperforms all the other methods in terms of the makespan and the number of violations. 
 

Figure 1: The Queue-time Management System Queue Time Constraint (QTC). 

 

1.1 Reinforcement Learning 

Reinforcement learning (RL) is a set of machine learning techniques that have been successfully applied to 
domains such as computer games (Wurman et al. 2022) complex games (Silver et al. 2017), robotics (Hanna 

and Stone 2017; Park et al. 2020), and control (Cui et al. 2021).  
The RL problem consists of an agent and an environment. The agent takes actions which affect the 
environment and change its state. Following each action, the agent transitions to the next state and receives 
a reward. Over time the agent learns a behavior policy that maximizes the total accumulated reward. The 
environment is typically stated in the form of a Markov Decision Process (MDP) (Puterman 2014). 

The queue time management problem we aim to solve in this paper can be modeled as a discrete-time, 

finite-horizon MDP which is a tuple  𝑀 = (𝑆, 𝐴, 𝑃, 𝑅, 𝜌0, 𝛾, 𝑇), where 𝑆 is a state set, 𝐴 an action set, 𝑃 ∶
 𝑆 × 𝐴 × 𝑆 → R+  a transition probability distribution, 𝑅 ∶  𝑆 ×  𝐴 → R a reward function, 𝜌0 ∶  𝑆 →
 [0, 1] an initial state distribution, 𝛾 is the discount factor, and 𝑇 the time horizon.  

A solution policy is a probability distribution 𝜋 ∶  𝑆 ×  𝐴 →  [0, 1] that maps states to actions. To find 
a solution policy, we train a reinforcement learning agent to learn a policy which maximizes the expected 
return 𝐸𝜏 ∑ 𝛾𝑡𝑅(𝑇

𝑡=0 𝑠𝑡 , 𝑎𝑡)  where 𝜏 ∶=  (𝑠0, 𝑎0, 𝑠1, 𝑎1 . . . ) denotes a trajectory, 𝑠0 ~𝜌0 , 𝑎𝑡~𝜋(𝑠𝑡) , 

, 𝑠𝑡+1~𝑃(𝑠𝑡 , 𝑎𝑡). 
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2 RELATED WORK 

QTCs have been controlled using various computational approaches. In the paper by Scholl and Domaschke 
(2000), the Kanban approach which maintains a fixed queue size was used. The authors of Klemmt and 

Mönch (2012) proposed a mixed integer programming approach which decomposes the problem to 
manageable sub-problems with a maximal number of jobs. Constraint optimization was proposed as a 
solution method in Choung et al. (2002), while in Mason et al. (2007) a genetic algorithm was developed. 
Kim et al. (2020) proposed a supervised learning approach to train a deep neural network to predict lot 
dispatching in order to maximize station utilization. The labeled data required to train the model was 
obtained by domain experts through simulation.  

 In recent years, RL has been increasingly used for production planning and control (Panzer et al. 2021), 
and specifically in semiconductor fab scheduling in the following research applications: 

Lin et al. (2019) used the Deep Q Network algorithm (DQN) to choose a dispatch rule for optimizing 
makespan. Park et al. (2019) used DQN to schedule setup changes to the fab’s stations. 

Park et al. (2021), Waschneck, et al. (2018), Zhang et al. (2021), Zhou et al. (2020), and Shi et al. 
(2020) all used deep RL to perform dispatching to minimize metrics such as makespan, cycle-time, and 

cycle-time deviation. However, none of these papers considered QTC. 
Altenmüller et al. (2020) used DQN to perform task dispatching with QTC, however they did not 

compare their approach to existing QMS systems such as the Kanban approach (Scholl and Domaschke 
2000).  

To the best of our knowledge ours is the first work which develops a deep RL agent which is dedicated 
to controlling a queue time management system. 

 

3 SOLUTION METHOD 

In this section we describe the general solution framework, and components of the RL method; the state 
space, the action space, the reward function, and the RL algorithm that we used.  

3.1 RL Training and Policy Updates 

During training, the agent takes an action, the simulator applies that action and simulates one timestep into 

the future. The agent then receives a new state observation, and a reward. The state transition in our case is 
deterministic. The state-action-reward sequence is saved, and periodically the RL algorithm uses this 
experience to update the weights of the neural network which represents the policy. The policy is used to 
pick the next action. The policy updates aim to maximize the cumulative reward over the time horizon.  

3.2 Testing 

Once the learning curve stabilizes and the policy stops improving, we save the policy and use it to test the 

performance of the RL agent on a mix of seen and unseen environments. See Appendix A for an example 
of the RL algorithm’s learning curve.  

3.3 State Observation 

At each timestep, the agent receives a state observation. The state of observation is comprised of the 
following components. 

• Fab properties: step processing times, queue time constraints. 

• Fab observations: number of lots processing per step, and per station. 
• Queue time observations: number of successful lots, number of lots in violation, number of lots in 

process. 
• Capacity observation: an estimation of the time to complete all the work in progress (WIP) 

The state features are normalized to values in [0,1] and concatenated into a single observation vector. 
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3.4 Action Space 

At each timestep, the agent can decide either to release or not to release a lot. The agent can release a lot of 
one of the N part types. Thus, the agent can choose a discrete action between 0 to N. Choosing an action 0 

does not release any lots and action 𝑎𝑖 releases a lot of type 𝑃𝑎𝑟𝑡𝑖. 

3.5 Reward Function 

We designed a deterministic reward structure which encourages the agent to minimize the number of queue 
time violations while optimizing for makespan and the number of successful lots. 

3.6 RL Algorithm - PPO 

The Proximal Policy Optimization (PPO) algorithm (Schulman et al. 2017) is a popular deep RL algorithm 

which uses a policy gradient method to train a stochastic policy in an on-policy way. Also, it utilizes the 
actor critic method. In this paper we used the PPO implementation from StableBaselines3 (https://stable-
baselines3.readthedocs.io/en/master/modules/ppo.html) and tuned its default parameters to fit the QMS 
application (please refer to Table 2 in the Appendix for more details on PPO’s parameter setup). 
 

4 EVALUATION 

4.1 Baseline Agents 

We compare the performance of the reinforcement learning agent to that of seven baseline agents.  
 

1. Kanban agent: Proposed in the paper by (Scholl and Domaschke 2000), this agent aims to 

maintain a fixed queue size in front of the furnace station family. The agent releases a lot if the 

number of lots in the queue is less than the desired queue size. The desired queue size is 

calculated as the maximal queue size which can be processed without causing any QTC 

violations.  

2. Capacity based agent: At each time step, this agent computes the currently available capacity of 

the furnace station family. The capacity estimation is based on the Work In Progress (WIP) in the 

furnace family, including the steps that precede it. The agent releases a lot if the capacity is 

smaller than the predetermined threshold. This agent is somewhat similar to the Kanban agent, 

however, it allows for finer control since it is not limited to a fixed-size queue. 

3. Frequency agent: This agent calculates the unified processing time of the furnace family and 

releases a lot at a frequency which is closest to that processing time, given the limitation that it 

can release a lot once every timestep.  

4. Random agent: At each time step, the Random agent randomly chooses an action between 

releasing a lot or not releasing a lot with equal probability.  

5. Always release agent: The Always release agent releases a lot at every time step, regardless of the 
current state. This agent provides a bound on the minimal makespan (although at the cost of many 

violations) 

6. Never release agent: Contrary to the Always release agent, this agent never releases a lot. This 

agent is used to assess the number of violations that are caused by the initial starting conditions 

and provides a bound on the minimal number of violations possible. 

7. Q-learning based agent: This agent uses the Q-learning algorithm to learn a policy to map current 

state to action. Q-learning (Sutton and Barto 2018) is a classic reinforcement learning algorithm 

that learns optimal action-value functions by iteratively updating Q-values using the update  

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[ 𝑅𝑡 + 𝛾 max𝑎
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)], 
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where 𝑄(𝑠𝑡 , 𝑎𝑡) is the value of the action 𝑎𝑡 at the state 𝑠𝑡, 𝛾 is the discount factor, and 𝛼 is the 

learning rate. We implemented this RL algorithm to benchmark the performance of PPO against 

another RL algorithm. 

4.2 Experimental Setup 

In this subsection we describe the implementation details of our experiment framework. 

4.2.1     Simulator and Environment Setup 

We designed a custom-built simulator to simulate a fab with QTCs. The simulator allows us to flexibly 
define a fab environment with any number of stations, station families, and lots of multiple part types. For 
each part type we define a route, which is a set of processing steps. Each step is assigned to a station family 
and has its own processing time. Any pair of steps in a route can have a QTC between them. The simulator 
supports releasing lots of multiple part types.  

 The experimental setup that was used for the evaluation is similar to the one in Figure 1 where the 
system has one pre-gate step, a wet bench and two furnaces. The pre-gate step has 0min processing time 
and controls the release of lots into the wet bench queue. The wet bench has a constant processing time of 
20min, and the two furnaces have different processing times (600min, and 700min). Each station has a 
capacity of one lot at a time. Lots start at the pre-gate step and must go through the wet bench and the 
furnace to finish their route. There is a QTC between the wet bench step and the furnace step which is set 

to 200min. This means that any lot that finished processing on the wet bench must start processing on a 
furnace within 200min to be considered successful, otherwise it violates the QTC. We follow the convention 
in (Altenmüller 2020) where if a constraint is violated the violating lot continues to the end of the route.  

Note that in an actual semiconductor factory wet benches and furnaces process batches of potentially 
more than one lot at a time. Our method could be extended to this case by releasing batches of lots at the 
pre-gate step instead of individual lots. 

4.2.2     Dispatch Rules 

For the furnace station family, we used a queue-time based dispatch rule that orders lots based on their 
remaining queue time, so that the lot that has the least amount of time to violate its QTC will be scheduled 
first. For the wet bench station family we used a first-in-first-out (FIFO) dispatch rule. 

4.2.3     Warm-up 

At the beginning of every experiment the queues in front of the station families are empty. To avoid these 

unrealistic and uniform starting conditions, and bring the system to steady production state, we implement 
a warm-up stage. Each experiment has a different warm-up stage where we randomly release lots into the 
system for a given number of timesteps in order to create different starting conditions. We used a different 
warm-up period for training and testing (3 and 6 timesteps respectively) to prevent overfitting in the RL 
algorithms. Because the warm-up doesn't consider QTC, the released lots may not be able to process without 
violations. In the results section we do not consider the violations that were caused by the lots that were 

released during the warm-up period. 

4.2.4     Episode Termination Conditions 

Each experiment (or episode) has at most 100 timesteps, and each timestep takes 100 minutes. At each 
timestep the agent can take a single action. Following that, the RL agents receive an observation reflecting 
the system’s state at the end of the timestep. An episode terminates when 100 timesteps have passed, or 
when at least 10 lots complete the route, whichever happens first. 
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4.2.5     RL Integration, Training, and Testing 

In order to train and evaluate the RL agents, we integrated the simulator with OpenAI Gym (Brockman et. 
al 2016). OpenAI Gym is an open-source Python library for developing and comparing RL algorithms by 

providing a standard API to communicate between learning algorithms and environments. The RL agents 
were trained for 5000 episodes. 
 For testing we let each agent control the pre-gate step for 30 episodes. Each episode had starting WIP 
randomly created during the warm-up. We set the same random seed for each agent so that they will all 
face the same 30 randomly generated environments. We averaged the evaluation metrics for each agent and 
summarized them in Table 1.  

4.3 Results 

In this section we analyze the results of the empirical evaluation. We compare the agents on five metrics 
including: 

• the average number of violations per episode,  
• the average number of successes per episode,  
• the average makespan in minutes to complete processing 10 lots, with a maximum time of the 

episode length (including warm-up),  
• the average utilization of the furnace family, which is computed as the fraction of time that the 

furnace stations were processing out of the total episode time, 
• and the average cycle time of the finished lots in minutes.  

 The Never agent gets the minimal number of violations (0.97 on average) which are created from the 
warm-up. Other agents (Capacity, Kanban, Q-Learning, and PPO) are also able to reach that minimal 

number of violations. In Table 1 we present the adjusted number of violations after subtracting 0.97 from 
each entry. 

Out of the agents that got the minimal number of violations, PPO has the highest number of successes 
with 11.83 successes on average. 

The Always agent has the shortest makespan with 31.33, nearly matched by PPO with 32.1 timesteps 
on average. Note that the Always agent’s short makespan comes at the cost of many violations as the Always 

agent has the highest number of them with 29.9 on average. 
PPO also achieves near optimal furnace utilization with 0.93 compared to 0.94 achieved by the Always 
agent, and near optimal cycle time with only 1 percent more than the cycle time of the Always agent. 

The average cumulative reward, which is used for training the RL agents, is not a metric in its own 
right but is useful in ranking the agents’ performance.  

In terms of compute time, the PPO method can quickly make the decision on the next action given a 

state observation, and we do not expect that time to grow exponentially with the size of the problem (number 
of part types, number of lots, number of stations) as opposed to exact solution methods such as constraint 
optimization. However, we do expect the training time to increase as the state and action space increase.  
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Table 1: Empirical evaluation results. Each entry is averaged over 30 evaluation runs. Cells with green 
background indicate the best possible value for the given metric as achieved by the Always and Never 

agents. Cells with yellow background highlight the agents that achieved the best value for a given metric.  

  Metrics  

Methods 

#Violations 

above 

minimum 

#Successes 
Makespan 

(timesteps) 
Reward Utilization 

Cycle  

Time 

  (Minutes) 

Always 29.9 2.4 31.33 -30.83 0.94 2182 

Random  14.1  3.13 31.47 -14.96 0.93 2235 

Never 0 1.97 93 -1.59 0.1 -- 

Frequency 2.9 7.77 33.3 -3.32 0.87 2324 

Kanban 0 9.03 55.4 -0.51 0.56 3194 

Capacity 0 10.03 46.43 -0.32 0.63 2855 

Q-Learning 0 11.03 33.4 -0.09 0.88 2303 

PPO 0 11.83 32.1 0 0.93 2207 

 
 

5 CONCLUSIONS 

In this work we developed a deep RL agent that can efficiently control a QMS achieving optimal 
performance in terms of minimizing the number of violations, while maintaining near optimal makespan, 
without having to run time-consuming computation during deployment. Our approach outperformed seven 

other tested benchmarks including the Kanban method. 
Directions for future work include examining more complex environments which represent real world 

fab conditions more accurately. For example, considering more parts, longer routes, batching, station 
dedication, and multiple QTCs. 
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APPENDIX A – PPO PARAMETERS AND LEARNING CURVE 

Table 2 details the PPO parameters’ values that were used in this study. The values were chosen following 

a hyper-parameter tunning phase in which the default PPO parameter values were gradually modified in 
both directions until a better value was found or, if not then the default values were preserved. 

Table 2: List of PPO parameters and values. 

 

Parameter Name Parameter Value 
batch_size 50 

gae_lambda 0.99 
learning_rate 0.00025 

n_steps 50 
pi net_arch [8,10] 
vf net_arch [8,10] 

activation_fn ReLU 
 
Figure 2 shows the learning curve of the PPO algorithm. The cumulative episodic reward stables out at 0 
after 500,000 timesteps.  

 

Figure 2: PPO’s learning curve taken from Tensorboard. 
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