
Proceedings of the 2022 Winter Simulation Conference

B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and
P. Lendermann, eds.

DEEP REINFORCEMENT LEARNING FOR QUEUE-TIME MANAGEMENT IN

SEMICONDUCTOR MANUFACTURING

Harel Yedidsion
Prafulla Dawadi
David Norman

Emrah Zarifoglu

AI/ML Team

Applied Materials Inc.
3050 Bowers Avenue

Santa Clara, CA 95054, USA

ABSTRACT

Queue-time constraints (QTC) define a limit on the time that a lot can wait between two process steps in
its flow. In semiconductor manufacturing, lots that exceed that time limit experience yield loss, need
rework, or get scraped. QTCs are difficult to schedule, since a lot needs to wait to be released to the first
process step until there is available capacity to process the final step. However, exactly calculating if there
is enough capacity is computationally expensive. In this work we propose a deep Reinforcement Learning

(RL) method to manage releasing lots into the queue time constraint. We analyze the performance of our
RL method and compare it to seven baseline solutions. Our empirical evaluation shows that the RL method
outperforms the baselines in five performance metrics including the number of queue-time violations and
makespan, while requiring negligible online compute time.

1 INTRODUCTION

Scheduling lots in a semiconductor manufacturing fab can be represented as a job-shop with reentry.

Minimizing the makespan in such a setting is a known NP-Hard scheduling problem (Pinedo 2012).
Any scheduling decision requires considering many constraints such as the lots’ critical ratio, due date,
priority, and the stations’ processing times, batching requirements, qualifications, down-time, bottleneck
utilization, and more. In practice, real-time dispatching (RTD) rules use heuristic logic to aggregate all the
constraints and considerations, and to prioritize the lots in each queue. However, relying entirely on
dispatching can result in many lots experiencing queue-time violations (Cho 2014).

 Queue-Time Constraints (QTC) define a maximum time limit between two processing steps, for
example, between the wet bench and the furnace steps. Lots that finish processing on the wet bench station,
must start processing on the furnace station within a certain time interval before chemical reactions such as
oxidation, or contamination reduce the wafers’ yield to a level that requires rework or even scraping the
lots completely.

In order to prevent QTC violations, A Queue-Time Management System (QMS) is used to manage

releasing lots into queue-time constraints via a pre-gate step – a virtual step upstream of the wet bench step.
The QMS considers all the QTCs in the fab, and produces a release plan, which determines how many lots
of each part type to release into the queue time loop at every timestep. The rationale for separating the QMS
from dispatching is that dispatching logic must run very quickly whenever a station becomes idle, while

978-1-6654-7661-4/22/$31.00 ©2022 IEEE 3275

Yedidsion,Dawadi,Norman,and Zarifoglu

the QMS solution takes time to compute. The separation allows the QMS system to run asynchronously
every fixed time interval and produce a release plan.

 Figure 1 shows the route we will use in this paper. It includes a virtual pre-gate step and two process

steps with a QTC between them. Lots wait at the pre-gate step until they are released into the queue-time
constraint, after which they process the wet bench and furnace steps. The furnace step must start within the
queue time limit after completing the wet-bench step.

There are different approaches to control releasing lots, each offering different tradeoffs between
violations, makespan, and computational complexity. Conservative heuristics such as the fixed-queue
Kanban method (Scholl and Domaschke 2000) can minimize the number of violations with simple online

compute, however optimally determining the length of the queue for minimizing makespan is challenging
(Kopp et al. 2020). More complicated methods employ techniques such as constraint optimization (Cho
2014), or mixed integer programming (Klemmt and Mönch 2012) to accurately calculate a schedule which
minimizes makespan without causing any violations, however due to the combinatorial complexity of the
problem, finding an optimal solution and validating that no QTCs are violated is computationally intractable
for large instances.

In this paper we propose a deep Reinforcement Learning (RL) based approach to solve the QTC
problem which produces near optimal solutions quickly at runtime and can be used with any wet bench and
furnace dispatching rules. We compare our method to seven other heuristic methods and show that it
outperforms all the other methods in terms of the makespan and the number of violations.

Figure 1: The Queue-time Management System Queue Time Constraint (QTC).

1.1 Reinforcement Learning

Reinforcement learning (RL) is a set of machine learning techniques that have been successfully applied to
domains such as computer games (Wurman et al. 2022) complex games (Silver et al. 2017), robotics (Hanna

and Stone 2017; Park et al. 2020), and control (Cui et al. 2021).
The RL problem consists of an agent and an environment. The agent takes actions which affect the
environment and change its state. Following each action, the agent transitions to the next state and receives
a reward. Over time the agent learns a behavior policy that maximizes the total accumulated reward. The
environment is typically stated in the form of a Markov Decision Process (MDP) (Puterman 2014).

The queue time management problem we aim to solve in this paper can be modeled as a discrete-time,

finite-horizon MDP which is a tuple 𝑀 = (𝑆, 𝐴, 𝑃, 𝑅, 𝜌0, 𝛾, 𝑇), where 𝑆 is a state set, 𝐴 an action set, 𝑃 ∶
 𝑆 × 𝐴 × 𝑆 → R+ a transition probability distribution, 𝑅 ∶ 𝑆 × 𝐴 → R a reward function, 𝜌0 ∶ 𝑆 →
 [0, 1] an initial state distribution, 𝛾 is the discount factor, and 𝑇 the time horizon.

A solution policy is a probability distribution 𝜋 ∶ 𝑆 × 𝐴 → [0, 1] that maps states to actions. To find
a solution policy, we train a reinforcement learning agent to learn a policy which maximizes the expected
return 𝐸𝜏 ∑ 𝛾𝑡𝑅(𝑇

𝑡=0 𝑠𝑡 , 𝑎𝑡) where 𝜏 ∶= (𝑠0, 𝑎0, 𝑠1, 𝑎1 . . .) denotes a trajectory, 𝑠0 ~𝜌0 , 𝑎𝑡~𝜋(𝑠𝑡) ,

, 𝑠𝑡+1~𝑃(𝑠𝑡 , 𝑎𝑡).

3276

Yedidsion,Dawadi,Norman,and Zarifoglu

2 RELATED WORK

QTCs have been controlled using various computational approaches. In the paper by Scholl and Domaschke
(2000), the Kanban approach which maintains a fixed queue size was used. The authors of Klemmt and

Mönch (2012) proposed a mixed integer programming approach which decomposes the problem to
manageable sub-problems with a maximal number of jobs. Constraint optimization was proposed as a
solution method in Choung et al. (2002), while in Mason et al. (2007) a genetic algorithm was developed.
Kim et al. (2020) proposed a supervised learning approach to train a deep neural network to predict lot
dispatching in order to maximize station utilization. The labeled data required to train the model was
obtained by domain experts through simulation.

 In recent years, RL has been increasingly used for production planning and control (Panzer et al. 2021),
and specifically in semiconductor fab scheduling in the following research applications:

Lin et al. (2019) used the Deep Q Network algorithm (DQN) to choose a dispatch rule for optimizing
makespan. Park et al. (2019) used DQN to schedule setup changes to the fab’s stations.

Park et al. (2021), Waschneck, et al. (2018), Zhang et al. (2021), Zhou et al. (2020), and Shi et al.
(2020) all used deep RL to perform dispatching to minimize metrics such as makespan, cycle-time, and

cycle-time deviation. However, none of these papers considered QTC.
Altenmüller et al. (2020) used DQN to perform task dispatching with QTC, however they did not

compare their approach to existing QMS systems such as the Kanban approach (Scholl and Domaschke
2000).

To the best of our knowledge ours is the first work which develops a deep RL agent which is dedicated
to controlling a queue time management system.

3 SOLUTION METHOD

In this section we describe the general solution framework, and components of the RL method; the state
space, the action space, the reward function, and the RL algorithm that we used.

3.1 RL Training and Policy Updates

During training, the agent takes an action, the simulator applies that action and simulates one timestep into

the future. The agent then receives a new state observation, and a reward. The state transition in our case is
deterministic. The state-action-reward sequence is saved, and periodically the RL algorithm uses this
experience to update the weights of the neural network which represents the policy. The policy is used to
pick the next action. The policy updates aim to maximize the cumulative reward over the time horizon.

3.2 Testing

Once the learning curve stabilizes and the policy stops improving, we save the policy and use it to test the

performance of the RL agent on a mix of seen and unseen environments. See Appendix A for an example
of the RL algorithm’s learning curve.

3.3 State Observation

At each timestep, the agent receives a state observation. The state of observation is comprised of the
following components.

• Fab properties: step processing times, queue time constraints.

• Fab observations: number of lots processing per step, and per station.
• Queue time observations: number of successful lots, number of lots in violation, number of lots in

process.
• Capacity observation: an estimation of the time to complete all the work in progress (WIP)

The state features are normalized to values in [0,1] and concatenated into a single observation vector.

3277

Yedidsion,Dawadi,Norman,and Zarifoglu

3.4 Action Space

At each timestep, the agent can decide either to release or not to release a lot. The agent can release a lot of
one of the N part types. Thus, the agent can choose a discrete action between 0 to N. Choosing an action 0

does not release any lots and action 𝑎𝑖 releases a lot of type 𝑃𝑎𝑟𝑡𝑖.

3.5 Reward Function

We designed a deterministic reward structure which encourages the agent to minimize the number of queue
time violations while optimizing for makespan and the number of successful lots.

3.6 RL Algorithm - PPO

The Proximal Policy Optimization (PPO) algorithm (Schulman et al. 2017) is a popular deep RL algorithm

which uses a policy gradient method to train a stochastic policy in an on-policy way. Also, it utilizes the
actor critic method. In this paper we used the PPO implementation from StableBaselines3 (https://stable-
baselines3.readthedocs.io/en/master/modules/ppo.html) and tuned its default parameters to fit the QMS
application (please refer to Table 2 in the Appendix for more details on PPO’s parameter setup).

4 EVALUATION

4.1 Baseline Agents

We compare the performance of the reinforcement learning agent to that of seven baseline agents.

1. Kanban agent: Proposed in the paper by (Scholl and Domaschke 2000), this agent aims to

maintain a fixed queue size in front of the furnace station family. The agent releases a lot if the

number of lots in the queue is less than the desired queue size. The desired queue size is

calculated as the maximal queue size which can be processed without causing any QTC

violations.

2. Capacity based agent: At each time step, this agent computes the currently available capacity of

the furnace station family. The capacity estimation is based on the Work In Progress (WIP) in the

furnace family, including the steps that precede it. The agent releases a lot if the capacity is

smaller than the predetermined threshold. This agent is somewhat similar to the Kanban agent,

however, it allows for finer control since it is not limited to a fixed-size queue.

3. Frequency agent: This agent calculates the unified processing time of the furnace family and

releases a lot at a frequency which is closest to that processing time, given the limitation that it

can release a lot once every timestep.

4. Random agent: At each time step, the Random agent randomly chooses an action between

releasing a lot or not releasing a lot with equal probability.

5. Always release agent: The Always release agent releases a lot at every time step, regardless of the
current state. This agent provides a bound on the minimal makespan (although at the cost of many

violations)

6. Never release agent: Contrary to the Always release agent, this agent never releases a lot. This

agent is used to assess the number of violations that are caused by the initial starting conditions

and provides a bound on the minimal number of violations possible.

7. Q-learning based agent: This agent uses the Q-learning algorithm to learn a policy to map current

state to action. Q-learning (Sutton and Barto 2018) is a classic reinforcement learning algorithm

that learns optimal action-value functions by iteratively updating Q-values using the update

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑅𝑡 + 𝛾 max𝑎
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)],

3278

Yedidsion,Dawadi,Norman,and Zarifoglu

where 𝑄(𝑠𝑡 , 𝑎𝑡) is the value of the action 𝑎𝑡 at the state 𝑠𝑡, 𝛾 is the discount factor, and 𝛼 is the

learning rate. We implemented this RL algorithm to benchmark the performance of PPO against

another RL algorithm.

4.2 Experimental Setup

In this subsection we describe the implementation details of our experiment framework.

4.2.1 Simulator and Environment Setup

We designed a custom-built simulator to simulate a fab with QTCs. The simulator allows us to flexibly
define a fab environment with any number of stations, station families, and lots of multiple part types. For
each part type we define a route, which is a set of processing steps. Each step is assigned to a station family
and has its own processing time. Any pair of steps in a route can have a QTC between them. The simulator
supports releasing lots of multiple part types.

 The experimental setup that was used for the evaluation is similar to the one in Figure 1 where the
system has one pre-gate step, a wet bench and two furnaces. The pre-gate step has 0min processing time
and controls the release of lots into the wet bench queue. The wet bench has a constant processing time of
20min, and the two furnaces have different processing times (600min, and 700min). Each station has a
capacity of one lot at a time. Lots start at the pre-gate step and must go through the wet bench and the
furnace to finish their route. There is a QTC between the wet bench step and the furnace step which is set

to 200min. This means that any lot that finished processing on the wet bench must start processing on a
furnace within 200min to be considered successful, otherwise it violates the QTC. We follow the convention
in (Altenmüller 2020) where if a constraint is violated the violating lot continues to the end of the route.

Note that in an actual semiconductor factory wet benches and furnaces process batches of potentially
more than one lot at a time. Our method could be extended to this case by releasing batches of lots at the
pre-gate step instead of individual lots.

4.2.2 Dispatch Rules

For the furnace station family, we used a queue-time based dispatch rule that orders lots based on their
remaining queue time, so that the lot that has the least amount of time to violate its QTC will be scheduled
first. For the wet bench station family we used a first-in-first-out (FIFO) dispatch rule.

4.2.3 Warm-up

At the beginning of every experiment the queues in front of the station families are empty. To avoid these

unrealistic and uniform starting conditions, and bring the system to steady production state, we implement
a warm-up stage. Each experiment has a different warm-up stage where we randomly release lots into the
system for a given number of timesteps in order to create different starting conditions. We used a different
warm-up period for training and testing (3 and 6 timesteps respectively) to prevent overfitting in the RL
algorithms. Because the warm-up doesn't consider QTC, the released lots may not be able to process without
violations. In the results section we do not consider the violations that were caused by the lots that were

released during the warm-up period.

4.2.4 Episode Termination Conditions

Each experiment (or episode) has at most 100 timesteps, and each timestep takes 100 minutes. At each
timestep the agent can take a single action. Following that, the RL agents receive an observation reflecting
the system’s state at the end of the timestep. An episode terminates when 100 timesteps have passed, or
when at least 10 lots complete the route, whichever happens first.

3279

Yedidsion,Dawadi,Norman,and Zarifoglu

4.2.5 RL Integration, Training, and Testing

In order to train and evaluate the RL agents, we integrated the simulator with OpenAI Gym (Brockman et.
al 2016). OpenAI Gym is an open-source Python library for developing and comparing RL algorithms by

providing a standard API to communicate between learning algorithms and environments. The RL agents
were trained for 5000 episodes.
 For testing we let each agent control the pre-gate step for 30 episodes. Each episode had starting WIP
randomly created during the warm-up. We set the same random seed for each agent so that they will all
face the same 30 randomly generated environments. We averaged the evaluation metrics for each agent and
summarized them in Table 1.

4.3 Results

In this section we analyze the results of the empirical evaluation. We compare the agents on five metrics
including:

• the average number of violations per episode,
• the average number of successes per episode,
• the average makespan in minutes to complete processing 10 lots, with a maximum time of the

episode length (including warm-up),
• the average utilization of the furnace family, which is computed as the fraction of time that the

furnace stations were processing out of the total episode time,
• and the average cycle time of the finished lots in minutes.

 The Never agent gets the minimal number of violations (0.97 on average) which are created from the
warm-up. Other agents (Capacity, Kanban, Q-Learning, and PPO) are also able to reach that minimal

number of violations. In Table 1 we present the adjusted number of violations after subtracting 0.97 from
each entry.

Out of the agents that got the minimal number of violations, PPO has the highest number of successes
with 11.83 successes on average.

The Always agent has the shortest makespan with 31.33, nearly matched by PPO with 32.1 timesteps
on average. Note that the Always agent’s short makespan comes at the cost of many violations as the Always

agent has the highest number of them with 29.9 on average.
PPO also achieves near optimal furnace utilization with 0.93 compared to 0.94 achieved by the Always
agent, and near optimal cycle time with only 1 percent more than the cycle time of the Always agent.

The average cumulative reward, which is used for training the RL agents, is not a metric in its own
right but is useful in ranking the agents’ performance.

In terms of compute time, the PPO method can quickly make the decision on the next action given a

state observation, and we do not expect that time to grow exponentially with the size of the problem (number
of part types, number of lots, number of stations) as opposed to exact solution methods such as constraint
optimization. However, we do expect the training time to increase as the state and action space increase.

3280

Yedidsion,Dawadi,Norman,and Zarifoglu

Table 1: Empirical evaluation results. Each entry is averaged over 30 evaluation runs. Cells with green
background indicate the best possible value for the given metric as achieved by the Always and Never

agents. Cells with yellow background highlight the agents that achieved the best value for a given metric.

 Metrics

Methods

#Violations

above

minimum

#Successes
Makespan

(timesteps)
Reward Utilization

Cycle

Time

 (Minutes)

Always 29.9 2.4 31.33 -30.83 0.94 2182

Random 14.1 3.13 31.47 -14.96 0.93 2235

Never 0 1.97 93 -1.59 0.1 --

Frequency 2.9 7.77 33.3 -3.32 0.87 2324

Kanban 0 9.03 55.4 -0.51 0.56 3194

Capacity 0 10.03 46.43 -0.32 0.63 2855

Q-Learning 0 11.03 33.4 -0.09 0.88 2303

PPO 0 11.83 32.1 0 0.93 2207

5 CONCLUSIONS

In this work we developed a deep RL agent that can efficiently control a QMS achieving optimal
performance in terms of minimizing the number of violations, while maintaining near optimal makespan,
without having to run time-consuming computation during deployment. Our approach outperformed seven

other tested benchmarks including the Kanban method.
Directions for future work include examining more complex environments which represent real world

fab conditions more accurately. For example, considering more parts, longer routes, batching, station
dedication, and multiple QTCs.

3281

Yedidsion,Dawadi,Norman,and Zarifoglu

APPENDIX A – PPO PARAMETERS AND LEARNING CURVE

Table 2 details the PPO parameters’ values that were used in this study. The values were chosen following

a hyper-parameter tunning phase in which the default PPO parameter values were gradually modified in
both directions until a better value was found or, if not then the default values were preserved.

Table 2: List of PPO parameters and values.

Parameter Name Parameter Value
batch_size 50

gae_lambda 0.99
learning_rate 0.00025

n_steps 50
pi net_arch [8,10]
vf net_arch [8,10]

activation_fn ReLU

Figure 2 shows the learning curve of the PPO algorithm. The cumulative episodic reward stables out at 0
after 500,000 timesteps.

Figure 2: PPO’s learning curve taken from Tensorboard.

3282

Yedidsion,Dawadi,Norman,and Zarifoglu

REFERENCES

Altenmüller, T., T. Stüker, B. Waschneck, A. Kuhnle, and G. Lanza, 2020. “Reinforcement Learning for an Intelligent and

Autonomous Production Control of Complex Job-Shops Under Time Constraints”. Production Engineering, 14(3):319-328.

Brockman, G., V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. (2016). “Openai Gym”. ArXiv

Preprint ArXiv:1606.01540, https://arxiv.org/pdf/1606.01540.pdf, accessed 28th September 2022.

Cho, L., H.M. Park, J.K. Ryan, T.C. Sharkey, C. Jung, and D. Pabst. 2014. “Production Scheduling with Queue-Time Constraints:

Alternative Formulations”. In IIE Annual Conference Proceedings, 282-292. Norcross, Georgia: Institute of Industrial and

Systems Engineers (IISE).

Choung, Y.I., K.S. Jun, D.S. Han, Y.C. Jang, T.E. Lee, and R.C. Leachman. 2002. “Design of a Scheduling System for Diffusion

Processes”. In International Conference on Semiconductor Manufacturing Operational Modeling and Simulation. Arlington,

Virginia. December 9-12, 2002, 1-6.

Cui, J., W. Macke, H. Yedidsion, A. Goyal, D. Urieli, and P. Stone 2021. “Scalable Multiagent Driving Policies for Reducing

Traffic Congestion”. In Proceedings of the 20th International Conference on Autonomous Agents and Multi Agent Systems,

Virtual Event United Kingdom, May 3 - 7, 2021, 386-394.

Hanna, J.P., and P. Stone. 2017. “Grounded Action Transformation for Robot Learning in Simulation”. In Thirty-first AAAI

Conference on Artificial Intelligence. San Francisco, California, 4 – 9 February 2017.

Kim, H., D.E. Lim, and S. Lee. 2020. “Deep Learning-Based Dynamic Scheduling for Semiconductor Manufacturing with High

Uncertainty of Automated Material Handling System Capability”. Transactions on Semiconductor Manufacturing, Institute

of Electrical and Electronics Engineers, Inc. 33(1): 13-22.

Klemmt, A., and L. Mönch. 2012. “Scheduling Jobs with Time Constraints between Consecutive Process Steps in Semiconductor

Manufacturing”. In Proceedings of the 2012 Winter Simulation Conference (WSC), edited by C. Laroque, J. Himmelspach, R.

Pasupathy, O. Rose, and A. M. Uhrmacher, 1-10. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,

Inc.

Kopp, D., M. Hassoun, A. Kalir, and L. Mönch. 2020. “Integrating Critical Queue Time Constraints into SMT2020 Simulation

Models”. In 2020 Winter Simulation Conference (WSC), edited by K. G. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng,

T. Roeder, and R. Thiesing, 1813-1824. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Lin, C.C., D.J. Deng, Y.L. Chih, and H.T. Chiu. 2019. “Smart Manufacturing Scheduling with Edge Computing using Multiclass

Deep Q Network”. IEEE Transactions on Industrial Informatics, 15(7): 4276-4284.

Mason, S.J., M.E. Kurz, L.M. Pohl, J.W. Fowler, and M.E. Pfund. 2007. “Random Keys Implementation of NSGA-II for

Semiconductor Manufacturing Scheduling”. International Journal of Information Technology and Intelligent Computing,

2(3).

Panzer, M., B. Bender, and N. Gronau. 2021. “Deep Reinforcement Learning in Production Planning and Control: A Systematic

Literature Review”. In Proceedings of the 2021 Conference on Production Systems and Logistics, edited by: D. Herberger,

M. Hübner, 535-545. Hannover, German, Publish-Ing.

Park, I.B., J. Huh, J. Kim, and J. Park. 2019. “A Reinforcement Learning Approach to Robust Scheduling of Semiconductor

Manufacturing Facilities”. IEEE Transactions on Automation Science and Engineering, 17(3): 1420-1431.

Park, J., J. Chun, S.H. Kim, Y. Kim, and J. Park. 2021. “Learning to Schedule Job-Shop Problems: Representation and Policy

Learning using Graph Neural Network and Reinforcement Learning”. International Journal of Production Research, 59(11):

3360-3377.

Park, J.S., B. Tsang, H. Yedidsion, G. Warnell, D. Kyoung, and P. Stone. 2020. “Learning to Improve Multi-Robot Hallway

Navigation”. In Proceedings of the Conference on Robot Learning, CORL2020, edited by J. Kober, F. Ramos and C. J. Tomlin.

1883-1895. Cambridge, MA: PMLR.

Pinedo, M.L., 2012. “Scheduling” (Vol. 29). New York: Springer.

Scholl, W. J., and Domaschke. 2000. “Implementation of Modeling and Simulation in Semiconductor Wafer Fabrication with Time

Constraints between Wet Etch and Furnace Operations”. IEEE Transactions on Semiconductor Manufacturing, 13(3): 273-

277.

Puterman, M.L. 2014. “Markov Decision Processes: Discrete Stochastic Dynamic Programming”. Hoboken, New Jersey: John

Wiley & Sons.

Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. 2017. “Proximal Policy Optimization Algorithms”. arXiv

preprint arXiv:1707.06347, https://arxiv.org/pdf/1707.06347.pdf, accessed 28th September 2022.

Shi, D., W. Fan, Y. Xiao, T. Lin, and C. Xing. 2020. “Intelligent Scheduling of Discrete Automated Production Line via Deep

Reinforcement Learning”. International Journal of Production Research, 58(11): 3362-3380.

Silver, D., J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, and Y. Chen.

2017. “Mastering the Game of Go without Human Knowledge”. Nature, 550(7676): 354-359.

Sutton, R. S., and A.G. Barto. (2018). “Reinforcement Learning: An Introduction”. Cambridge, MA: MIT press.

Wurman, P.R., S. Barrett, K. Kawamoto, J. MacGlashan, K. Subramanian, T.J. Walsh, R. Capobianco, A. Devlic, F. Eckert, F.

Fuchs, and L. Gilpin. 2022. “Outracing Champion Gran Turismo Drivers with Deep Reinforcement Learning”. Nature,

602(7896): 223-228.

3283

https://arxiv.org/pdf/1606.01540.pdf
https://arxiv.org/pdf/1707.06347.pdf

Yedidsion,Dawadi,Norman,and Zarifoglu

Waschneck, B., A. Reichstaller, L. Belzner, T. Altenmüller, T. Bauernhansl, A. Knapp, and A. Kyek. 2018. “Deep Reinforcement

Learning for Semiconductor Production Scheduling”. In 2018 29th Annual Semi Advanced Semiconductor Manufacturing

Conference (ASMC). 301-306. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Zhang, C., W. Song, Z. Cao, J. Zhang, P.S. Tan, and X. Chi. 2020. “Learning to Dispatch for Job Shop Scheduling via Deep

Reinforcement Learning”. Advances in Neural Information Processing Systems, 33: 1621-1632.

Zhou, L., L. Zhang, and B.K. Horn. (2020). “Deep Reinforcement Learning-based Dynamic Scheduling in Smart

Manufacturing”. Procedia Cirp, 93: 383-388.

AUTHOR BIOGRAPHIES

HAREL YEDIDSION is a research scientist at the AI/ML team at Applied Materials. He earned his Ph.D. form the departement

of Industrial Engineering and Management at Ben Gurion University in Israel, and was a postdoc fellow at the department of

Computer Science at the University of Texas at Austin. His research interests include multi-agent systems, robotics, and

reinforcement learning. His e-mail is harel_yedidsion@amat.com.

PRAFULLA DAWADI is a data scientist at AI/ML team at Applied Materials. He earned his Ph.D. in computer science from the

School of Electrical Engineering and Computer Science at Washington State University, Pullman,WA. His research interests

includes data science, machine learning systems and reinforcement learning. His email address is prafulla_dawadi@amat.com.

DAVID NORMAN a distinguished member of technical staff at Applied Materials. He earned his Ph.D. in mathematics at the

University of Minnesota. His interests include applying mathematical optimization, machine learning, and reinforcment learning

to scheduling and planning problems in manufacturing and supply-chain managmement. His e-mail address is

david_norman@amat.com.

EMRAH ZARIFOGLU is Head of R&D for APG group in Applied Materials. His research and work interest is focused in the

area of cloud computing, artificial intelligence, machine learning, supply chain, semiconductor manufacturing, operations research,

simulation. He holds a PhD degree in Operations Research and Industrial Engineering from The University of Texas at Austin. His

email address is emrah_zarifoglu@amat.com.

3284

mailto:harel_yedidsion@amat.com
mailto:prafulla_dawadi@amat.com
mailto:david_norman@amat.com
mailto:emrah_zarifoglu@amat.com.

