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ABSTRACT

In global optimization, surrogate optimization algorithms such as the Stochastic Response Surface (SRS)
method are often employed when the objective function is expensive to evaluate or when the gradient
information is unavailable. The aim of this paper is to propose and analyze an improved SRS method that
instead targets a transformed objective function. The core idea of the transformation rests on introducing a
threshold parameter in which the landscape is modified when the algorithm is above this threshold, making
the algorithm easier to climb out of a local minimum basin while preserving the set of the stationary
points. We prove the asymptotic convergence of the proposed improved SRS method, and provide positive
numerical results on some common global optimization benchmark functions which demonstrate the
improved convergence of the proposed method. We stress that the proposed method can be implemented
with minimal additional computational costs.

1 INTRODUCTION

Mathematical optimization is a discipline that studies the theory in minimizing a given objective function f
and develops fast algorithms to perform such task. Among various acceleration techniques in optimization,
landscape modification is a promising method recently introduced by the first author in (Choi 2020a; Choi
2020b). The core idea of landscape modification rests on introducing a threshold parameter c so that the
landscape of the objective function f is modified once the algorithm is above c with a reduced critical
height in the context of simulated annealing. It has been proved to yield faster convergence rate in the
setting of kinetic simulated annealing Choi (2020a), Curie-Weiss model in statistical physics Choi (2020b)
as well as the travelling salesman problem Choi (2020b) in operations research.

When the objective function f is computationally-expensive to evaluate, for instance in the context of
Bayesian optimization Regis and Shoemaker (2007), a suitable optimization method in this setting is known
as surrogate optimization. It consists of building an inexpensive approximate model from a set of randomly
generated points, known as the response surface, to carry out the optimization task. The algorithm then
proceeds iteratively to identify the next promising point to evaluate.

This paper aims at connecting landscape modification with surrogate optimization for cross-fertilization
of the two areas. In particular, we propose a new method of constructing the response surface by utilizing
the landscape modified objective function instead of the original objective function. The rest of this paper
is organized as follows. In Section 2.1, we first give a review on the Stochastic Response Surface (SRS)
method, and in Section 2.2 we summarize the literature on landscape modification. In Section 3, we
present the main result of this paper that guarantees the convergence of the SRS method applied to the
landscape-modified objective function. We then proceed to give encouraging and promising numerical

978-1-6654-7661-4/22/$31.00 ©2022 IEEE 3206



Choi and Karumanchi

results of the proposed method on some standard global optimization benchmark functions in Section 4.
Finally, we conclude the paper in Section 5.

2 PRELIMINARIES

2.1 Multistart Local Metric Stochastic Response Surface Method (SRS)

This paper builds on a previous work by Regis and Shoemaker (2007) who use a response surface model
to find the global minimum of expensive ’black-box’ functions. That is, assuming a continuous function f
has a unique global minimizer x∗ over the domain D , the SRS method applied to f on D converges almost
surely to x∗. In each iteration of the SRS method, exactly one point is selected deterministically from a set of
randomly generated candidate points. This selected point is then used to update (and improve) the response
surface model to generate more candidate points in later iterations. This paper aims to improve on the
Multistart Local Metric SRS Method proposed by Regis and Shoemaker (2007). The Metric SRS (MSRS)
is a special case of SRS where the function evaluation point in each iteration is chosen deterministically,
using a weighted score between the estimated function value obtained from the response surface model,
and minimum distance from previously evaluated points. The Multistart Local MSRS method makes use
of a Radial Basis Function (RBF) as the response surface and a varying step size to generate candidate
points.

The framework for the Multistart Local MSRS function is as follows. Here, n is the number of
previously evaluated points, An is the set of previously evaluated points, and sn(x) is the response surface
model after n function evaluations.
Inputs:

1. A continuous real-valued function f defined on a compact hyper cube D = [a,b]m ⊆ Rd , m ≤ d.
2. A particular response surface model, in this case, radial basis functions.
3. A set of initial evaluation points I = {x1, . . . ,xn0}. These points come from a space-filling exper-

imental design and various such techniques are discussed in Regis et al. (2007).
4. The number of candidate points in each iteration, denoted by t. We require t = O(d).
5. The maximum number of function evaluations allowed denoted by Nmax.

Output: The best point encountered by the algorithm.
Algorithm:

1. (Initial expensive function evaluation). Evaluate the function f at each point in I . Set n = n0 and
set An = I . Let the point with the best function value in the set An be x∗n.

2. While n < Nmax:
(a) (Fit/Update Response Surface Model). Use the data points Bn = {(xi, f (xi)) : i = 1, . . . ,n} to

fit and update sn(x), the Surface Response Model.
(b) (Randomly Generate Candidate Points). Randomly generate a set of t candidate points Ωn =

{yn,1, . . . ,yn,t} in Rd from a multivariate normal distribution with mean x∗n and covariance
matrix σ In. The value of σ is modified contingent on the progress made by the algorithm.
The value of σ is increased if the algorithm makes a lot of progress (the surrogate is accurate)
and decreased when the algorithm is unable to make much progress (the surrogate model is
inaccurate). If the value of σ is shrunk below a certain pre-defined threshold, the algorithm
will be re-started using a different set of initial points, hence giving it the name of Multistart
Local MSRS model.

(c) (Select next function evaluation point). The evaluation point xn+1 is now selected determinis-
tically from the t candidate points in Ωn, using information from the response surface model
sn(x) and the data points Bn = {(xi, f (xi)) : i = 1, . . . ,n}. This process is explained in detail
below.
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(d) (Do expensive function evaluation). Evaluate the function f at xn+1.
(e) (Update information). An+1 :=An∪xn+1; Bn+1 :=Bn∪(xn+1, f (xn+1)). Let x∗n+1 be the point

in An+1 with the best function value. Reset n := n+1.
3. (Return the best solution found). Return x∗Nmax

.

To implement the aforementioned algorithm, we need to specify a distance metric D on Rd and a set
of non-negative weights (wR

n ,w
D
n ) : n = n0,n0 +1, . . . such that wR

n +wD
n = 1 for all n ≥ n0 for the response

surface and the distance criteria. We will now proceed to describe how step 2(c) of the algorithm is
implemented.

1. (Estimate the value of the function at the candidate points). Compute sn(x) ∀x ∈ Ωn. Also, compute
smin

n = min{sn(x) : x ∈ Ωn} and smax
n = max{sn(x) : x ∈ Ωn}.

2. (Determine the minimum distance from previously evaluated points). Compute ∆n(x)=min{D(x,xi) :
1 ≤ i ≤ n} ∀x ∈ Ωn. Also compute ∆max

n = max{∆n(x) : x ∈ Ωn} and ∆min
n = min{∆n(x) : x ∈ Ωn}.

3. (Compute the score for the response surface criterion). For all x ∈ Ωn, compute V R
n (x) = (sn(x)−

smin
n )/(smax

n − smin
n ) if smin

n ̸= smax
n and V R

n (x) = 1 otherwise.
4. (Compute the score for the distance criterion). For all x ∈ Ωn, compute V D

n (x) = (∆max
n −

∆n(x))/(∆max
n −∆min

n ) if ∆max
n ̸= ∆min

n and V D
n (x) = 1 otherwise.

5. (Compute the Weighted Score). For all x ∈ Ωn, compute Wn(x) = wR
nV R

n (x)+wD
n V D

n (x).
6. (Select the next evaluation point). Let xn+1 be the point in Ωn that minimizes Wn.

2.2 Landscape Modification

In Choi (2020b), the idea of landscape modification is first proposed and applied in a finite state space
setting in Markov chain Monte Carlo algorithms such as the Metropolis-Hastings and simulated annealing
algorithms. Instead of optimizing with respect to the original objective function f , in landscape modification
we instead target a transformed objective function f g

ε,c, mathematically defined to be

f g
ε,c(x) :=

∫ f (x)

fmin

1
g((u− c)+)+ ε

du,

where fmin := minx f (x) and a+ = max{a,0} is the non-negative part of a ∈ R. This transformation is
based on the introduction of three parameters, namely

• a threshold parameter c with c ≥ fmin in which the landscape is modified once the algorithm is
above this threshold parameter c. A common way to tune this threshold parameter c is to set it to
be the running minimum generated by the algorithm on the fly.

• a non-negative and non-decreasing function g with g(0) = 0 that describes how the landscape is
transformed. Common choices are g(x) = x or g(x) = x2.

• a temperature parameter ε > 0. A common choice is to take ε = 1. We shall also denote the inverse
temperature to be β = 1/ε .

It was then proven that this technique brings about benefits and speedups in the analysis of the Curie-Weiss
model in statistical physics and stochastic optimization using simulated annealing. The core idea of the
transformation relies on introducing a threshold parameter c in which the landscape is modified once the
algorithm is above this threshold c, making the algorithm easier to climb out of a local minimum basin
while preserving the set of the stationary points. In the context of simulated annealing it is proved that this
transformation can effectively reduce the critical height of the landscape and thus offer promising speedup.
This paper will investigate the benefit of landscape modification to the Multistart Local MSRS method
discussed in Section 2.1.
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We now proceed to provide a few examples of applying landscape modification to a function. As it is
sometimes impossible for us to know a piori the global minimum of the target function, we will instead
consider the difference of the target function for x,y ∈ X .

f g
ε,c(y)− f g

ε,c(x) =
∫ f (y)

f (x)

1
g((u− c)+)+ ε

du.

The difference of the target function can then be computed in a piecewise manner owing to the following
integration:

f g
ε,c(y)− f g

ε,c(x) =


β ( f (y)− f (x)), if c ≥ f (y)> f (x),
β (c− f (x))+

∫ f (y)
c

1
g(u−c)+ε

du, if f (y)> c ≥ f (x),∫ f (y)
f (x)

1
g(u−c)+ε

du, if f (y)> f (x)> c.

(1)

The remaining cases of { f (y)< f (x)} is omitted owing to symmetry. We now specialize into two cases,
namely linear landscape modification with g(x) = x and quadratic landscape modification g(x) = x2 on an
objective function f : Rn 7→ R:

1. Linear landscape modification and log-transformed landscape: We take g(u) = u. For x,y ∈ { f (y)>
f (x)≥ c}, since ∫ f (y)

f (x)

1
u− c+ ε

du = ln
(

f (y)− c+ ε

f (x)− c+ ε

)
,

putting the expression back into (1) gives

f g
ε,c(y)− f g

ε,c(x) =


β ( f (y)− f (x)), if c ≥ f (y)> f (x),

β (c− f (x))+ ln
(

f (y)−c+ε

ε

)
, if f (y)> c ≥ f (x),

ln
(

f (y)−c+ε

f (x)−c+ε

)
, if f (y)> f (x)> c.

2. Quadratic landscape modification and inverse-tangent-transformed landscape: We specialize into
g(u) = u2. In this case, the effect of landscape modification gives an inverse-tangent-transformed
objective function whenever f (x)> c.
For x,y ∈ { f (y)> f (x)≥ c}, using the inverse-tangent difference formula we obtain

∫ f (y)

f (x)

1
(u− c)2 + ε

du =
√

β arctan

( √
β ( f (y)− f (x))

1+β ( f (y)− c)( f (x)− c)

)
,

and substituting back into (1) gives

f g
ε,c(y)− f g

ε,c(x) =


β ( f (y)− f (x)), if c ≥ f (y)> f (x),

β (c− f (x))+
√

β arctan
(√

β ( f (y)− c)
)
, if f (y)> c ≥ f (x),√

β arctan
( √

β ( f (y)− f (x))
1+β ( f (y)−c)( f (x)−c)

)
, if f (y)> f (x)> c.
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3 LANDSCAPE MODIFICATION MEETS SURROGATE OPTIMIZATION

In this section, we first give an asymptotic convergence result on using landscape modification coupled with
the SRS method. The following result guarantees that the sequence of points generated by the SRS method
with landscape modification converges almost surely to the desired global minimum under appropriate
regularity conditions:
Theorem 1 Let f be a function defined on the compact hypercube D ⊆Rd with a unique global minimum
x∗ such that f (x∗) > −∞. For a fixed non-negative and non-decreasing function g, threshold parameter
c ≥ f (x∗) and temperature parameter ε > 0, the SRS method applied to f g

ε,c generates a sequence {X∗
n }n≥1

such that X∗
n −→ x∗ almost surely.

Proof. As it has been proved in Choi (2020b) that the global minimum of the landscape-modified
objective function f g

ε,c is exactly the same as the global minimum of the original objective function f ,
proving that the SRS Algorithm extracts the global minimum of an arbitrary function passed as input would
suffice. Then, as the SRS algorithm can approximate the global minimum of landscape modified objective
function, and as this minimum would be the same as the minimum of the orginal objective function, we
will have proved that the SRS Algorithm coupled with landscape modification provides us with global
minimum we desire.

3.1 The Classical Proof of the Convergence of the SRS Method Applied to f

In this subsection, we recall the classical proof of the convergence of SRS method applied to f as in Regis
and Shoemaker (2007). Before we commence our proof, we will clarify certain notation.

In the reminder of this section, uppercase letters will denote random vectors to distinguish them from
ordinary vectors in Rd . Assume that D = [a,b]m ⊆ Rd , m ≤ d. Consider any random vector X which is
realised in Rd . The random vector XD , whose realisations are always in D , will be defined as follows.
Consider a sample point w:

XD(w) =

{
X(w), if X(w) ∈ D

min(max(a,X(w),b)), else.

In the second case, note that the minimum and the maximum are taken componentwise. In this case,
XD(w) is the point in D which is nearest to X(w). In the notation below, Xn is the random vector representing
the nth function evaluation point xn and Yn, j is the random vector representing the random candidate point
yn, j before it was forced to be in D . Note that for all n ≥ n0, the value of Xn+1 is selected deterministically
from the values of the random vectors (Yn,1)D ,(Yn,2)D , . . . ,(Yn,t)D .

For each n≥ n0, let En := {X1, . . . ,Xn0 ,Yn0,1, . . . ,Yn0,t , . . . ,Yn,1, . . . ,Yn,t}.We define En0−1 := {X1, . . . ,Xn0}.
Let n ≥ n0. After the nth function evaluation, the entire history of the algorithm is completely determined
by the random vectors in En−1. B(x,δ ) is the open ball of radius δ centred at x and σ(En−1) is the σ−
field generated by the random vectors in En−1.

We now proceed with proof of the convergence of the SRS method.
Theorem 2 Let f be a function defined on the compact hypercube D ⊆Rd with a unique global minimum
x∗ such that f (x∗) > −∞. Define the sequence of random vectors {X∗

n }n≥1 as follows: X∗
1 = X1 and

X∗
n = Xn, if f (Xn) < f (X∗

n−1) while X∗
n = X∗

n−1 otherwise. Suppose the SRS method generates random
vectors {Xn}n≥1 and {Yn,1, . . . ,Yn,t}n≥n0 from a normal distribution centred at X∗

n with covariance matrix
σ2

n In, where infn≥n0 σn > 0. Then X∗
n −→ x∗ almost surely.

Proof. Fix ε > 0 and n ≥ n0 +1. It is observed that [Xn ∈ D : f (Xn)< f (x∗)+ ε] = [Xn ∈ D : | f (Xn)−
f (x∗)| < ε]. Since f is continuous on x∗, there exists δ (ε) > 0 such that | f (x)− f (x∗)| < ε whenever
∥x− x∗∥< δ (ε). Hence, [Xn ∈ D : | f (Xn)− f (x∗)|< ε]⊇ [Xn ∈ D : ∥x− x∗∥< δ (ε)], and so,
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P[Xn ∈ D : | f (Xn)− f (x∗)|< ε|σ(En−2)]≥ P[Xn ∈ D : ∥Xn − x∗∥< δ (ε)|σ(En−2)]

= P[Xn ∈ B(x∗,δ (ε))∩D |σ(En−2)].

Note that if (Yn−1, j)D ∈B(x∗,δ (ε))∩D for each j = 1, . . . , t, then the evaluation point Xn ∈B(x∗,δ (ε))∩
D . So,

P[Xn ∈ B(x∗,δ (ε))∩D |σ(En−2)]≥ P[(Yn−1, j)D ∈ B(x∗,δ (ε))∩D , j = 1, . . . , t|σ(En−2)]

≥ P[Yn−1, j ∈ B(x∗,δ (ε))∩D , j = 1, . . . , t|σ(En−2)]

=
t

∏
j=1

P[Yn−1, j ∈ B(x∗,δ (ε))∩D |σ(En−2)].

The equality in the product is owing to the conditional independence of the Yn−1, j vectors ∀ j ∈ {1, . . . , t}
given the random vectors in En−2.

Now we are left to prove that P[Yn−1, j ∈ B(x∗,δ (ε))∩D |σ(En−2)]> 0.
Define ψD(δ ) := infx∈D µ(B(x,δ )∩D), where µ is the Lebesgue measure on Rd . Observe that for the

compact hypercube D , we have ψD(δ )> 0 for any δ > 0. Since infn≥n0 σn > 0, the conditional density of
Yn−1, j for each n−1 ≥ n0 is given by

gn−1, j(y|σ(En−2)) = (2πσ
2
n−1)

−d/2exp

(
−∥y−X∗

n−1∥2

2σ2
n−1

)
, y ∈ Rd .

Note that

gn−1, j(y|σ(En−2))≥

2π

(
sup

n−1≥n0

σn−1

)2
−d/2

exp

(
−∥y−X∗

n−1∥2

2σ2
n−1

)
=: C > 0,

for all y ∈ D .
Thus,

P[Yn−1, j ∈ B(x∗,δ )∩D |σ(En−2)] =
∫

B(x∗,δ )∩D
gn−1, j(y|σ(En−2))dy

≥Cµ(B(x∗,δ )∩D)≥CψD(δ ) > 0.

So,

P[Xn ∈ B(x∗,δ (ε))∩D |σ(En−2)]≥
t

∏
j=1

v j(x∗,δ (ε)) =: L(ε)> 0.

Thus, we have P[Xn ∈D : f (Xn)< f (x∗)+ε|σ(En−2)]≥ L(ε). Thus, by following an argument similar
to the result in page 40 of Spall (2005), we attain convergence almost surely.
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4 NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments for evaluating the performance of the SRS algorithm
with and without landscape modification on some common global optimization benchmark functions. The
experiments were run using the PySOT package in Python, a toolbox for the optimization of computationally
expensive black-box objective functions. The source code for surrogate optimization in the PySOT package
was modified to optimize with respect to the landscape-modified objective functions f g

ε,c and can be found
here on the author’s github repository. Experiments were performed by running the optimization algorithm
(the number of evaluations vary according to the dimensionality of the benchmark function) 30 times for
each benchmark objective function and the various landscape modified variants of the original objective
function and then computing summary statistics. The random seed was the same for both SRS and the
landscape-modified SRS method during each of the 30 runs for fair comparison. We also tune our threshold
parameter value c by either setting it to be the running minimum found in each iteration of the surrogate
optimization algorithm or to a certain fixed value which was found by comparing it with various other
possible fixed values for c. We choose the temperature parameter ε = 1 in all our numerical experiments.
Thus, our landscape-modified objective function is possibly adaptively changing throughout the course of
the SRS algorithm, but we note that the set of stationary points is preserved throughout.

For the remainder of this section ‘objective’ will refer to the results of applying the SRS method to the
original objective function f , ‘linear a’ will be the objective function in the linear modified landscape with
an adaptive c, ‘linear c’ will be the objective function in the linear modified landscape with c fixed (for
example, if c is fixed to 1, it will be denoted as linear 1), i.e. f g(x)=x

1,c , ‘quadratic a’ will be the objective
function in the quadratic modified landscape with an adaptive c, ‘quadratic c’ will be the objective function
in the quadratic modified landscape with c fixed, i.e. f g(x)=x2

1,c .
We postpone the discussion of the numerical results and the plots in Section 4.6.

4.1 Ackley Function

f (x1, . . . ,xd) =−20exp

−0.2

√√√√1
d

d

∑
j=1

x2
j

− exp

(
1
d

d

∑
j=1

cos(2πx j)

)
+20− exp(1)

where −15 ≤ xi ≤ 20 and the global minimum is f (0, . . . ,0) = 0, and d = 10.

Table 1: Summary statistics of the original SRS and the landscape-modified SRS algorithm on the Ackley
function in 30 independent runs.

method mean median standard deviation best result worst result
objective 0.9023 0.8279 0.4011 0.3110 2.2723
linear a 1.0348 0.7881 0.5366 0.3232 2.4860
linear 0 0.9567 0.8050 0.4752 0.4217 2.4860

quadratic a 1.1069 0.9119 0.5465 0.3709 2.9767
quadratic 0 1.0873 0.9557 0.4849 0.3709 2.4384
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Figure 1: Sample run on the Ackley function in which ‘linear a’ found a minimum of 0.737749 and the
original SRS found a minimum of 1.677980.

4.2 Rosenbrock Function

f (x1, . . . ,xd) =
d

∑
i=1

−1[100
(
xi+1 − x2

i
)2

+(xi −1)2]

where −2.048 ≤ xi ≤ 2.048 and the global minimum is f (1, . . . ,1) = 0, and d = 10.

Table 2: Summary statistics of the original SRS and the landscape-modified SRS algorithm on the Rosenbrock
function in 30 independent runs.

method mean median standard deviation best result worst result
objective 8.6185 8.8832 1.7402 4.4037 12.4250
linear a 7.3535 7.5624 1.3576 2.7582 9.6538
linear 1 7.2728 7.3866 0.7831 4.6646 8.5082

quadratic a 7.6232 7.8529 1.4907 2.7750 9.6461
quadratic 0 6.6163 7.2987 2.1640 1.0440 9.1723

Figure 2: Sample run on the Rosenbrock function in which ‘linear 1’ found a minimum of 7.614494 and
the original SRS method gives a minimum of 12.425069.
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4.3 Dixon-Price Function

f (x1, . . . ,xd) = (x1 −1)2 +
d

∑
i=2

i(2x2
i − xi−1)

2)

where −10 ≤ xi ≤ 10 and the global minimum is f (x1, . . . ,xd) = 0, when xi = 2−
2i−2

2i , and d = 10.

Table 3: Summary statistics of the original SRS and the landscape-modified SRS algorithm on the Dixon-
Price in 30 independent runs.

method mean median standard deviation best result worst result
objective 8.6137 5.7372 7.3143 1.7414 36.5023
linear a 1.7440 0.7492 3.1117 0.5484 15.0939
linear 0 0.6453 0.6055 0.1050 0.5393 0.9126

quadratic a 122.4847 119.6667 99.5981 0.6550 377.3572
quadratic 0 2.0505 0.8139 3.3107 0.5923 18.0407

Figure 3: Sample run on the Dixon-Price function in which ‘quadratic 0’ found a minimum of 0.539344
and the original SRS method found a minimum of 13.865434.

4.4 Three-Hump Camel Function

f (x1,x2) = 2x2
1 −1.05x4

1 +
x6

1
6
+ x1x2 + x2

2

where −5 ≤ xi ≤ 5 and the global minimum is f (0,0) = 0.

Table 4: Summary statistics of the original SRS and the landscape-modified SRS algorithm on the Three-
Hump Camel function in 30 independent runs.

method mean median standard deviation best result worst result
objective 0.0206 0.0006 0.0405 7.0e-05 0.1557
linear a 3.3e-05 2.7e-05 2.9e-05 1.2e-07 0.0001
linear 1 3.9e-05 2.6e-05 3.8e-05 8.6e-07 0.0001

quadratic a 3.8e-05 3.6e-05 3.3e-05 8.4e-07 0.0001
quadratic 1 4.1e-05 3.6e-05 3.4e-05 6.1e-07 0.0001
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Figure 4: Sample run on the three-hump camel function in which ‘quadratic 1’ found a minimum of
4.482e-05 and the original SRS method found a minimum of 0.098218.

4.5 Six-Hump Camel Function

f (x1,x2) =

(
4−2.1x2

1 +
x4

1
3

)
x2

1 + x1x2 +
(
−4+4x2

2
)

x2
2

where −3 ≤ x1 ≤ 3, −2 ≤ x2 ≤ 2 and the global minimum is f (0.0898,−0.7126) =−1.0316.

Table 5: Summary statistics of the original SRS and the landscape-modified SRS algorithm on the Six-Hump
Camel function in 30 independent runs.

method mean median standard deviation best result worst result
objective -1.0315 -1.0315 0.0001 -1.0316 -1.0309
linear a -1.0315 -1.0315 2.7e-05 -1.0316 -1.0315
linear 0 -1.0315 -1.0315 5.74e-05 -1.0316 -1.0313

quadratic a -1.0315 -1.0315 7.6e-05 -1.0316 -1.0312
quadratic 0 -1.0315 -1.0315 0.0001 -1.0316 -1.0311

4.6 Discussion

It is evident from the numerical results that the landscape modification of the objective function is a useful
technique to improve the convergence to the global minimum of certain expensive black-box functions. In
the aforementioned experiments it is observed that the landscape-modified surrogate optimization provided
an advantage over the standard surrogate optimization algorithm for all benchmark functions (which are
all valley-shaped), except the Ackley function. For Ackley function, we see from Figure 1 that there are
instances in which the landscape-modified SRS algorithm outperforms the original SRS algorithm.

5 CONCLUSION

In this paper we propose a new SRS method that optimize with respect to the landscape-modified function
f g
ε,c instead of the original objective function f . The proposed method provably converges to the global

minimum of f as demonstrated in Theorem 1, and it offers promising numerical results that outperform
the original SRS method on some global optimization benchmark functions.
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