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ABSTRACT

Digital simulation is a prevalent tool to evaluate the performance of complex industrial systems. In this
paper, we consider the discrete optimization via simulation (DOvS) problems, where the design space is an
integer lattice. In addition, we are interested in leveraging cheap low-fidelity models to enhance optimization
efficiency. An innovative Gaussian Markov random field (GMRF), which adaptively evolves along with the
optimization process, is introduced to exploit the spatial and inter-model relationships among the objective
function values of designs. We then propose the Multi-Fidelity Gaussian Markov Improvement Algorithm
(MFGMIA) under the Bayesian global optimization framework. The numerical experiments show that it
can achieve significant performance improvement by properly using low-fidelity information.

1 INTRODUCTION

In recent decades, modern industrial systems have been increasing complexity. As a result, simple analytical
models are usually no longer competent for analysis. Meanwhile, the advent and fast development of the
computer make digital simulation a reality and a popular tool for modeling complex systems. Optimization
via simulation (OvS) aims to find the best design (or decision variable) for a system. Here, the simulation
usually refers to stochastic simulation with randomness, and the best design is defined to have the smallest
(or largest) performance mean. Generally, the OvS problem can be formulated as

min
x∈Θ

f (x) = E[F(x)],

where the d-dimensional vector x denotes the feasible design and Θ is the design space. The f (x) does not
have a closed form and has to be estimated by stochastic sampling from a high-fidelity simulation model.
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This paper focuses on the so-called DOvS, where the x is integer-ordered, and Θ is a finite subset
of the integer lattice. There is a wide range of OvS problems falling into this category, e.g., machine
allocation problems and inventory management problems. In most DOvS problems, the design space is so
large that the computing budget can only exhaust a small fraction of feasible designs, let alone mitigating
the intrinsic randomness of simulation. Therefore, finding the optimal design for DOvS problems is often
challenging, and smart algorithms that can efficiently allocate computing budgets are highly desirable.

Apart from the high-fidelity simulation model, sometimes cheap low-fidelity models are available.
The computation cost of the latter is often negligible, and thus, proper use of low-fidelity information is
promising to enhance the efficiency of OvS in the high-fidelity models. The main drawback of low-fidelity
models is the simulation biases (or errors) against the high-fidelity models. The biases are unknown and
heterogeneous among different designs. The information that we can leverage is only the “belief” that
designs with good performance in low-fidelity models are expected to be promising in high-fidelity models.
In some cases, the low-fidelity models are not reliable and can mislead the optimization. Therefore, how
to properly quantify the “belief” in a rigorous way is the key point for multi-fidelity OvS.

We consider DOvS using multi-fidelity models. Because the design space is integer-ordered and the
number of low-fidelity models is also countable, a graph can naturally be constructed. Then, a discrete
version of GMRF is proposed to quantify the prior belief of the unknown objective function. Both the
intrinsic noise rooted in the stochastic simulation and extrinsic uncertainty from the random field can be
captured, and an expected improvement (EI) like acquisition function is used to guide the optimization.
The greatest novelty is that we devise a mechanism to update the prior belief so that the influence of
low-fidelity information will gradually vanish as high-fidelity information becomes rich. As illustrated
later, this feature is important for DOvS algorithms to get rid of possible misleading caused by low-fidelity
models.

The remainder of this paper is structured as follows. In section 2, we review related literature. Section
3 introduces the optimization problem and the algorithm. In section 4, we compare the efficiency of
MFGMIA with benchmark algorithms in several synthetic examples. Section 5 concludes this paper.

2 LITERATURE REVIEW

The broad topic of this paper is OvS. We refer interested readers to Fu (2015) for a thorough discussion on
problems and algorithms. Specifically, this project is related to Bayesian optimization (BO), DOvS, and
multi-fidelity optimization.

The BO dates back to the EGO algorithm (Jones et al. 1998), which aims to optimize expensive
black-box functions without noise. The unknown objective function is regarded to be a Gaussian Random
Field (prior distribution). As more objective function values are observed, the conditional (or posterior)
distribution can be updated according to the Bayesian rule. Then, a famous criterion called EI, which can
balance exploration and exploitation well, is used to guide the search. Later on, Huang et al. (2006) and
Quan et al. (2013) extend to optimize objective functions with homoscedastic and heteroscedastic Gaussian
noise, respectively. For those mentioned above, the objective function is usually assumed to be continuous
among the design space. More details about BO can be found in Frazier (2018).

In DOvS problems, the discrete design space often contains a large number of feasible designs, and the
use of adaptive random search (ARS) algorithms is prevailing in the literature. A survey of ARS algorithms
can be found in Nelson (2010). There are few DOvS algorithms under the BO framework. Recently, Salemi
et al. (2019) devise an innovative discrete version of GMRF as the prior belief and propose GMIA for
DOvS problems. Semelhago et al. (2021) speed up the GMIA by employing a divide-and-conquer strategy
to switch the search between a small promising subset and the global design space.

Using multi-fidelity models to improve optimization efficiency is first considered in the global opti-
mization and computer science community (see, e.g., Forrester et al. (2007) and Huang et al. (2006)).
Kandasamy et al. (2019) consider the multi-armed bandit problem using multi-fidelity models. Under
a more general setting which does not assume a rank for low-fidelity models, here comes the so-called
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multi-information source optimization, e.g., the misoKG (Poloczek et al. 2017), Ghoreishi and Allaire
(2019), and Lam et al. (2015). Those algorithms usually use independent Gaussian random fields, e.g., the
autoregressive co-kriging model (Kennedy and O’Hagan 2000), to fit the difference between high-fidelity
and low-fidelity objective functions. In the OvS realm, the cost of low-fidelity samplings is assumed
negligible, and the focus is thus on how to sample designs in the high-fidelity model. MO2TOS (Xu et al.
2016) uses the low-fidelity information to rank all designs, and then applies the OCBA rule (Chen et al.
2000) to guide the search in the ordinal space. Under a very different problem setting, Peng et al. (2019)
considered multi-fidelity optimization for ranking and selection (R&S) problems.

3 PROBLEM FORMULATION

We consider a DOvS problem as
min
x∈Θ

f (x) = E[F(x)],

where f (x), the objective function, is unknown but can be estimated by sampling from a high-fidelity
simulation model. The simulation output F(x) is random. Formally, we have

Fi(x) = f (x)+ εi(x)

for the i-th replication, where {εi(x), i= 1,2, . . .} are independent and identically distributed (i.i.d.) Gaussian
noise with mean zero and finite variance σ2

ε (x) that depends on x. The design space Θ = Φ∩Zd is finite and
|Θ|= n, where Φ ⊂ Rd is a convex compact set (e.g., hyperrectangle), and Zd is the set of d-dimensional
integer lattice. We assume there is a single optimal design x∗ = argminx∈Θ f (x). In addition to the high-
fidelity simulation model, we also have m low-fidelity models, whose output gl(x), l = 1,2, . . . ,m, can
provide biased approximation for f (x). Thus we have the following equation:

f (x) = gl(x)+δl(x), l = 1,2, . . . ,m,

where the bias δl(x) is unknown and heterogeneous. Here we assume that those low-fidelity models
are constructed by different methods; therefore, there is no hierarchical structure for their fidelity level.
Furthermore, the sampling cost of low-fidelity models (e.g., calculations of analytical formulas) is negligible,
and we already knew gl(x), l = 1,2, . . . ,m,x ∈ Θ free of noise before the DOvS in the high-fidelity model.

In our problem setting, the design space Θ is relatively large, while the sampling budget is limited.
Consequently, only a small fraction of the designs can be sampled. The goal is to smartly utilize low-fidelity
information and efficiently allocate the sampling budgets to find the optimal design x∗. We aim to solve
the problem under the BO framework, where the unknown objective function is modeled as a random field.
As high-fidelity observations are collected, the conditional distribution is updated and used to guide the
search. A skeleton of the framework for our multi-fidelity DOvS is given in Figure 1. In the following,
we always call step 1 for initial sampling as iteration 0 and further cycles that go from step 2 to step 5 as
iteration 1, iteration 2, and so on.

3.1 The GMRF for Multi-Fidelity DOvS Problems

We choose the GMRF to model the prior belief. All vectors in this paper are column vectors. A GMRF is
a multivariate Gaussian random vector Y = (Y1,Y2, . . . ,Yn)

T ∈Rn with respect to an undirected and labeled
graph G = (V ,E ), where each Yi corresponds to a unique node i in V . Two nodes are called the neighbor
of each other if an edge connects them. The GMRF is “Markov” in the sense that, after knowing all the
neighbors of a component Yi, it is conditional independent from all rest components, and see Figure 2 for
an example. Given the mean vector µ and the precision matrix (the inverse of the covariance matrix) Q,
the probability density function of Y is

φ(y|µ,Q) = (2π)−n/2|Q|1/2 exp
(
−1

2
(y−µ)T Q(y−µ)

)
.
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Figure 1: Bayesian optimization framework for DOvS using multi-fidelity models.

Figure 2: An example of the graph associated with a GMRF. After observing all the neighbors of the gray
node, which are the four black nodes, the gray node is conditionally independent of other white nodes.

The precision matrix Q is closely related to the graph and the conditional distribution of Y . To be specific,
the diagonal entries of Q are the conditional precision of the corresponding Yi, and the off-diagonal entries
are proportional to the conditional correlation of the corresponding Yi and Yj, after observing all neighbors.
Q is often very sparse since the graph of GMRFs usually does not have too many edges. Refer to Rue and
Held (2005) for more details of GMRFs.

For DOvS problems, Salemi et al. (2019) introduce a graph structure that works well for the integer-
ordered design space, and Figure 3 shows an example. Then, the mean vector of the GMRF contains a
constant, i.e., µ = µ01n×1, and the n×n precision matrix Q is given as

Qi j =


θ , if xi = x j;
−θλk, if |xi − x j|= ek;
0, otherwise,

(1)

where ek is the d-dimensional basis vector with 1 at the k-th dimension and 0 otherwise, k = 1,2, . . . ,d.
In simple words, a single parameter θ is introduced to be the conditional precision for all designs, and
λk measures the conditional correlation between any two designs that are adjacent in the k-th dimension.
The objective function of DOvS problems is usually non-smooth and fluctuates intensively, and thus, after
knowing the neighbors of a design xi, other designs can provide little information for predicting f (xi).
GMRFs perfectly encapsulate this belief in the graph and precision matrix. By contrast, traditional Gaussian
random fields with a continuous covariance kernel function are more suitable for fitting continuous and
smooth objective functions. Besides, the precision matrix Q is sparse, where at most (2d +1)/n entries

3173



Li, Liu, Jin, Li, Chew, Tan, and Lin

Figure 3: An example of the graph for a two-dimensional integer lattice, where the neighbors of a node
just include those within a Euclidean distance of 1 in the space.

are nonzero, so sparse-matrix techniques can facilitate the calculation. If adopting continuous covariance
kernels, a dense and ill-conditional matrix needs to be inverted in each iteration of the BO.

Motivated by the above, we propose a GMRF with a graph as in Figure 4 to integrate the low-fidelity
information for DOvS, which is a straightforward extension of the graph in Figure 3. Note that there is no

Figure 4: An example of the graph of the GMRF for a two-dimensional DOvS problem with one low-fidelity
model. The nodes in the first layer denote the objective function values of the high-fidelity model, and
those in the upper layer denote the objective function values of the low-fidelity model.

edge among the nodes of low-fidelity models themselves. In our problem setting, the objective function
values of low-fidelity models are already known, and the focus is on the prediction of the high-fidelity
objective function values. Deleting those redundant edges makes a negligible impact on the prediction and
can introduce fewer parameters.

We pretend all objective function values, including those of low-fidelity models, are unknown, and
consider the prior belief for(

f T ,gT
1 , . . . ,g

T
m
)T

= ( f (x1), . . . , f (xn),g1(x1), . . . ,g1(xn), . . . ,gm(x1), . . . ,gm(xn))
T .
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Since the low-fidelity objective functions usually shift a bit away from the high-fidelity objective function,
we introduce different constants (µ0,µ1, . . . ,µm) for the prior means of each models, and it follows

µ = (µ011×n,µ111×n, . . . ,µm11×n)
T . (2)

The nm×nm precision matrix Q is given as

Q(gl(xi),gl′(x j)) =



θl, if xi = x j and l = l′;
−λkθ0, if |xi − x j|= ek and l = l′ = 0;
−ρl

√
θ0θl, if xi = x j and l ̸= 0, l′ = 0;

−ρl′
√

θ0θl′ , if xi = x j and l = 0, l′ ̸= 0;
0, otherwise,

(3)

where f (·) is represented by g0(·) here. (θ0,θ1, . . . ,θm) are conditional precision for each model, (λ1, . . . ,λd)
play the same role as before, and (ρ1, . . . ,ρm) measure the conditional correlation between low-fidelity
models and the high-fidelity model. All parameters can be estimate using the initial sampling observations.
As a result, the prior distribution of

(
f T ,gT

1 , . . . ,g
T
m
)T is N(µ,Q−1) with µ and Q defined by (2) and (3).

3.2 Update of the GMRF

Traditional BO algorithms directly update the conditional distribution via the Bayesian rule. Many multi-
fidelity algorithms under the BO framework, e.g., Huang et al. (2006) and Kandasamy et al. (2019), indeed
follow this routine. However, they often need high-quality low-fidelity models, e.g., a correlation of at least
0.9, to perform well, because the low-fidelity information always influences the conditional distribution. In
some cases, low-fidelity models can mislead the optimization. Since it is unlikely to ensure the low-fidelity
models with high quality in practice, we are motivated to devise a mechanism that can properly deal with
low-fidelity models. There are two features that we want our mechanism can realize:

• Allocating more influence to better low-fidelity models while less to worse low-fidelity models;
• Allocating more influence to low-fidelity models in the area with rare high-fidelity information,

and decreasing the low-fidelity influence as the high-fidelity information becomes rich.

The first feature is already realized by the parameters (ρ1, . . . ,ρm), which roughly measure the overall quality
of each low-fidelity model. The motivation of the second feature is that high-fidelity information is always
superior to low-fidelity information, so the latter is supposed to be gradually abandoned to avoid possible
misleading. Fortunately, we are able to leverage the graph structure of GMRFs to realize it by modifying
the precision matrix Q. Unlike the traditional BO, which only updates the conditional distribution, our
framework also needs to update the prior belief.

To make it happen, we first introduce some new notation. Denote the information set collected before
iteration t as Ft , t = 0,1, . . . , and we have F0 = {g1,g2, . . . ,gm}. Let Q(t)

ε be an n× n diagonal matrix,
where the diagonal entries represent the intrinsic precision brought by the high-fidelity sampling, i.e.,

Q(t)
ε = diag

(
rt(x1)/σ

2
ε (x1), . . . ,rt(xn)/σ

2
ε (xn)

)
, (4)

where rt(xi) is the number of high-fidelity sampling replications for design xi before iteration t, i= 1,2, . . . ,n.
The superscript (t) appearing here and in the following all indicates the term is updated before iteration t.
The variance of sampling noise σ2

ε (xi) is unknown but can be estimated by sample variance s2
ε(xi). Then,

another n×n auxiliary matrix At , which helps to update the precision matrix, is defined as

A(t)
i j =


λk

2∑
d
r=1 λr

max
(

S(Q(t)
ε (i, i)),S(Q(t)

ε ( j, j))
)
, if |xi − x j|= ek;

∑k ̸=i A(t)
ik , if xi = x j;

0, otherwise,

(5)
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where S(x) = 2
1+e−x −1 is a Sigmoid-like function mapping those non-negative intrinsic precision to [0,1).

Then, denote the prior precision matrix before iteration t as Q(t), and it follows that

Q(t) (gl(xi),gl′(x j)) =



θl, if xi = x j and l = l′;

−(λk +A(t)
i j ∑

m
r=1 ρr)θ0, if |xi − x j|= ek and l = l′ = 0;

−ρl(1−A(t)
ii )

√
θ0θl, if xi = x j and l ̸= 0, l′ = 0;

−ρl′(1−A(t)
ii )

√
θ0θl′ , if xi = x j and l = 0, l′ ̸= 0;

0, otherwise.

(6)

Further, we can partition the precision matrix as

Q(t) =

[
Q(t)

f f Q(t)
f g

Q(t)
g f Q(t)

gg

]
.

As high-fidelity information grows, some off-diagonal entries corresponding to the conditional correlation
between the low-fidelity and high-fidelity models decrease, while those corresponding to the conditional
correlation inside the high-fidelity model increase accordingly. Furthermore, we keep the sum of conditional
correlation from neighbors for any design in the high-fidelity model a constant, which makes the conditional
mean of f (x) a weighted average of its neighbors, although the weights will change adaptively. The following
proposition ensures the positive definiteness of the precision matrix Q(t) under mild conditions.
Proposition 1 Suppose parameters (θ0, . . . ,θm) are positive, (λ1, . . . ,λd ,ρ1, . . . ,ρm) are non-negative and
satisfy ∑

m
l=1 ρl +2∑

d
k=1 λk < 1, then the precision matrix Q(t) defined by (6) is always positive definite.

As a result, our prior belief for
(

f T ,gT
1 , . . . ,g

T
m
)T before iteration t is N(µ,

(
Q(t)
)−1

) with µ and

Q(t) defined in (2) and (6) respectively. Let F̄(t) be an n× 1 vector such that each element is either the
sample mean of the high-fidelity observations of the corresponding design, if it has been sampled, or µ0

otherwise. Let g =
(
gT

1 , . . . ,g
T
m
)T and µg = (µ111×n, . . . ,µm11×n)

T . Then we have the following theorem
for the conditional distribution of f .
Theorem 1 The conditional distribution of f = ( f (x1), . . . , f (xn))

T given Ft is

f |Ft ∼ N
(

µ
(t)
f ,Σ

(t)
f

)
,

with

µ
(t)
f =

(
µ01n×1 −

(
Q(t)

f f

)−1
Q(t)

f g(g−µg)

)
+Σ

(t)
f Q(t)

ε

(
F̄(t)−µ01n×1 +

(
Q(t)

f f

)−1
Q(t)

f g(g−µg)

)
(7)

and
Σ
(t)
f =

(
Q(t)

f f +Q(t)
ε

)−1
. (8)

Note that
(

Q(t)
f f

)−1
Q(t)

f g(g−µg) is the contribution from the low-fidelity information. As more and more

high-fidelity observations are collected, some nonzero entries in Q(t)
f g will go to zero, and

(
Q(t)

f f

)−1
Q(t)

f g(g−

µg) gradually disappears as well. Moreover, both Q(t)
f f and

(
Q(t)

f f +Q(t)
ε

)
are n× n symmetric diagonal-

dominant sparse matrix, and the fraction of nonzero entries is also bounded above by (2d +1)/n.
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3.3 Acquisition Function

The acquisition function plays an important role in BO. We adopt the complete expected improvement
(CEI) as in Salemi et al. (2019) and Semelhago et al. (2021), which quantifies both the intrinsic noise and
extrinsic uncertainty of the unknown objective function values.

Denote x̃(t) the best sampled design before iteration t, i.e., the one with the lowest sample mean. Then,
the CEI is defined as

CEI(t)(x) = E
[
max( f (x̃(t))− f (x),0)|Ft

]
. (9)

Note that the conditional distribution of
(

f (x̃(t)), f (x)
)

is bivariate normal. Denote the conditional mean
and variance of their difference

(
f (x̃(t))− f (x)

)
by M(t)(x) and V (t)(x). Then, we have

M(t)(x) = µ
(t)
f (x̃(t))−µ

(t)
f (x) and V (t)(x) = Σ

(t)
f (x̃(t))+Σ

(t)
f (x)−2Σ

(t)
f (x̃(t),x).

After some simple algebra, the CEI defined in (9) can be calculated as

CEI(t)(x) = M(t)(x)Φ

(
M(t)(x)√

V (t)(x)

)
+
√

V (t)(x)φ

(
M(t)(x)√

V (t)(x)

)
, (10)

where Φ(·) and φ(·) are the cumulative distribution function and probability density function of the standard
normal distribution. Note that CEI(t)(x̃(t)) is always 0. Moreover, to compute CEI, we only need to know
the diagonal entries and the column corresponding to x̃(t) of the conditional covariance matrix Σ

(t)
f .

3.4 MFGMIA

Now, we are ready to give the whole picture of our optimization algorithm, MFGMIA. There are several

Algorithm 1: MFGMIA

1 Choose n0 designs and sample r replications for each of them in the high-fidelity model;
2 Use the initial outputs to estimate (µ0, . . . ,µm,θ0, . . . ,θm,λ1, . . . ,λd ,ρ1, . . . ,ρm);
3 while Stopping criterion not met do
4 Find the current best sampled design x̃(t);

5 Update Q(t)
ε , A(t) and Q(t) according to (4), (5) and (6);

6 Compute Cholesky factor of Q(t)
f f and (Q(t)

ε +Q(t)
f f ): L(t)

f f and L(t)
f ε

;

7 Compute µ
(t)
f according to (7), using L(t)

f f and L(t)
f ε

;

8 Compute the diagonal entries of Σ
(t)
f according to (8), using L(t)

f ε
;

9 Compute the column of Σ
(t)
f corresponding to x̃(t) according to (8), using L(t)

f ε
;

10 Compute CEI(t)(x) by (10), ∀x ∈ Θ/x̃(t); Find x(t)CEI = argmaxx∈Θ CEI(t)(x);

11 Sample both x̃(t) and x(t)CEI for r replications respectively;
12 end
13 Return the best sampled design x̃ as the estimated optimal solution.

parameters that we need to prespecify. For the initial experimental designs, a rule of thumb in the literature
is n0 = 10d, and the Latin hypercube sampling method is recommended. For the number of replications
r, it cannot be too small because it may lead to poor estimation of σ2

ε (x). A suggestion is somewhere
between 5 and 20 (Chen and Lee 2011), and we adopt r = 10 in the numerical experiments.

In step 5, only the entries related to the sampled design of the previous iteration need to be updated.
Step 6 is the most expensive one, where factorization techniques for sparse diagonal-dominant matrix can
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facilitate calculation. In step 11, the current found best design x̃(t) is sampled because it is promising, and
a good estimate of the optimal objective function value is crucial for OvS algorithms to work well. For
the stopping criterion, we suggest the fixed-budget.

4 NUMERICAL EXPERIMENTS

In this section, we compare the MFGMIA with several competitors. The main goal is to check whether
the MFGMIA can efficiently and properly make use of the low-fidelity information. For comparison,
we create two versions of GMIA: (i) using the GMRF to fit f (x) only and applying CEI (GMIA1); (ii)
using the GMRF to fit f (x)−gl(x) and applying CEI (GMIA2). The second one is to let the GMIA use
low-fidelity information, but unlike MFGMIA which can adaptively abandon the low-fidelity information,
the influence of gl(x) always exists in GMIA2. Hence, GMIA2 can be regarded to make use of the spirit
of many multi-fidelity optimization algorithms in the literature, e.g., Huang et al. (2006). Besides, the
random sampling algorithm is introduced as a naive benchmark. The following two experiments are both
adapted from Xu et al. (2016).

4.1 Synthetic Function Examples

The high-fidelity function f (x) and three low-fidelity functions gl(x), l = 1,2,3, are plotted in Figure 5.
The design space is Θ = {1,2, . . . ,1000} and the optimal design is x∗ = 164 with objective function value
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Figure 5: Multi-fidelity objective functions.

f (x∗) = 0. All three low-fidelity functions have the same shape and shift upwards from the high-fidelity
function. Nevertheless, their horizontal shifts are different, which leads to different correlations with the
high-fidelity function, i.e., 0.95 for g1(x), 0.71 for g2(x), and -0.50 for g3(x). We can regard g1(x) as
a high-quality low-fidelity model, since it has almost the same local minimum region as f (x). g2(x) is
middle-quality since it regards some sub-optimal designs as top ones, and it can probably mislead the
optimization. Besides, the information of g3(x) is low-quality, which identifies good designs as poor ones.

Consequently, we create three test cases using each low-fidelity function, respectively. The sampling
noise applied to f (x) is universally ε(x)∼ N(0,0.01). We increase the sampling budget T from 100 to 2,000
and compare the finite-budget performance of each algorithm. The comparison criterion is the optimality
gap, i.e., the difference between the objective function values of the reported best design and the true best
design. All results are reported based on 1,000 independent macro replications, where the four algorithms
start from the same initial sampling in each replication.

The results are plotted in Figure 6. In Figure 6a, we can see both MFGMIA and GMIA2 converge
to the top designs in the very beginning, which of course owes to the high quality of g1(x). The second
test case depicted in Figure 6b shows the strength of MFGMIA. Here, the low-fidelity function g2(x)
can provide some useful information, so MFGMIA and GMIA2 both achieve better performance than
GMIA1. However, because the information of g2(x) is a bit misleading, GMIA2 tends to get stuck in some
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sub-optimal designs and converge slower than MFGMIA. Figure 6c further illustrates how GMIA2, which
does not abandon low-fidelity information, can get into serious trouble. The low-fidelity function g3(x)
cannot provide any useful information, so the best practice is to ignore it. As a result, our MFGMIA can
identify the poor quality of g3(x) and perform equivalently well as GMIA1, while GMIA2 is even worse
than random sampling in this scenario.
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(a) Optimality gap using g1(x).
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(b) Optimality gap using g2(x).
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(c) Optimality gap using g3(x).

Figure 6: Optimality gap of each case.

4.2 A Machine Allocation Problem

This problem is about a manufacturing system, where 37 machines need to be allocated to 5 workstations
so that the average processing time for each product is minimized. After considering all deterministic
constraints, there are in total 780 feasible designs spreading over a 4-dimensional integer space. The
high-fidelity model is a discrete-event simulation model constructed in computers, while the low-fidelity
model is an analytical approximation by treating the system as a Jackson network. Figure 7 displays the
sketch of the manufacturing system and the simulation output of multi-fidelity models, where the designs
are listed in terms of their low-fidelity ranks.

(a) Flowchart of the system.
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(b) Average processing time in multi-fidelity models.

Figure 7: The manufacturing system.

Again, we add ε(x)∼ N(0,0.01) to f (x) to mimic the simulation noise. The initial sampling size n0 is
set to be 20, and we increase the sampling budget T from 200 to 2,000. The results are plotted in Figure
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8. We can see both MFGMIA and GMIA2 quickly converge to the optimal design, which is essentially
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Figure 8: Optimality gap for machine allocation problem.

due to the high quality of the low-fidelity approximation.
In summary, our MFGMIA can efficiently utilize valuable low-fidelity information. It can also properly

deal with the misleading information brought by the low-fidelity models. Furthermore, when the low-fidelity
model has poor quality, the MFGMIA can perform at least equivalently well as the single-fidelity algorithm.

5 CONCLUSION

DOvS problems with an integer-ordered design space are prevalent in industries. In this paper, we devise
an optimization algorithm for DOvS problems where cheap low-fidelity models are available. Specifically,
our algorithm is developed under the BO framework, and an innovative GMRF is constructed to model the
prior belief for the unknown objective function values. To better deal with the low-fidelity information,
we adaptively update the prior distribution so that the high-fidelity information gradually dominates the
prediction. In the numerical experiments, we show the strength of the MFGMIA in multi-fidelity DOvS
problems.
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