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ABSTRACT

Automatic differentiation (AD) can provide infinitesimal perturbation analysis (IPA) derivative estimates
directly from simulation code. These gradient estimators are simple to obtain analytically, at least in
principle, but may be tedious to derive and implement in code. AD software tools aim to ease this workload
by requiring little more than writing the simulation code. We review considerations when choosing an AD
tool for simulation, demonstrate how to apply some specific AD tools to simulation, and provide insightful
experiments highlighting the effects of different choices to be made when applying AD in simulation.

1 INTRODUCTION

Gradient estimation is important in both sensitivity analysis and optimization in the practice of simulation.
We emphasize the simulation-optimization context for concreteness, but the ideas we present also apply to
sensitivity analysis. Consider the problem of minimizing f (x) =Eh(x,Y )where x∈Rd is a vector of decision
variables, Y is a random element capturing all stochastic primitives in the simulation, h(x,Y ) represents
the logic of the simulation model returning some real-valued performance measure, and f : Rd →R is the
objective function. We assume that x is a structural parameter, i.e., the distribution of Y does not depend
on x. This is essentially without loss of generality since x can include any finite set of parameters that are
needed to map Uniform(0,1) random variables, which are then represented as Y , to the simulation output.

Assuming appropriate differentiability conditions, first-order optimization algorithms use information
about the gradient of the objective function at a solution x, ∇ f (x), to try to find a better neighboring solution
x′ such that f (x′)< f (x). In the simulation-optimization setting, we do not have direct access to f (·) or
∇ f (·). However, we have the ability to sample Y and then compute h(x,Y ) for any x. We may also be
able to compute the gradient of h(·,Y ) at x, ∇h(x,Y ), through analytical derivation and manual coding, or
using automatic-differentiation (AD) software. In that event, ∇h(x,Y ) can be used to construct estimators
of ∇ f (x) to be used by first-order optimization algorithms.

We discuss considerations when selecting and using AD software for gradient estimation. Many modern
AD tools have been designed primarily for machine-learning (ML) problems, e.g., PyTorch (Paszke et al.
2019), JAX (Bradbury et al. 2018), Autograd (Maclaurin et al. 2015), and Tensorflow (Abadi et al. 2015),
and thus are tailored to a different assumed program structure than what is typical in simulation. As we
note in Section 2, there is a direct relationship between AD and infinitesimal perturbation analysis (IPA)
gradient estimators. There we also discuss some general computational principles of AD. Section 3 reviews
some of the main AD tools and their suitability for simulation modeling in general. Section 4 discusses
adapting simulation code for use with two of those tools, and Section 5 explores their use in the Python
library SimOpt (Eckman et al. 2020). Section 6 provides timing experiments for running the various tools
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on two relatively simple examples and Section 7 discusses the results of the experiments and provides
some final perspectives. Code for experiments will be made available in a public repository (Ford 2022).

The use of AD in simulation has been contemplated for a long time, e.g., Fu et al. (2000). One area
of simulation in which AD has found success is finance, e.g., Giles and Glasserman (2006), Glasserman
(2013), Fries (2017), and Fries (2019), perhaps because of the relative simplicity of pricing simulation
models compared to discrete-event simulation models. Another area is at the intersection of Monte Carlo
simulation and machine learning, such as in variational inference (Kucukelbir et al. 2017) or in modern
implementations of policy gradient estimators in reinforcement learning, building upon Williams (1992).
Relative to such work, we emphasize issues with adapting existing AD software tools to simulation models,
using two simple examples to emphasize the key messages and gain insights into coding complexity and
run times.

2 GRADIENT ESTIMATION AND AUTOMATIC DIFFERENTIATION

When x is a structural parameter we can use infinitesimal perturbation analysis (IPA) for gradient estimation
(Glasserman 1991). The value of the IPA gradient estimator ∇h(x,Y ) can be obtained by differentiating
(with respect to x) the source code describing the simulation logic h and evaluating the result at (x,Y ).

The IPA gradient estimator is unbiased at a solution x if the interchange of differentiation and expectation,

∇ f (x) = ∇Eh(x,Y ) = E∇h(x,Y ), (1)

holds (Fu and Hu 1997). Cao (1985) gives conditions for when this interchange holds; see also Asmussen
and Glynn (2007), VII.2). If these conditions do not hold, we can sometimes replace h(x,Y ) by a conditional
expectation that is differentiable in x to obtain an unbiased gradient estimator; this technique is known as
Smoothed Perturbation Analysis (Gong and Ho 1987). Even if the IPA gradient estimator is biased, it may
still be useful for optimization (Eckman and Henderson 2020).

Relative to other gradient estimation methods, IPA gradient estimators possess certain advantages.
IPA gradient estimators can be obtained from a single simulation replication, i.e., one realization of Y
and evaluation of ∇h(x,Y ), while methods such as finite differences or weak derivatives typically require
approximately 2d replications to obtain a single gradient estimate. In this sense, IPA is computationally
efficient. The method of finite differences also suffers from needing to choose a step size that balances bias
and variance; IPA requires no such choice. Often, likelihood ratio gradient estimators (Glynn 1990) can
also be obtained from a single replication, but they have been seen to suffer from higher variance than IPA
(Cui et al. 2020). A further advantage of IPA gradient estimators relative to their competitors is that they
are the exact (up to numerical precision) gradients of the pathwise function, which ensures that the function
and gradient estimates are consistent with one another. This consistency could be expected by solvers
when, e.g., taking very small steps. The consistency does not hold for gradient estimates obtained using,
e.g., the likelihood ratio method. Fu (2015) provides a recent survey of gradient estimation in simulation.
In the rest of this paper we focus on IPA gradient estimators and their calculation using AD.

AD is a method to differentiate functions which are compositions of primitive functions whose gradients
are computable at all arguments of interest (Griewank 1989). The chain rule provides a formula to differentiate
the composite function, which is h(x,Y ) for some fixed Y in our setting. Wikipedia contributors (2022)
provides a highly accessible introduction to AD, including most of the topics discussed here.

It is now convenient to redefine z = h(x,Y ) to be an Rm-valued vector of outputs as a function of
the inputs x and random element Y . Thus, we now consider multiple outputs instead of the special case
m = 1 assumed till now. We thus seek the Jacobian of h, giving a matrix of partial derivatives of each
component of z with respect to each component of x. The Jacobian is important in simulation optimization,
for example, when both the objective function and some constraint functions must be estimated.

The two most common methods for AD calculation of the Jacobian of a composite function are forward
and reverse mode differentiation, both of which calculate the same numerical value as the IPA estimate but
do so in different ways. Both methods work with the same code used to compute h(x,Y ). Forward mode
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applies the chain rule from the “inside out,” calculating and carrying forward derivatives of each intermediate
variable with respect to each component of x as the original program runs. Reverse mode recursively works
from the “outside in,” i.e., from the final simulation output z back towards the simulation input x, using the
chain rule after the initial program has finished execution, requiring access to the values of all intermediate
variables from the forward pass. While it is possible to use a combination of forward and reverse mode
in different parts of the program to reduce the amount of computational work, finding the approach that
minimizes computation is an NP-complete problem (Naumann 2008) and thus is rarely pursued in practice.
When implemented well, AD of a function has a computational cost that is on the order of the cost to
evaluate the function. Forward mode has constant memory complexity and computational complexity which
scales with the number of inputs. On the other hand, reverse mode has memory complexity which scales
with the number of intermediate variables and computational complexity which scales with the number of
outputs (van Merriënboer et al. 2018). Thus forward mode is typically preferred to reverse mode when
there are more outputs than inputs and vice versa. In the simulation-optimization setting where the number
of outputs m is typically small or even 1, reverse mode is preferred.

Reverse mode must define a way to construct the chain rule to work backwards from the output to the
input. We summarize the two main approaches which are discussed in more detail in Chapter 6 of Griewank
and Walther (2008) and whose practical tradeoffs are discussed in van Merriënboer et al. (2018). The first is
operator overloading, which overloads the functions in the original program to build an instance-dependent
computational graph on the primitive functions used in the forward pass. This makes it easy to handle
control-flow operations because the computational graph is static for a fixed instance, making the backward
pass equivalent to there being no control-flow operations in the original program. A disadvantage of this
approach is that building the computational graph each time the function is called incurs overhead, and
since the graph can change with each instance, it is hard or inefficient to optimize the code that executes
the backwards pass. The other approach is source code transformation which, from the source code of the
program, explicitly constructs another program, called the adjoint program, to perform the backward pass
based purely on the intermediate values stored during the forward pass. The advantage of this approach
is that the adjoint program only has to be constructed once and thus incurs no overhead at run time, other
than potentially on the first replication. The program for the backward pass can also be constructed prior to
run time and can be optimized and compiled prior to run time. The disadvantage is that implementing the
transformation rules for certain function calls and control-flow operations to construct the adjoint program
can be complex. This can also lead to long compilation times of the adjoint program.

3 CONSIDERATIONS FOR AUTOMATIC-DIFFERENTIATION TOOLS IN SIMULATION

Several factors impact the utility of AD tools for simulation:

• The tool must be able to automatically generate the derivatives of primitive functions, such as sinx
and ex, that are used in the code to compute h(x,Y ). Some tools, such as Autograd and JAX,
have mimicking implementations of functions from popular libraries such as NumPy, so that code
written in basic Python and NumPy can be differentiated with minimal changes to the code.

• Some AD tools require code to be restructured to address complications posed by control-flow
operators such as for and while loops and if statements.

• Some AD tools restrict the types of data structures that can appear as inputs and outputs of the
function to be differentiated.

• The run time of the AD tool can be important because simulations may require nontrivial computation.

The performance (run time) of AD tools depends on the structure of the software that is being
differentiated. Certainly, ML programs differ in structure from simulation programs. The control flow of
the forward pass of a neural network tends to be relatively simple. Deep neural networks can have millions
of inputs but often only have a few outputs, which largely explains the popularity of a specialization of
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reverse mode to the neural-network setting known as back propagation. Furthermore, the majority of the
computational effort of a forward or backward pass through a deep neural network is typically due to large
matrix operations. Thus, the overhead incurred by constructing the per-instance computational graph or the
adjoint program for the backwards pass can be negligible relative to the matrix computations. Differences
in implementations of matrix operations can therefore account for much of the performance differences
between AD software tools in ML. See Baydin et al. (2017) for a more thorough discussion of factors
impacting the run times seen in practice of AD tools in machine learning applications. On the other hand,
in discrete-event simulation, the program used to compute the function h(x,Y ) can have very complicated
control flow with many conditional statements and loops. There are often a large number of sequential,
non-vectorizable operations involved in performing a single replication of a simulation. Thus, the overhead
of the AD software is more likely to have a noticeable impact on the total compute time of the program
than in standard ML applications. In simulation, the ratio of inputs to outputs varies but is typically much
smaller than in ML. These differences in the typical program structures in ML and discrete-event simulation
may cause some AD software to perform better in one application than in another.

Some AD tools perform exceptionally well in specific situations. Zygote (Innes et al. 2019) is a
promising source-transformation-based AD tool for Julia that claims to be able to work with any data
structure, trace through mutation, and thus differentiate any (differentiable) function in Julia, including
those from other libraries not specially designed to work with Zygote. Enzyme (Moses and Churavy 2020)
is another source transformation AD tool that works with any language whose compiler compiles the source
code to the LLVM intermediate representation including C, C++, Fortran, Julia, Rust, Swift, MLIR, and
more. We now focus on Autograd and JAX due to their compatibility with Python and implementation of
NumPy-like functions as primitives.

3.1 Autograd

Autograd is an AD library in Python that uses reverse mode via operator overloading. Primitive functions
include basic Python functions like addition, NumPy-like functions like sin, its own AD functions, and
the ability to define your own primitive functions. The autograd.value and grad function returns
the value and gradient of the function to which it is applied, while autograd.grad returns just the
gradient. The function to which autograd.value and grad or autograd.grad is applied must
have a scalar output (m = 1) but is allowed to have multiple inputs (d ≥ 1) with various data structures such
as scalars, lists, arrays, and dictionaries supported. The autograd.jacobian function only supports
taking Jacobians where the input x and output z are either scalars or arrays. Further, all inputs x for
which derivatives in the Jacobian are desired must be passed into the first argument of the function being
differentiated. Therefore, if x is multidimensional, then its values must be concatenated into a single array.
Similarly, if the output z is multidimensional, then the function being differentiated should return a single
array containing those outputs. There does not exist an autograd.value and jacobian function
that returns both the output and Jacobian in a single pass, but such a function can be easily written by
modifying the code of autograd.jacobian. Another downside is that Autograd is not able to trace
through certain operations such as in-place operations, commonly encountered when assigning new values
to only part of an array, because these modify the intermediate variables. However, lists can be used freely
and converted to arrays to perform calculations. More detail on what is supported and what workarounds
exist are available on the tutorial page of the Autograd GitHub repository (Maclaurin et al. 2015).

3.2 JAX

JAX is another AD library in Python that combines an updated version of Autograd with the option of
just-in-time (JIT, discussed below) compilation. JAX is capable of both forward and reverse mode. The
implementation of reverse mode uses operator overloading. As primitives, JAX also has basic Python
functions, NumPy like functions, its own AD functions, the ability to define custom primitives, and some
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additional utility functions. Like Autograd, JAX hasjax.grad, jax.value and grad, jax.jacfwd,
and jax.jacrev functions. The jax.grad and jax.value and grad functions are used in the
same way as Autograd’s versions. There are two versions of a Jacobian function to support forward
(jax.jacfwd) and reverse mode (jax.jacrev) differentiation. These functions can be used the same
way as autograd.jacobian, but they also allow inputs and outputs to be data structures other than
scalars or arrays, such as lists and dictionaries. JAX provides a functional interface for array-element
assignment and control flows, such as loops, to allow differentiation and JIT compilation as discussed in
Section 4.

JAX stands for “just after execution,” which refers to JAX being capable of JIT compilation. Our
discussion of JIT compilation is mostly adapted from Aycock (2003), to which we refer readers seeking
more information. JIT compilers dynamically translate source code or bytecode to optimized machine
code at run time. JIT compilers can provide the benefits of both static compilers and interpreters. While
an overhead is paid at run time for the translation, the cost can be small relative to the cost of executing
computationally heavy programs like long simulations or large numerical algebra tasks, and thus the speed
can be similar to statically compiled programs. In contrast to static compilers, JIT compilers can recompile
different pieces of code during run time if, for example, a new data type is encountered. This allows more
flexibility in the source code than static compilers provide, yet not as much flexibility as interpreters. To JIT
compile a function with JAX, the function must be pure-and-statically-composed, i.e., the function must
only act on the inputs to the function and all changes must be passed as an output (as opposed to silently
altering the state of an object) and must have a static computational graph on the primitive functions of
JAX. A while loop is an example of a common component of simulation programs which violates this
condition as the number of iterations, and thus the computational graph, varies with the input. This is why
JAX provides a function which mimics the behavior of a while loop.

JIT compilation is not the only tool JAX provides to accelerate program execution. It also provides
vmap and pmap functions which can somewhat automatically vectorize and parallelize code, respectively.
Additionally, JAX provides GPU/TPU support providing further speedups in some cases. For more details
regarding JAX, we refer the reader to the JAX GitHub repository (Bradbury et al. 2018).

4 ADAPTING SIMULATION CODE FOR AUTOGRAD AND JAX

Discrete-event simulation programs commonly feature pseudo-random number generation, custom written
objects, event lists, loops and conditional statements. Depending on their implementation, these ingredients
may cause issues when Autograd or JAX is used for AD. We discuss potential issues and solutions.

4.1 Pseudo-Random Number Generators

If x is a purely structural parameter, then there is no need to differentiate the code of the random number
generator (RNG), but if any components of x are parameters of the distribution of Y , then we must
differentiate the code of the RNG. Although both Autograd and JAX without JIT compilation (henceforth
written JAXnoJIT) allow the use of any RNG, these software tools may not be able to differentiate through the
RNG depending on the RNG’s implementation. Indeed, many RNGs will not be compatible with JAX with
JIT compilation (henceforth written JAXJIT) because the RNG may not be functionally pure. For example,
an RNG object that outputs a number based on some internal state which gets updated each time the RNG is
called would not be compatible with JAXJIT. This lack of compatibility arises because the output of the call
to the RNG depends on the RNG’s (internal) state which is neither static nor an input of the function being
called. JAX’s jax.random module revolves around a key object which acts as a state. This key object
must be passed as an argument whenever a function is called to generate a random variate. For example, a
sample from a Bernoulli(0.5) distribution could be drawn by calling jax.random.bernoulli(key,
p=0.5). The key must then be manually tracked and updated between its uses. Any generation of random
numbers used with JAXJIT must have a similar functional structure built around the use of a key or seed.
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4.2 Object-Oriented vs. Functional Programming

As discussed earlier, Autograd and JAX can compute the Jacobian of a function z = h(x,Y ) for a fixed Y .
In the code, it is important that x is an input and z is an output in the function signature. For example,
in an object-oriented simulation program, a model object may contain the simulation logic in a method
model.simulate() that does not take in any inputs, but instead internally accesses the simulation
model’s parameters via an attribute model.parameters. This code architecture makes it impossible
for Autograd or JAX to differentiate model.simulate(), because the method has no explicit inputs.
To make the code differentiable, the model.simulate() method would need to be rewritten to accept
the model’s parameters as an explicit input, e.g., model.simulate(model.parameters).

4.3 Event Lists

Simulation models are often implemented using an event-driven world view. If the event list is implemented
as a Python list, then retrieving, adding, and removing events from the event list are likely compatible
with Autograd and JAXnoJIT without any modification. However, if the event list is implemented as a
NumPy array, then the simplest way to get the event-list manipulations to be compatible with Autograd
and JAXnoJIT is to switch it to a list. To use JAXJIT, the event list should be implemented as a JAX
array. JAX arrays are also compatible with JAXnoJIT. When using a JAX array, it is necessary to use the
functions JAX provides for retrieving and setting elements of the event list such as arr.at[].get()
or arr.at[].set(). If the simulation requires taking a dynamic-sized slice of the event list, i.e., the
size depends on values not known until run time, one must instead use a functional approach yielding a
static-sized slice. This is due to the requirements of the accelerated-linear-algebra compiler needing to
know how much memory to allocate to the array regardless of the input. An example of a functional
solution is given in Figure 2.

4.4 Loops and Conditionals

Standard Python loops and conditional statements are compatible with Autograd and JAXnoJIT. However,
JAXJIT requires any loops or conditional statements to be replaced by functional equivalents, which can be
found in the jax.lax module. Examples of converting a for loop and if statement are given in Figure 2.
Additionally, if JAXJIT is used to differentiate a simulation containing the JAX functional equivalent of a
while loop, then reverse mode will not be possible. This is again due to the compiler requiring a static
bound on the size of the array needed to store the intermediate variables for the backwards pass. If a
simulation requires a while loop and JAXJIT is used, forward mode is the only option.

4.5 An Example

Figure 1 gives code for a function that is used in an ambulance simulation in Section 6. This function takes
in an event list and the number of events in the list and then returns the next event, the newly updated
event list with the next event deleted, and the updated number of events in the list decremented by 1. The
event list is unsorted, the first num events elements are events in the list, and the rest of the list contains
some dummy place holder event. Each event is itself a list containing information about the event
such as the time at which it occurs and the type of the event. Thus, event list is a list of lists. This
code is compatible with both Autograd and JAXnoJIT, but not with JAXJIT.

We now provide a modified version of the code, as seen in Figure 2, as an example of adapting code
to be JAXJIT compatible. This modified code assumes that event list is a two dimensional JAX array
with each event itself being a JAX array.

The code in Figure 1, which is compatible with Autograd and JAXnoJIT, looks indistinguishable from
typical code, except perhaps that we use a list of lists instead of an array or custom defined object for our
event list. In contrast, in Figure 2, which is compatible with JAXJIT, the code had to be restructured:
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import autograd.numpy as np # or import jax.numpy as np if using JAX

def get_next_event(event_list, num_events):
# initialize next event time to essentially infinity
mini = SIM_LENGTH + 2.0
# search through events to find which one has earliest event time
for i in range(num_events):

if event_list[i][0] < mini:
mini = event_list[i][0]
next_event_index = i

next_event = event_list[next_event_index]
# delete next_event from event_list
event_list[next_event_index:num_events+1] = event_list[next_event_index+1:num_events+2]
num_events -= 1
return event_list, num_events, next_event

Figure 1: Event list as an unordered list of lists, compatible with Autograd and JAX without JIT compilation.

1. The for loop had to be replaced with a functional equivalent.
2. Though not shown, we also have to write the get next event body function that carries out the

logic inside each iteration of the for loop to update mini and next event index as needed.
3. This function itself has an if statement which must be replaced by a functional equivalent that, in

turn, also requires the writing of two more functions to handle each Boolean value of the conditional.
4. Each of these functional equivalents require us to write additional functions to pass to them as

arguments.
5. The .at[] and .get() notation is needed to index and retrieve values from arrays.
6. When updating event list in Figure 1, we accessed a slice of the event list that depended

on the run time value num events. In Figure 2 we use np.where instead.

5 INCORPORATING AUTOMATIC DIFFERENTIATION INTO SIMOPT

SimOpt is a Python library intended for benchmarking the finite-budget performance of simulation-
optimization solvers and understanding their behavior on a variety of problems. In light of this goal,
SimOpt retains a simple enough architecture so that researchers from varied backgrounds can easily con-
tribute problems and solvers that are of interest to them. Furthermore, the motivation for incorporating AD
into SimOpt is to reduce the burden on contributors by automating the implementation of IPA estimators.
Thus, the decision of which AD tool to use in SimOpt is based on ease of use followed by reasonable (run
time) performance. As SimOpt already heavily utilizes NumPy, it is convenient to choose an AD tool that
includes NumPy-like function primitives. These considerations led us to consider Autograd and JAX and
rule out other options such as PyTorch. We ruled out JAXJIT as an option because it would require an
extensive restructuring of the SimOpt library. Between Autograd and JAXnoJIT, we chose to implement
Autograd because the performance is better in two representative examples; see Section 6.

In the SimOpt architecture, a simulation-optimization problem is specified by two objects: the Model
class which represents the simulation model and the Problem class which formulates the optimization
problem built around the model. The parameters of the simulation model are stored in a dictionary
attribute Model.factors. The Model class also has a replicate() method that returns dictio-
naries with stochastic values of responses and gradients as the outputs of the simulation. The
Model.replicate() method does not have any explicit inputs but instead accesses the simulation
model parameters internally through Model.factors. The Problem class defines decision variables
as a function of Model.factors and a performance metric as a function of the responses returned
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from jax import jit
from jax.lax import cond, fori_loop
import jax.numpy as np

@jit
def get_next_event(event_list, num_events):

mini = SIM_LENGTH + 2.0
i = 0
next_event_index = 0
# loop below is to find index of next event
_, _, next_event_index = fori_loop(0, num_events, get_next_event_body,

(event_list, mini , next_event_index))
next_event = event_list.at[next_event_index].get()
place_holder_event = np.zeros((EVENT_SIZE))+(SIM_LENGTH+1)
# deleting next_event from event_list
event_list = np.where(np.arange(len(event_list)) < next_event_index,

np.vstack([event_list[:-1], place_holder_event]).T,
np.vstack([event_list[1:], place_holder_event]).T).T

num_events -= 1
return event_list, num_events, next_event

Figure 2: Event list as an unordered JAX array of JAX arrays, compatible with JAX with JIT compilation.

from the Model.replicate() function. Currently, we have only implemented AD to calculate the
Model.replicate() Jacobian associated with the Model.factors and responses. At this time,
the Jacobian of the mapping from decision variables of Problem to Model.factors and the gradient of
the mapping from responses to the final performance metric of Problem must be computed manually
and multiplied with the automatically obtained Jacobian of Model.replicate() to complete the gra-
dient calculation of the performance metric with respect to the decision variables. We intend to eventually
extend AD to the Problem class so that the entire gradient calculation is handled automatically.

To enable automatic computation of the Jacobian of the responses with respect to the factors,
we created a subclass of Model named Auto Model, which must have an Auto model.inner
replicate() method. The Auto model.inner replicate() method is essentially the same as
Model.replicate()but with a different signature and must follow the general rules to be compatible with
Autograd so that we can use Autograd to differentiate it. Thus, it requires little to no additional work for the
programmer to write when compared to Model.replicate(). The Auto Model constructor automati-
cally creates anAuto model.replicate()method by applying thereplicate wrapper()method
that we wrote toAuto model.inner replicate(). Thereplicate wrapper()method converts
dictionaries to arrays for the inputs and vice versa for the outputs. It also calls thevalue and jacobian()
method we wrote applied to Auto model.inner replicate() to get its output and Jacobian. The
method value and jacobian() is not included in Autograd but can easily be written by modifying
the code for autograd.jacobian() to return both the function output and Jacobian instead of just the
Jacobian. We allow the calculation of a partial Jacobian with respect to only a subset of outputs, saving
computation since value and jacobian() uses reverse mode whose run-time complexity scales with
the number of outputs. A user can write a subclass of Auto Model instead of just Model, requiring
comparable amounts of work, to automatically get an IPA Jacobian estimate out of their simulation model
when they call replicate() instead of having to manually code the IPA Jacobian estimate.

While incorporating Autograd into SimOpt, we inevitably encountered bugs. Most were caused by using
functions or arrays from numpy instead of autograd.numpy inside of a function being differentiated. For
example, the Auto model.inner replicate() function typically makes calls to SimOpt’s custom
RNG which is defined in a separate file from model definitions. It was necessary to change import
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Table 1: SAN results, with AD applied after each replication then averaged. The entry N/A indicates that
the run did not complete in reasonable time.

Reps Manual (REV) FFD Autograd JAX JAX JIT 1st JAX JIT 2nd
1 996 (µs) 5.92 (ms) 3.46 (ms) 1.52 (s) 1.38 (s) 185 (µs)

102 9.27 (ms) 33.9 (ms) 283 (ms) 5.54 (s) 1.88 (s) 509 (µs)
104 762 (ms) 5.71 (s) 16.1 s (s) 7 (min) 42(s) 1.60 (s) 10.1 (ms)
106 33.5 (s) 4 (min) 1 (s) 19 (min) 55 (s) N/A 1.48 (s) 646 (ms)

numpy as np to import autograd.numpy as np in the file where the RNG was defined. Another
source of bugs is in-place updating of arrays. These are easily fixed by using lists instead of arrays until all
in-place operations are complete, at which point an array can be constructed from the list for computations
if needed. Finally, it is possible for Autograd to unexpectedly return 0 as a value for a derivative when
this is not the desired output. This is because Autograd may not be able to trace the output as being
dependent on the inputs if the rules of compatibility with Autograd are broken. Therefore, if a value of 0
is encountered as a derivative value, it may be good practice to use finite differences to verify whether 0
is indeed the correct value.

6 EXPERIMENTS

We explore the run times of AD software on simulation models of a stochastic activity network (SAN) and
an ambulance service. We time each method of obtaining an IPA gradient estimate using a varying number
of replications by averaging over replications. AD can be applied at two places in the code: after each
replication or after averaging over all replications, and we shall see that the run-time difference is large. For
the SAN we include both methods, but for the ambulance system we perform only the latter. We ran JAXJIT
twice for each number of replications to demonstrate the time spent on the initial program compilation
versus executing the program after compilation. All AD tools used reverse mode except JAXJIT in the
ambulance system where forward mode was required due to the inclusion of a while loop in the code. We
also manually implemented IPA. For the manual implementations, we used reverse mode for the SAN and
forward mode for the ambulance system. We also used forward finite differences (FFD) for both models.
The timing experiments were performed in Google Colab using two Intel Xeon CPU 2.20GHz cores.

6.1 Stochastic Activity Network

A SAN is a feed-forward network that models the precedence of a collection of subtasks for completing a
task. Each arc represents a subtask which we assume takes an exponentially distributed amount of time to
complete. Figure 3 depicts the specific SAN we used. The parameters of the simulation model, x ∈ R10,
are the mean times of each subtask. The output of the simulation model is the time to complete the total
task, which is the (random) length of the longest path from node 1 to node 7, plus a deterministic cost
∑

10
i=1 x−1

i so that h(x,Y ) = Y +∑
10
i=1 x−1

i , where Y = Y (x) is the length of the longest path from node 1
to 7. Table 1 gives the average per-replication time to obtain a derivative when AD is applied to each
replication individually. Figure 3 gives the corresponding results when AD is applied once to the entire
body of replications collectively.

6.2 Ambulance System

We use the model described in Eckman and Henderson (2020) but with modified parameters. The following
model description is taken, almost verbatim, from that reference. Calls arrive according to a Poisson process
in time at rate 1/2.5. Call locations are uniformly distributed in a square with side length 20. The closest
free ambulance is dispatched to the call, and travels to the call in Manhattan fashion (traveling first in the
x direction, followed by the y direction) at a constant speed of 1. The ambulance then spends a random
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Reps Autograd JAX JAX JIT 1st JAX JIT 2nd
1 4.16 ms 2.23 s 1.71 s 6.38 ms

102 562 ms 8.67 s 2.81 s 7.81 ms
104 26.4 s 13 min 17 s 2.53 s 47.5 ms
106 N/A N/A 3.26 s 680 ms

Figure 3: Left: The SAN we used in our experiments. Right: SAN results with AD applied after averaging
all replications. N/A results are due to running out of memory.

Table 2: Ambulance system timing results, with AD applied after each replication and then averaged.

Reps Manual FFD Autograd JAX JAX JIT JAX JIT
(FWD) 1st (FWD) 2nd (FWD)

1 24.2 ms 46.8 ms 61.6 ms 3.08 s 4.86 s 23 ms
101 100 ms 552 ms 643 ms 9.01 s 6.60 s 168 ms
102 837 ms 4.19 s 4.53 s 40.7 s 5.26 s 1.57 s
103 9.82 s 30.2 s 30.5 s 4 min 59 s 19.5 s 15.8 s

amount of time at the scene of the call (exponentially distributed with mean 10) and afterwards returns
to its base in Manhattan fashion. For simplicity, hospitals are not modeled, and ambulances returning to
base are not diverted to new calls. Calls arising when all ambulances are busy are queued and answered in
first-in-first-out order. Call arrivals, locations, and scene times are mutually independent. The simulation
starts from both ambulances being available and at base, with no queued calls. The variable x specifies
the locations of the two ambulance bases, which are located at (15,15) and (5,5); thus, x = (15,15,5,5).
The output h(x,Y ) is the sum of the ambulance response times to calls over a time interval of length 100.
This simulation uses an event list and has a while loop that keeps the simulation running until time 100.
Timing results for AD on this ambulance system simulation are reported in Table 2.

7 DISCUSSION AND CONCLUSION

The SAN experiment suggests that it is beneficial to apply AD after each replication rather than after
averaging all replications due to faster run times and lower memory requirements. Moreover, access to
per-replication IPA estimates allows the computation of sample variances of the IPA estimates. The memory
issue when applying AD after averaging all replications is expected, because the number of intermediate
variables stored for the backwards pass then scales linearly with the number of replications. We did not run
into memory issues when AD was applied to each replication. Autograd appears to run faster than JAXnoJIT.
JAXJIT can provide substantial speedups over Autograd on larger scale tasks but requires significant effort
and care to restructure the code to be fully functionally oriented with static-sized intermediate variables.
JAXJIT is limited to forward mode when a while loop is present in the code, as in many event-list based
simulations. This may narrow the run-time gap when compared to Autograd in such simulations as seen
in the ambulance example. The compile time of JAXJIT dominates the actual program execution time for
small programs. The run times when JAX is run a second time after already applying JAXJIT from the
first run are faster than the first time because the overhead for JIT compilation is not repeated.

The manual method was faster than the AD methods in all comparisons, except with JAXJIT on the SAN
example for large numbers of replications. JAXJIT was faster than FFD for large numbers of replications.
Autograd was slower than FFD on the SAN problem, but typically on the same order of magnitude, whereas
the two methods had similar run times on the ambulance problem. Our experiments were not designed
to show the scaling of the run times with the dimension, d, however, FFD should scale linearly with d
because d +1 simulation runs are needed to estimate the gradient. We expect that reverse-mode manual
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and AD methods will remain approximately constant in d. Thus, for larger d we expect that Autograd
will be faster than FFD. We did not use GPU/TPU support or the vmap or pmap functions of JAX, which
could significantly speed up JAX and JAXJIT for some models.

AD can give yield IPA estimates on non-trivial simulations without requiring manual derivation and
coding of the IPA estimator, with a competitive run time compared to FFD. In addition to saving analyst
effort, getting an IPA estimate from AD is likely less error prone than manually deriving and implementing
the IPA estimator. The use of existing AD tools requires some care in coding, but for many models
is straightforward to implement. Additionally, IPA has different bias and variance properties than FFD
which may be advantageous in some settings. We look forward to developments in AD tools that improve
their utility in simulation applications, perhaps through careful consideration of common flow structures
in discrete-event simulation models.
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