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ABSTRACT

This paper studies a multi-objective ranking and selection (MORS) issue with observations following
Bernoulli distribution. The Pareto-optimal set is aimed to be selected with each design and performance
measure pair being evaluated separately. Our contribution is twofold. (i) We provide a frequentist work
under Bernoulli assumption in MORS where a robust asymptotic optimal sampling strategy is derived
based on large deviation principle (LDP). (ii) From the optimal sampling strategy, we propose a sequential
selection procedure, named MOCBA-B. Numerical results based on averaged probability of correct selection
(PCS) show that MOCBA-B is significantly superior to equal allocation (EA) and is comparable to the
theoretically optimal allocation strategy.

1 INTRODUCTION

Due to the complexity of real-world problems and continuous development of computing technology,
optimization via simulation (OvS) has been regarded as a vital and popular technique to optimize the
performances of complicated systems (see Long-Fei and Le-Yuan 2013; Amaran et al. 2016 for a quick
review). As considering the decision variables merely taking discrete values, discrete optimization via
simulation (DOvS) has extensive applications such as choosing the most effective medicine or selecting
the best routing algorithm (Hong and Nelson 2009), etc.

A well-studied problem for DOvS is ranking and selection (R&S) (see Fu and Henderson 2017;
Hong et al. 2021 for a review) where finite designs are simulated with multiple times in stochastic
environments. R&S can be characterized into two types: fixed-precision R&S and fixed-budget R&S. For
the former problem, indifference zone (IZ) procedures ( Fan et al. 2016; Elkadry and McDonald 2018),
most frequently used, preset a parameter to tell the smallest distance between pairwise alternatives that
is statistically significant and seek to correctly select the best alternative whenever the best alternative is
sufficiently separated from others. Then for the latter problem, an effective method is knowledge-gradient
(KG) policy (Frazier and Powell 2008; Frazier et al. 2008; Frazier et al. 2009), which can be viewed as
a single-step Bayesian look-ahead policy. It allocates one budget to the measurement whose single-period
expected increase in value is the largest. Another method is optimal computing budget allocation (OCBA),
which maximizes the probability of correct selection (PCS) asymptotically. OCBA samples alternatives
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sequentially with budget constraints and in each iteration the budget allocation ratio is adaptive to the
sampling information updated (Chen et al. 2000; Xiao et al. 2013; Zhang et al. 2016).

In some real and complicated cases, the alternatives are required to be measured by no less than two
criteria or objectives which drives researchers to turn their attention from single-objective ranking and
selection (SORS) to multi-objective ranking and selection (MORS) (see Yoon and Bekker 2017; Hunter
et al. 2019 for a review). The general target of such problem is to obtain the Pareto-optimal set which
contains alternatives with different trade-offs.

We characterize MORS into two categories: Bayesian and frequentist. From a Bayesian perspective,
Branke and Zhang (2015) propose myopic multi-Objective budget allocation (M-MOBA) procedure which
allocates a single budget to the alternative changing the observed Pareto set with the largest probability in
each iteration and best designs are selected when budget exhaust. Later M-MOBA is applied with various
performance criteria in bi-objective problems (Branke et al. 2016; Branke and Zhang 2019). The current
numerical experiments can only prove the effectiveness of M-MOBA in problems with two objectives.

From a frequentist perspective, large deviation principle (LDP), firstly introduced in SORS by Glynn
and Juneja (2004), is adopted as a theoretical device to determine the optimal budget ratio vector ααα∗ that
maximizes the rate function of probability of false selection (PFS). Sampling criteria for optimization using
rate estimators (SCORE) (Feldman and Hunter 2018) introduce the concept of phantom Pareto and let the
number of non-Pareto systems tends to infinity so that the exact rate function of PFS becomes available
for a bi-objective R&S problem. Applegate et al. (2020) apply SCORE into the multi-objective scheme
with an approximated PFS decay rate.

The niche we focus on is multi-objective optimal computing budget allocation (MOCBA) adopting
LDP to select the Pareto set. It discards the regime of SCORE that non-Pareto systems are sent to infinity
and considers a more general case where the designs and objectives are finite. In this case, however, PFS
decay rate does not have the explicit form and the bounds of rate function are considered instead. To the best
of our knowledge, only two works are found in this niche. Liu et al. (2017) provide asymptotic allocation
strategy which derives precise allocation ratio of each performance through maximizing the upper bound
of PFS decay rate. The limitation is that the maximization of PFS decay rate is less valid by optimizing its
upper bound. The formulation proposed by Li et al. (2017) maximizes the lower bound of the decay rate
instead. However their work merely assigns budget to designs but not to each performance measure. Note
that both works above have not proposed a practical selection procedure in the case that true parameters
are covered.

Studies on Bernoulli distribution in SORS are already mature (Glynn and Juneja 2004; Malone 2004;
Szechtman and Yucesan 2008; Peng et al. 2018). However relevant research on MORS is far underdeveloped
with merely a small numerical experiment conducted to compare the optimal allocation between Gaussian
distribution and Bernoulli distribution (Li et al. 2017). We assist in filling this blank with a MOCBA
procedure.

This work aims at correctly identifying the Pareto set from the design space through observations on each
performance measure, which follows Bernoulli distribution, for all designs with given total budget. Related
practical problems can be found in drug discovery (Beck et al. 2022) where multiple one-off experiments
are carried to identify the specific small molecules which can effectively bind to their biological targets.
Two contributions are made. (i) For frequentist works of MORS, we provide an explicit asymptotic optimal
allocation rule with Bernoulli assumption to maximize the lower bound of PCS. (ii) For MOCBA adopting
LDP to select the Pareto set, we propose an easy-to-use sequential algorithm to select the Pareto set.

The rest of the paper is organized as follows. Section 2 formulates the typical MORS problem we study
and provides necessary notations along with assumptions. Section 3 derives explicit asymptotic optimal
allocation rule with Bernoulli assumption. Section 4 proposes a sequential selection procedure. Numerical
experiments are conducted in Section 5 and this research is concluded in Section 6.
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2 PROBLEM STATEMENT

This study considers a MORS problem where h alternatives from a finite design space S := {1,2, · · · ,h}
are available to be selected. Each design i, i ∈ S, is evaluated by v binary performance measures subject to
random noise and V := {1,2, · · · ,v} is the set containing all performance measures. This research targets at
identifying a subset of the best designs from the design space S through sample means given fixed budget
number.

The basic notations in this study are listed as below:

• Xi j: the random variable of performance measure j for design i where i ∈ S and j ∈ V;
• qi j: the mean of Xi j, i.e., qi j = E[Xi j], and let qqqi = (qi1,qi2, · · · ,qiv) be the mean vector for design

i where i ∈ S;
• N: the total budget number;
• αi j: the ratio of budget allocated to the performance measure j of design i, for i ∈ S and j ∈ V;
• X r

i j: the observed output of Xi j in r th replication for i ∈ S, j ∈ V and r ≤ Nαi j;

• X̄i j: the sample mean of Xi j, i.e., X̄i j =
1

Nαi j
∑

Nαi j
r=1 X r

i j, for i∈ S and j ∈V and let X̄XX i = (X̄i1, X̄i2, · · · , X̄iv)

be the sample mean vector for design i where i ∈ S;
• Sp, Sp: the true Pareto set, i.e., Sp = {i|i ∈ S and l ⊀ i,∀l ∈ S, l ̸= i}, of which the cardinality is

represented as |Sp| and the true non-Pareto set, i.e., Sp = S\Sp, of which the cardinality is represented
as |Sp|;

• Ŝp, Ŝp: the observed Pareto set, i.e., Ŝp = {i|i ∈ S and l⊀̂i,∀l ∈ S, l ̸= i} and the the observed
non-Pareto set, i.e., Ŝp = S\Ŝp.

Additionally, let ΛXi j(λi j) be the logarithmic moment generating function of random variable Xi j, for
i ∈ S and j ∈ V, with effective domain D

Λ
Xi j = {λi j ∈ R : ΛXi j(λi j) < ∞}. Meanwhile, ΛX̄XX i(λλλ i) is the

logarithmic moment generating function of sample mean vector X̄XX i, for i ∈ S and its effective domain is
D

ΛX̄XXi = {λλλ i ∈Rv : ΛX̄XX i(λλλ i)< ∞}. Subsequently let Ii j(xi j) be the Fenchel-Legendre transform of ΛXi j(λi j),
i,e., Ii j(xi j) = sup

λi j∈R
(λi jxi j−ΛXi j(λi j)), for i ∈ S and j ∈ V.

In this study, we adopt Pareto optimality for best designs selection and subsequently provide the
mathematical definition of dominance relationship as the preliminary to introduce Pareto set:
Definition 1 (Dominance): Design l is said to be dominated by design i, denoted as i≺ l, when design
i is not worse than design l for all the performance measures, and there exists at least one performance
measure that design i is better than design l. Such relationship can be further defined that i ≺ l holds,
if and only if ∀ j ∈ V, qi j ⩽ ql j and ∃ j ∈ V, qi j < ql j. When the conditions fail to hold, then design l is
not dominated by design i, denoted as i ⊀ l. Additionally, notation ≺̂ is utilized to express the estimated
dominance relationship based on sample averages.

With the definition of dominance relationship, the Pareto set Sp can be easily constructed accommodating
all the non-dominated designs in the design space S. It is often the case that the observed Pareto set failed
to be equivalent to the true one. Accordingly we can achieve the aim of identifying the true Pareto set by
minimizing the probability of false selection (PFS):

minPFS := Pr(Ŝp ̸= Sp)

Assumptions utilized in the rest of the paper have been made as follows.
Assumption 1 For each design i, i∈ S, its performance measures are independent and identically distributed
(i.i.d.) following Bernoulli distribution.
Assumption 2 Any two mean vectors qqqi and qqql , for i ∈ S, l ∈ S, l ̸= i, are not equivalent.
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Remark 1 Assumption one is guaranteed when each trial is simulated independently. The second assumption
prevents that all the budget is allocated to differentiate designs which share identical performance measures.

3 ASYMPTOTIC OPTIMAL BUDGET ALLOCATION STRATEGY

3.1 Bounds for Probability of False Selection

We try to minimize PFS in order to solve the multi-objective ranking and selection problem. False selection
is related to two types of errors, i.e., Type I error (E1) and Type II error (E2) and either E1 or E2 happens
triggering the best designs being falsely selected. Therefore we show the general expression of PFS:

PFS = Pr(E1
⋃

E2) (1)

and provide the descriptions of these two types of errors:

1. Type I error (E1): It happens when design i, essentially belonging to the Pareto set, is assigned to
the observed non-Pareto set because it is dominated by other design(s).

2. Type II error (E2): It occurs when design k, essentially belonging to the non-Pareto set, is assigned
to the observed Pareto set because it can not be dominated by any other designs.

Based on the descriptions, the probability of Type I error Pr(E1) and Type II error Pr(E2) can be
shown as:

Pr(E1) = Pr(
⋃

i∈Sp

⋃
l∈S,l ̸=i

l≺̂i) (2)

Pr(E2) = Pr(
⋃

k∈Sp

⋂
l∈S,l ̸=k

l⊀̂k) (3)

and the explicit expression of PFS can be derived by combining (1), (2) and (3):

PFS = Pr(
⋃

i∈Sp

⋃
l∈S,l ̸=i

l≺̂i ∪
⋃

k∈Sp

⋂
l∈S,l ̸=k

l⊀̂k) (4)

Because PFS (4) is analytically intractable, we provide the following proposition to give valid upper
and lower bounds for it.
Proposition 1 The upper and lower bounds of PFS are both demonstrated as below,

PFS≤ (h+h|Sp|−2|Sp|)max{max
i∈Sp

max
l∈S,l ̸=i

Pr(l≺̂i),max
k∈Sp

min
l∈S,l ̸=k

Pr(l⊀̂k)}

PFS≥max{max
i∈Sp

max
l∈S,l ̸=i

Pr(l≺̂i),max
k∈Sp

h

∏
l=1,l ̸=k

Pr(l⊀̂k)}

Proof. The bounds based on Bonferroni inequality for (2) and (3) are:

max
i∈Sp

max
l∈S,l ̸=i

Pr(l≺̂i)≤ Pr(E1)≤ (h|Sp|− |Sp|)max
i∈Sp

max
l∈S,l ̸=i

Pr(l≺̂i) (5)

max
k∈Sp

h

∏
l=1,l ̸=k

Pr(l⊀̂k)≤ Pr(E2)≤ (h−|Sp|)max
k∈Sp

min
l∈S,l ̸=k

Pr(l⊀̂k) (6)

where the lower bound of Pr(E2) is available based on Lee et al. (2010) and (1) indicates that

PFS≤ Pr(E1)+Pr(E2) (7)

PFS≥max{Pr(E1),Pr(E2)} (8)

The result is available by plugging (5) and (6) into (7) and (8).
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In the following subsections, the bounds for PFS in proposition 1 are transformed into the bounds for
the rate function of PFS with LDP to acquire an explicit asymptotic optimal budget allocation strategy for
identifying the true Pareto set under Bernoulli assumption.

3.2 Rate Function of the Probability of False Selection

In this subsection we derive the rate function of PFS by introducing LDP. And the prerequisite for such
purpose is to obtain the rate functions of Pr(l≺̂i) and Pr(l⊀̂k) in the first place.

Proposition 2 The rate functions of Pr(l≺̂i) and Pr(l⊀̂k) are given as below,

lim
n→∞
− 1

n
logPr(l≺̂i) =

v

∑
j=1

Gi j,l j,∀i ∈ Sp, l ∈ S, l ̸= i (9)

lim
n→∞
− 1

n
logPr(l⊀̂k) = min

j∈V
Gnon

k j,l j,∀k ∈ Sp, l ∈ S, l ̸= k (10)

where

Gi j,l j = inf
xl j≤xi j

(αi jIi j(xi j)+αl jIl j(xl j))

Gnon
k j,l j = inf

xk j≤xl j
(αk jIk j(xk j)+αl jIl j(xl j))

Proof. With (9), it is easy to get lim
n→∞
− 1

n
logPr(l≺̂i) = lim

n→∞
− 1

n
logPr(X̄XX l ⪯ X̄XX i) where n is the budget

number. Then let Z = (X̄XX i, X̄XX l) ∈ R2v and ⟨·, ·⟩ be the scalar inner product, thus the logarithmic moment
generating function of Z can be derived by definition, i.e., ΛZ

n (λλλ i,λλλ l) = logE[e⟨(λλλ i,λλλ l),(X̄XX i,X̄XX l)⟩]. Furthermore
due to the independence assumption declared before and the fact that X r

i j shares the same probability

space with Xi j, for i ∈ Sp, l ∈ S, l ̸= i and r ≤ nαi j, we can have ΛZ
n (λλλ i,λλλ l) = lim

n→∞

1
n

ΛZ
n (nλλλ i,nλλλ l) =

∑
v
j=1 αi jΛ

Xi j(
λi j
αi j

)+αl jΛ
Xl j(

λl j
αl j

). Then by Gartner-Ellis Theorem, I(xxxi,xxxl) = sup
λλλ i,λλλ l∈Rv

(⟨(λλλ i,λλλ l),(xxxi,xxxl)⟩−

ΛZ
n (λλλ i,λλλ l)) = ∑

v
j=1 αi jIi j(xi j)+αl jIl j(xl j). Accordingly the rate function of Pr(l≺̂i) is available. The rate

function of Pr(l⊀̂k), i.e., (10), can be transformed into min
j∈V

lim
n→∞
− 1

n
logPr(X̄k j ≤ X̄l j) and the rest of proof

follows similar procedures.

Proposition 3 The bounds for the rate function of PFS are shown as below,

lim
n→∞
− 1

n
logPFS≥min{min

i∈Sp
min

l∈S,l ̸=i

v

∑
j=1

Gi j,l j,min
k∈Sp

max
l∈S,l ̸=k

min
j∈V

Gnon
k j,l j} (11)

lim
n→∞
− 1

n
logPFS≤min{min

i∈Sp
min

l∈S,l ̸=i

v

∑
j=1

Gi j,l j,min
k∈Sp

h

∑
l=1,l ̸=k

min
j∈V

Gnon
k j,l j} (12)

Rationale behind proposition 3 is that the rate function of PFS can not be explicitly expressed which can
be attributed to the entangled information of multi-dimensional performance measures among non-Pareto
designs by comparing (11) and (12). Hence the bounds of PFS decay rate are considered instead. A robust
way is to maximize the lower bound of the rate function, which is considered to be equivalent to minimize
the upper bound of PFS. Furthermore by looking into expression (11), the limitation of the rate function
can be down to two situations. (i) There exists a pair of designs where design i is most unlikely to dominate
design l. (ii) There exists a pair of designs where design l dominates design k with the least difficulty
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comprehensively. However, on the j th performance measure, design l surpasses design k with the least
amount.

Lastly we provide the explicit expressions of Gi j,l j and Gnon
k j,l j. With Bernoulli assumption, it is well-

known that Ii j(xi j) = xi j log xi j
qi j

+(1−xi j) log 1−xi j
1−qi j

, for i ∈ S and j ∈ V, then we get the following equations
by plugging it into Gi j,l j and Gnon

k j,l j:

Gi j,l j = inf
xl j≤xi j

(αi j(xi j log
xi j

qi j
+(1− xi j) log

1− xi j

1−qi j
)+αl j(xl j log

xl j

ql j
+(1− xl j) log

1− xl j

1−ql j
)) (13)

Gnon
k j,l j = inf

xk j≤xl j
(αk j(xk j log

xk j

qk j
+(1− xk j) log

1− xk j

1−qk j
)+αl j(xl j log

xl j

ql j
+(1− xl j) log

1− xl j

1−ql j
)) (14)

The expressions above are strictly concave and can be easily solved by adopting Lagrange functions
with corresponding Karush-Kuhn-Tucker (KKT) conditions.
Lemma 1 The explicit forms of Gi j,l j and Gnon

k j,l j are shown as below,

Gi j,l j = 1qi j<ql j{−(αi j +αl j) log[q
αi j

αi j+αl j
i j q

αl j
αi j+αl j
l j +(1−qi j)

αi j
αi j+αl j (1−ql j)

αl j
αi j+αl j ]} (15)

Gnon
k j,l j = 1qk j>ql j{−(αk j +αl j) log[q

αk j
αk j+αl j
k j q

αl j
αk j+αl j
l j +(1−qk j)

αk j
αk j+αl j (1−ql j)

αl j
αk j+αl j ]} (16)

Proof. For (15), the Lagrange function obtained from (13) is

L(xi j,xl j,ν) = αi j(xi j log
xi j

qi j
+(1− xi j) log

1− xi j

1−qi j
)+αl j(xl j log

xl j

ql j
+(1− xl j) log

1− xl j

1−ql j
)+ν(xl j− xi j)

and it can be solved when these two conditions hold, i.e., −
∂xi j Gi j,l j

∂xl j Gi j,l j
= 1 and xi j = xl j. Also note that 1qi j<ql j

is an indicator function characterized by qi j < ql j. The derivation of (16) from (14) follows the exact same
steps.

3.3 Asymptotic Optimal Budget Allocation Problem

Due to the existence of a gap between the bounds of PFS rate function based on LDP, a robust strategy has
been adopted that the lower bound of PFS rate function, i,e., right hand of (11) is to be maximized, which
is equivalent to minimizing the upper bound of PFS, thus letting PFS converge to zero asymptotically. The
optimization problem PPP is shown as below.

Problem PPP : max z

s.t. z≤ ∑
v
j=1 Gi j,l j, ∀i ∈ Sp, l ∈ S, l ̸= i,

z≤ max
l∈S,l ̸=k

min
j∈V

Gnon
k j,l j, ∀k ∈ Sp,

∑
h
i=1 ∑

v
j=1 αi j = 1, αi j ≥ 0,∀i ∈ S, j ∈ V.

Because Gi j,l j and Gnon
k j,l j are both strictly concave functions as stated above, the problem PPP is a convex

optimization problem and an unique optimal solution ααα∗ exists as well. Meanwhile corresponding KKT
conditions are necessary and sufficient for the optimality of this problem (Boyd and Vandenberghe 2004).
To show the essence of problem PPP, we employ the definition of reference designs introduced by Li et al.
(2017).
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Definition 2 (Reference Design): For ∀i ∈ S, the reference design ri of design i is

ri = arg min
l∈S,l ̸=i

lim
n→∞
− 1

n
logPr(l≺̂i),∀i ∈ S (17)

Definition 2 argues that for each design i, i ∈ S, there exists a reference design ri which dominates
design i with the largest probability and reference designs belong to Pareto set or phantom Pareto set (refer
to Feldman and Hunter 2018). Furthermore an equivalent problem TTT is given by putting (17) into the
problem PPP:

Problem TTT : max z

s.t. z≤ ∑
v
j=1 Gi j,ri j, ∀i ∈ Sp,

z≤ Gnon
k j,rk j, ∀k ∈ Sp, j ∈ V,

∑
h
i=1 ∑

v
j=1 αi j = 1, αi j ≥ 0,∀i ∈ S, j ∈ V.

Noteworthily the inequality constraints for design k, k ∈ Sp in problems PPP and TTT are equivalent in that
they conform to the interpretation of proposition 3 that the limitation of PFS rate function can be partially
attributed to a pair of designs k and rk where on the j th performance measure, design rk surpasses design
k with the least amount.
Theorem 1 If the optimal solution ααα∗ asymptotically minimizes the probability of false selection, then
the following equilibrium holds:

wi∆G∗i j,ri j

uk j∆Gnon∗
k j,rk j

= 1, ∀i ∈ Sp,k ∈ Sp, j ∈ V,

where ∆G∗i j,ri j is the total increment of Gi j,ri j at optimal point (α∗i j,α
∗
ri j) and ∆Gnon∗

k j,rk j is the total increment

of Gnon
k j,rk j at optimal point (α∗k j,α

∗
rk j). Additionally the relationship ∑

|Sp|
i=1 wi +∑

|Sp|
k=1 ∑

v
j=1 uk j = 1 holds.

Proof. The optimality of problem TTT can be reached by solving the corresponding KKT conditions:

|Sp|

∑
i=1

wi +
|Sp|

∑
k=1

v

∑
j=1

uk j = 1,

|Sp|

∑
i=1

wi

v

∑
j=1

(∂αi j G
∗
i j,ri j +∂αri j G

∗
i j,ri j) =

|Sp|

∑
i=1

v

∑
j=1

ν ,

|Sp|

∑
k=1

v

∑
j=1

uk j(∂αk j G
non∗
k j,rk j +∂αrk j G

non∗
k j,rk j) =

|Sp|

∑
k=1

v

∑
j=1

ν .

Theorem 1 indicates that the optimality is met on the condition that a certain equilibrium holds where
the weighted total increment of Gi j,ri j equals to the weighted total increment of Gnon

k j,rk j for i ∈ Sp, k ∈ Sp,
j ∈ V.

4 SEQUENTIAL SELECTION PROCEDURE

In this section, we propose a three-staged heuristic sequential selection procedure named multi-objective
optimal computing budget allocation with Bernoulli distribution (MOCBA-B) which approaches the optimal
allocation with small steps. The primary work in three stages is briefly explained below:
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• Stage One: Allocate equal budget for all performance measures.
• Stage Two: Allocate a single budget to each performance measure of design a∗ and b∗ whose rate

function value is the lowest in the current iteration. Note that b∗ is equivalent to ra∗ .
• Stage Three: Identify design a∗ and b∗ firstly. If a∗ ∈ Ŝp, allocate a single budget to each performance

measure of design a∗ and b∗; If a∗ ∈ Ŝp, allocate a single budget to performance measure j∗ of
design a∗ and b∗ because the lowest rate function value only concerns with the performance measure
j∗.

Remark 2 Stage one provides us with basic information. Stage two samples designs following the
information given by rate functions. In the final stage, a single budget is allocated precisely to performance
measures conforming to (11) because noise is far less misleading after stage two.

Several new notations are supplemented before showing the specific algorithm. Let Nt be the replication
number required in the t th stage, i.e., N =∑

3
t=1 Nt and c be the iteration counter. Furthermore we denote nc

i j as
the accumulative budget received until the c th iteration, X̄c

i j as the sample mean in the c th iteration and αc
i j as

the budget ratio in the c th iteration, i.e., αc
i j =

nc
i j

∑
h
i=1 ∑

v
j=1 nc

i j
, for i∈ S, j ∈V. All the Ĝi j,l j and Ĝnon

k j,l j are available

with corresponding sample means and budget ratio in each iteration. Lastly let R̂ lb
a∗b∗ be the lower bound

decay rate value of PFS in each iteration, i.e., R̂ lb
a∗b∗ = min{min

i∈Ŝp

min
l∈S,l ̸=i

∑
v
j=1 Ĝi j,l j,min

k∈Ŝp

max
l∈S,l ̸=k

min
j∈V

Ĝnon
k j,l j}.

More specifically, if a∗ ∈ Ŝp, then R̂ lb
a∗b∗ = ∑

v
j=1 Ĝa∗ j,b∗ j; if a∗ ∈ Ŝp, then R̂ lb

a∗b∗ = min
j∈V

Ĝnon
a∗ j,b∗ j = Ĝnon

a∗ j∗,b∗ j∗ .

MOCBA-B is demonstrated as follows:

Algorithm 1 MOCBA-B procedure
Input N1, N2, N3: budget required for the first, second and third stage

1: Initialization: c← 1, nc
i j←

N1
hv (supposed to be an integer), for i ∈ S, j ∈ V

2: while N2 +N3 > 0 do
3: Update: X̄c

i j, αc
i j, for i ∈ S, j ∈ V

4: Update: Ŝp, Ŝp

5: Update: Ĝi j,l j, for i ∈ Ŝp, l ∈ S, l ̸= i, j ∈ V and Ĝnon
k j,l j, for k ∈ Ŝp, l ∈ S, l ̸= k, j ∈ V

6: Identify R̂ lb
a∗b∗ and obtain indexes a∗ and b∗

7: if N2 > 0 then
8: c← c+1, nc

a∗ j← n(c−1)
a∗ j +1, nc

b∗ j← n(c−1)
b∗ j +1, for j ∈ V

9: N2← N2−2v
10: else N3 > 0
11: if a∗ ∈ Ŝp then
12: c← c+1, nc

a∗ j← n(c−1)
a∗ j +1, nc

b∗ j← n(c−1)
b∗ j +1, for j ∈ V

13: N3← N3−2v
14: else a∗ ∈ Ŝp

15: Identify the performance measure j∗

16: c← c+1, nc
a∗ j∗ ← n(c−1)

a∗ j∗ +1, nc
b∗ j∗ ← n(c−1)

b∗ j∗ +1
17: N3← N3−2
18: end if
19: end if
20: end while
Output Ŝp
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5 NUMERICAL EXPERIMENTS

This section tests the effectiveness of MOCBA-B by comparing it with other two algorithms introduced as
follows. And it is worth noting that the scipy.optimize module from SciPy library is used as a convenient
and swift way to solve convex problems in this study.

• Equal Allocation (EA): Simulation replications are identical for all the performance measures, i.e.,
α∗i j =

1
hv , i ∈ S, j ∈ V.

• MOCBA-B*: It assumes all parameters are known so that the theoretically optimal allocation ratio
ααα∗ is acquired through solving the corresponding convex optimization problem PPP.

Figure 1: 10×5 Mean Matrices Demonstration.

In order to obtain concrete results, we specify four typical experimental problems shown in Figure 1
and set h = 10 designs, v = 5 performance measures and |Sp| = 5 designs in each of those experiments.
For additional notification, the bigger dot in Figure 1 indicates a lower mean value as such designs in the
Pareto set can be identified by intuitively comparing the size of dots in the diagrams.

• Experiment 1 (Best of the Mass): The mean matrix is randomly generated with a continuous
uniform distribution U(0,1) and the designs in this experiment show no distinct features.

• Experiment 2 (Best of the Best): The mean matrix is randomly generated with a continuous
uniform distribution U(0,0.5) where the designs are all considered to be competitive.

• Experiment 3 (Best of the Mediocre): The mean matrix is randomly generated with a continuous
uniform distribution U(0.25,0.75) where the performances of designs are all mediocre.

• Experiment 4 (Best of the Worst): The mean matrix is randomly generated with a continuous
uniform distribution U(0.5,1) where the performances of designs are far from satisfactory.
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The three algorithms are compared with averaged probability o f correct selection (PCS) values. The
total budget N is 15000 and we set N1 = 1000, N2 = 10000, N3 = 4000. The whole simulation process is
repeated for 10000 times. The averaged PCS values are recorded at the checkpoint every 1000 budget.

Figure 2: Averaged PCS of Three Algorithms.

Figure 2 displays the averaged PCS values of three algorithms in four experiments with budget range
[5000,15000]. It is quite straightforward that more computing budget contributes to higher PCS for all
the methods. More importantly, MOCBA-B and MOCBA-B* are significantly superior to EA due to their
effective mechanisms making them capable of allocating more budget to critical designs or performance
measures. Furthermore performances between MOCBA-B and MOCBA-B* are quite close and MOCBA-B
even surpasses MOCBA-B* through the whole simulation process in experiment 2. An explanation for the
figure of experiment 2 is provided that MOCBA-B, which is less greedier than MOCBA-B*, prevents more
dominated designs from being assigned to the observed Pareto set given that nondominated designs are
identified with less difficulty in this experiment. The numerical results prove MOCBA-B to be promising.
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6 CONCLUSION

In this paper, we consider a multi-objective ranking and selection problem where the Pareto set is aimed
to be selected correctly based on observations following Bernoulli distribution. Our study contributes to
filling two research blanks. (i) We develop a frequentist framework to study Bernoulli distribution in MORS
and our asymptotic optimal allocation strategy drawn from the framework samples flexibly in different
performance measures. (ii) For MOCBA adopting LDP to select the Pareto set, we propose a simple
sequential selection procedure, i.e., MOCBA-B, and numerical results prove it to be promising.

Some elements remain to be studied further. MOCBA-B uses sample means to estimate the lower
bound of PFS decay rate. However, this may not lead to the most efficient budget allocation and the
optimal statistics should be found in the future. Additionally, the consistency and the convergence rate of
MOCBA-B remain to be developed further.
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