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ABSTRACT

Ranking and selection has been actively studied in simulation. We briefly review the ranking and selection
problem and some existing sampling procedures. Thompson sampling is originally proposed for the multi-
armed bandits problem, whereas its variant top-two Thompson sampling can perform better in the ranking
and selection problem. We compare the top-two Thompson sampling comprehensively with some popular
sampling procedures from both theoretical and numerical perspectives.

1 INTRODUCTION

Ranking and selection (R&S) has been actively studied in simulation for decades (Bechhofer 1954; Bechhofer
et al. 1995; Kim 2013). The goal of a classic R&S problem is to select the best alternative with the smallest
(or largest) mean from a finite number of alternatives with unknown means µ1, · · · ,µk. In the context of
simulation, each alternative is typically a complex stochastic model (e.g., queueing network), so the mean
of the random output of the model (e.g., average system time) usually does not have an analytical form but
can be estimated by simulation. Correlations between the outputs of different stochastic models could be
introduced by common random numbers (Chick and Inoue 2001a). For example, random numbers can be
shared for generating arrival processes of different queueing models so that positive correlations between
simulation outputs of different models are introduced.

The unknown means of alternatives can be estimated by independent random samples (simulation
replications) following a joint distribution, i.e., (X1,`, · · · ,Xk,`) ∼ Q(·;θ), ` ∈ Z+, where θ contains all
unknown parameters of the sampling distribution. Obviously, µ1, · · · ,µk are a part of θ . The most common
assumption in the literature of R&S is that the samples of different alternatives, i.e., Xi,`,X j,`, i 6= j, follow
independent normal distributions. In practice, the output of a stochastic model is often an average of
many random variables (e.g., average system time of 100 customers) so that the normal assumption of
samples is justified by certain central limit theorem. If the samples do not follow normal distribution, then a
macro-replication that is an average of a batch of simulation replications is used as a sample in experiment,
which is approximately normally distributed. By law of large number, sample means converge to means
almost surely (a.s.), i.e.,

∑n
`=1 Xi,`/n→ µi a.s., as n→ ∞, i = 1, · · · ,k. Thus as simulation budget goes to

infinity, the best alternative could be eventually selected. However, simulation replications are typically
expensive so that simulation budget is often very limited in practice.

Figure 1 presents 99% corresponding confidence intervals for the means of five alternatives. In this
example, it is highly unlikely for alternatives 1, 4, and 5 to be the best alternative, so it appears to be
unreasonable to spend a significant amount of simulation replications on learning the means of alternatives
1, 4, and 5 more accurately rather than focusing on learning the means of the other two more promising
alternatives to distinguish which one is actually the best. This example motivates the study of a central
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issue in the research of R&S, i.e., how to allocate simulation replications intelligently to improve sampling
efficiency. Intuitively, allocating more simulation replications to the alternatives with smaller means and
higher variances seems to be reasonable for efficiently selecting the best alternative. This intuition is
summarized as “mean-variance” or “exploitation-exploration” tradeoff in the literature.

Figure 1: 99% confidence intervals for the means of five alternatives.

To formalize the study on the issue, we need to introduce a metric to measure sampling efficiency. In
R&S, a popular metric is the probability of correct selection (PCS), i.e., PCS(θ) := P

(
µS < µi, i 6=S |θ

)
=

E
[
L0−1(ET )|θ

]
, where S is the selection decision made after allocating a total of T simulation replications,

Et is the information set obtained after allocating t simulation replications, and L0−1(Et) := 1{S = i∗}
is the zero-one loss after allocating t simulation replications with i∗ := argmaxi=1,··· ,k µi; another popular
metric is expected opportunity cost (EOC), i.e., EOC(θ) := E

[
Ll(ET )|θ

]
, where Ll(Et) := µS − µi∗ is

the zero-one loss after allocating t simulation replications (Branke et al. 2007). Notice that for the metric
commonly used in R&S, the loss only occurs at the end after allocating all T simulation replications.

Multi-armed bandits (MAB) problem has even longer history and richer literature than R&S (Robbins
1952; Lai 1987; Russo et al. 2018). The name of MAB comes from a motivating story in which a gambler
enters a casino and sits down at a slot machine with multiple arms (alternatives) that can be pulled (sampled).
Each time when he/she pulls an arm, the slot machine outputs a random reward (simulation replication)
independent of the past. The goal of a classic MAB problem is the same as that of R&S, i.e., selecting
the best arm from a finite number of arms with unknown expected rewards (means). A major difference
than R&S lies in that the metric for measuring sampling efficiency is usually an expected total regrets
accumulated each time when pulling an arm, i.e., E

[
Lcr(ET )|θ

]
, where Lcr(ET ) :=

∑T
t=1
(
µAt −µi∗

)
with

At being the decision for allocating the t-th sample based on available information. Interestingly, a stream
of researches recently gaining steam in MAB study a best arm identification (BAI) or pure exploration
problem, which uses same metric (e.g., PCS) as in R&S.

A well balance of exploitation and exploration is also the key for intelligently sampling each alternative
in the MAB problem. ε-Greedy, upper confidence bound (UCB) (Auer et al. 2002), and Thompson sampling
(TS) (Thompson 1933) are popular sampling procedures in the MAB domain, which can achieve certain
asymptotically optimal growth rate of the expected total regrets. TS appears to be superior because it does
not require to well tune some hyper-parameter and typically leads to better finite-sample performance than
the other two procedures. However, the performance of TS is notoriously poor for the R&S or BAI problem.
Recently, Russo (2020) proposes a top-two Thompson sampling (TTTS) procedure which performs well
for the R&S problem. Compared to TS, TTTS tends to explore more when allocating samples.

Both TS and TTTS are Bayesian sequential sampling procedures. Peng et al. (2018a) show that
the sequential sampling decisions in R&S can be formulated as Markov decision process (MDP) under a
Bayesian framework, and rigorously establish the Bellman equation for MDP. In principle, stochastic dynamic
programming can be used to compute the optimal sampling policy, but in general this is computationally
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intractable due to curse-of-dimensionality. This problem is clearly stated in both Peng et al. (2018a) and
Russo (2020), which take different routes to circumvent the computational difficulty.

In R&S, numerous existing sampling procedures can be basically categorized into two branches developed
under two distinctive philosophies. An earlier branch is studied under an indifference zone (IZ) paradigm
(Goldsman and Nelson 1998; Kim and Nelson 2006), which tries to guarantee a predetermined PCS level for
parameters satisfying an IZ assumption, i.e., minθ∈Ξ PCS(θ)≥ α with Ξ := {θ ∈Θ : µi∗+δ < µi, i 6= i∗}.
Since the sampling procedures derived in the IZ paradigm need to guarantee a PCS level even for the
worse case which is called the slippage configuration (Branke et al. 2007), they usually require to allocate
more simulation replications than necessary for guaranteeing a PCS level in practice. A recent theoretical
breakthrough has been made by Fan et al. (2016) to remove the IZ assumption for guaranteeing PCS, but
the drawback of conservativeness still remains. Application backgrounds particularly suitable for methods
in this branch include drug test, where guaranteeing a high probability that a lifesaving drug is most
effective is valuable. However, those methods may not be best suited for applications like designing a
complex manufacturing system, where the possible number of alternative designs could be huge, running
a simulation model would be expensive, and a managerial decision might need to be made fast adaptive to
varying market conditions. The famous Go-playing artificial intelligence (AI) algorithm AlphaGo is build
upon a Monte Carlo tree search (MCTS) backbone (Silver et al. 2016), where there are a scale of 10170

possible states, which are more than the number of atoms in the universe. For estimating the state-action
value function by Monte Carlo simulations following procedures of node selection and rollout, squandering
more simulation source than necessary in order to guarantee PCS would make the algorithm fail in such
as a hard problem. In R&S, the other relatively new branch is to maximize a performance metric given a
simulation budget constraint (Chen and Lee 2011; Powell and Ryzhov 2012). The methods in this branch
do not generally guarantee PCS but can typically lead to better performance given a fixed simulation budget
than those in the earlier branch. In the literature of R&S, the first branch is referred to as the frequentist
or fixed-precision branch, and the second branch is called the Bayesian or fixed-budget branch. Recently,
Hong et al. (2021) view the methods in the first branch from a hypothesis testing perspective, whereas
they offer a dynamic programming perspective for the second branch.

TS and TTTS can be well fitted into the Bayesian branch, and we briefly introduce the methods in
this branch. Optimal computing budget allocation (OCBA) in Chen et al. (2000) is developed by solving a
static optimization problem, i.e., maxn1+···+nk=T PCS(θ) with ni being the number of simulation replications
allocated to alternative i. With several approximations, an asymptotically optimal sampling ratio with an
analytical formula can be obtained given unknown parameter θ . Then an estimate for θ is plugged into
the OCBA formula using initial samples equally allocated to each alternative in the first stage so that the
remaining samples can be allocated according to the sampling ratio suggested by OCBA for enhancing
sampling efficiency. Here the sampling efficiency should not be defined as the PCS given a specific
parameter θ . For a given parameter, we can directly select the best alternative by sorting means which are
a part of θ without running simulation. Therefore, a reasonable performance metric could be an integrated
PCS (IPCS) over a weighting prior measure F(·) on parameter space Θ, i.e., IPCS :=

∫
θ∈Θ

PCS(θ)F(dθ).
Under a Bayesian framework, a dynamic allocation and selection (A&S) policy to optimize IPCS is defined
in Peng et al. (2016), and a Bellman equation for solving the optimal A&S policy is rigorously established
in Peng et al. (2018a). Well-known Bayesian sequential sampling procedures include expected value of
improvement (EVI) in Chick and Inoue (2001b), knowledge gradient (KG) in Frazier et al. (2008), and
expected improvement (EI) in Ryzhov (2016). KG and EI sequentially allocate a sample to optimize myopic
surrogate criteria. Asymptotically optimal allocation procedure (AOAP) proposed in Peng et al. (2018a)
sequentially allocates a sample to optimize an approximation of the value function one-step look ahead in
the MDP. The asymptotic sampling ratio following AOAP is proved to optimize the large deviations rate
of PCS defined in Glynn and Juneja (2004). TTTS is also proved to achieve asymptotically optimality
which is defined differently than that in Glynn and Juneja (2004).
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In this work, we will first introduce TTTS and compare its theoretical properties with some existing
sampling procedures in the Bayesian branch of R&S. Then comprehensive numerical comparisons between
TTTS and various R&S sampling procedures will be conducted in many experiments, which appears to have
never been done in the literature. Based on numerical results, we will provide guidelines for practitioners
on how to choose suitable sampling procedures in different applications.

The rest of the paper is organized as follows. In Section 2, we view TTTS from a stochastic dynamic
programming perspective in the Bayesian framework of R&S and discuss theoretical properties of TTTS.
Section 3 presents numerical experiments. Conclusions are given in the last section.

2 THOMPSON SAMPLING IN BAYESIAN FRAMEWORK OF R&S

We first introduce a Bayesian framework for the R&S problem. Suppose θ follows a prior distribution
F(·;ζ0) that reflects our prior knowledge on the unknown parameter, where ζ0 in the prior distribution is
called a hyper-parameter. Let X (t)

i := (Xi,1, · · · ,Xi,ti) and Et := {ζ0,X
(t)
1 , · · · ,X (t)

k }, where ti is the number
of simulation replications received by alternative i after allocating t simulation replications. The posterior
distributions can be calculated using Bayes rule. In the case where the prior distribution is a conjugate prior of
the sampling distribution, the posterior distribution lies in the same parametric family of the prior distribution,
i.e., F(·;ζt) where ζt is the posterior hyper-parameter. Under the conjugate prior, the information set Et can
be completely determined by the posterior hyper-parameters, i.e., Et = ζt . The conjugate prior for the normal
distribution N(µi,σ

2
i ) with unknown mean and known variance is a normal distribution N(µ

(0)
i ,(σ

(0)
i )2).

The posterior distribution of µi is N(µ
(t)
i ,(σ

(t)
i )2), where µ

(t)
i = (σ

(t)
i )2

(
µ
(0)
i /(σ

(0)
i )2 + tiX̄

(t)
i /σ2

i
)

and

(σ
(t)
i )2 =

(
1/(σ (0)

i )2 + ti/σ2
i
)−1 with X̄ (t)

i :=
∑ti

`=1 Xi,`/ti. If σ
(0)
i → ∞, µ

(t)
i = X̄ (t)

i , and the prior is the
uninformative prior in this case. For general sampling and prior distributions, algorithms for updating
posterior distribution efficiently can be found in Russo et al. (2018).

The dynamic decisions in the R&S problem can be formulated as an A&S policy (Peng et al. 2016).
The allocation policy is a sequence of mappings At(·) = (A1(·), · · · ,At(·)) that sequentially allocates each
sample to an alternative based on collected information, and the selection policy S (·) makes a final decision
to select the best alternative after exhausting all simulation replications. For a sequential allocation policy,
ti =

∑t
`=1 1{A`(E`−1) = i}. For simplicity, the selection decision is usually fixed as picking the alternative

with the smallest sample or posterior mean, and more attention has been focused on sampling decision
in the literature. Exceptions on discussing the optimal selection policy include Peng et al. (2016) and
Eckman and Henderson (2022). Peng et al. (2018a) shows that the sampling allocation policy would not
affect the Bayesian structure under a canonical assumption in R&S, and the optimal A&S policy (A ∗

T ,S
∗)

satisfies the following Bellman equation: VT (ET ) := VT (ET ; i)|i=S ∗(ET )
, where VT (ET ; i) :=E [1{i = i∗}|ET ]

and S ∗(ET ) = argmaxi=1,··· ,k VT (ET ; i), and for 0 ≤ t < T , Vt(Et) := Vt(Et ; i)|i=A∗t+1(Et)
, where Vt(Et ; i) :=

E [Vt+1(Et ,Xi,t+1)|Et ] and A∗t+1(Et) = argmaxi=1,··· ,k Vt(Et ; i). Both Peng et al. (2018a) and Russo (2020)
realize computational intractability of solving this Bellman equation except for some toy examples.

Russo (2020) proposes “simple and intuitive rules for adaptively allocating measurement effort” and
then analyzes the asymptotic properties of the proposed method. Based on available information Et−1,
TS allocates the t-th simulation replication randomly to alternative i with the posterior probability that
alternative i is the best, i.e., αi,t := P(µi > µ j, j 6= i|Et), i = 1, · · · ,k. This can be easily implemented by
allocating the t-th simulation replication to alternative It = argmaxi=1,··· ,k µ̃i, where µ̃i, i = 1, · · · ,k, are
sampled from posterior distribution θ̃ ∼ F(·|Et). Assuming independent normal sampling distributions
with known variances and conjugate priors, µ̃i ∼ N(µ

(t)
i ,(σ

(t)
i )2), i = 1, · · · ,k. Numerical results show that

TS performs poorly in R&S, because TS tends to overly prefer the alternative with the largest posterior
probability in allocating samples. Notice that following a policy sampling all alternatives infinitely often,
αi∗,t → 1 as t → ∞. To encourage more exploration, TTTS proposed in Russo (2020) allocates the t-th
simulation replication to alternative It with a given probability β , and with probability 1−β , it samples an
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alternative different than It . To generate this alternative, TTTS continues sampling Jt = argmaxi=1,··· ,k µ̃i
until Jt 6= It , and then allocate the t-th simulation replication to alternative Jt . TTTS samples alternative i
with probability ψi,t :=αi,tβ +αi,t(1−β )

∑
j 6=i

α j,t
1−α j,t

, where the first part in the summation is the probability
that alternative i is chosen as It and the second part is the probability that it is chosen as Jt . Following
a policy sampling all alternatives infinitely often, ψi∗,t → β as t → ∞. In implementation, the loop for
computing Jt could be very long when maxi=1,··· ,k αi,t is close to one. For computational efficiency, we
may need to end the loop when the number of iterations reaches certain cutoff value.

The optimal policy in MDP can be proved to be a deterministic mapping from the state space to
decision space (Bertsekas 1995). However, a randomized policy may have computational benefits. TTTS
is a randomized policy that makes sampling decisions based on posterior distributions adaptive to avail-
able sample information, i.e., At ∼ P(·|Et−1). Under certain regularity conditions, Russo (2020) proves
that the posterior probability of incorrect selection cannot converge to zero at a rate faster than e−tΓ∗

following any adaptive allocation policy, i.e., − limt→∞
1
t logF(Θc

i∗ |Et) =− limt→∞
1
t log

(∑
i 6=i∗ αi,t

)
≤ Γ∗,

where Θi := {θ ∈Θ : µi > µ j, j 6= i}, and Γ∗ := maxψ minθ ′∈Θc
i∗

∑k
i=1 ψid(θ ′i ||θi) with ψ = (ψ1, · · · ,ψk)

being a probability distribution and d(θ ′i ||θi) being the Kullback-Leibler divergence between the marginal
sampling distribution Qi(·;θ ′i ) and Qi(·;θi) of the i-th alternative; following TTTS with parameter β ,
− limt→∞

1
t logF(Θc

i∗ |Et)=Γ∗
β

, where Γ∗
β

:=maxψ:ψi∗=β minθ ′∈Θc
i∗

∑k
i=1 ψid(θ ′i ||θi), limt→∞ ψ̄t =ψβ , where

ψ̄t = (ψ̄1,t , · · · , ψ̄k,t) with ψ̄i,t :=
∑t

`=1 ψi,`/t and ψβ := argmaxψ:ψi∗=β minθ ′∈Θc
i∗

∑k
i=1 ψid(θ ′i ||θi); more-

over, Γ∗ = Γ∗
β ∗ with β ∗ := argmaxβ Γ∗

β
. If βt is adaptive to Et−1 and βt → β ∗, then TTTS using βt as the

probability for choosing It and Jt is asymptotically optimal in the sense that the posterior probability of
incorrect selection converges in the fastest rate. This kind of βt is generally difficult to compute, but Russo
(2020) shows that simply choosing β = 1/2 would usually lead to good performance and Γ∗ ≤ 2Γ1/2.

For normal sampling distribution, Γ∗ = maxψ mini6=i∗
(µi∗−µi)

2

2(σi∗/ψi∗+σi/ψi)
, which coincides with the opti-

mal decreasing rate of the probability of incorrect selection defined by Glynn and Juneja (2004), i.e.,
−minψ limt→∞

1
t logP

(
X̄ (t)

i∗ < X̄ (t)
i , i 6= i∗|θ

)
with ti = tψi, i = 1, · · · ,k. Although asymptotically optimal

sampling ratio can be defined for general sampling distribution in Glynn and Juneja (2004), most sampling
procedures in R&S are derived for normal sampling distribution. An exception is balancing optimal large
deviations rate (BOLD) in Chen and Ryzhov (2019), which is a sequential sampling procedure developed
for general sampling distribution. KG, EI, and AOAP are sequential Bayesian sampling procedures for
normal sampling distribution, and their sampling policies are deterministic mappings At adaptive to Et−1,
which have analytical forms. Following AOAP, the sampling ratio (t1, · · · , tk)/t converges to the optimal
probability ψ∗ that leads to the optimal rate Γ∗ of normal sampling distribution as t → ∞ (Peng et al.
2018a), but the sampling ratios of KG and EI are not asymptotically optimal (Peng et al. 2018).

3 NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to test the performance of different sampling procedures
under normal, Bernoulli and exponential sampling distributions, respectively. In all numerical examples,
statistical efficiency of the sampling procedures is measured by the IPCS estimated by 105 independent
macro runs. The IPCS is presented as a function of simulation budget.

3.1 Normal Sampling Distribution

For normal sampling distribution, we implement ten sampling procedures: equal allocation (EA), which
equally allocates simulation budget to estimate the performance of each alternative; “most starving” sequential
OCBA in Chen and Lee (2011), denoted as OCBA for simplicity; EI; KG; BOLD; AOAP; UCB, which

sequentially allocates each simulation budget to alternative argmaxi=1,··· ,k
(
X̄ (t)

i +
√

2ln t
/

ti
)
; TTTS; IZ

procedure in Rinott (1978), which takes n0 simulation replications of each alternative and calculates sample
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variances σ̄2
i at first stage, and then allocates max

{⌈
h2σ̄2

i
/

δ 2
⌉
−n0,0

}
additional simulation replications

to alternative i at second stage, where h and δ are IZ parameters. We implement TTTS with cutoff values
10 and 100, denoted as TTTS 10 and TTTS 100, respectively.

In all numerical examples, the number of initial simulation replications for parameter estimation
is chosen to be n0 = 10. For IZ, let δ = 0.2 and constant h is computed with 95% PCS target. We
conduct eight numerical experiments under normal sampling distributions. For each macro experiment in
examples N.1-N.4, simulation replications are generated independently from normal distribution N

(
µi,σ

2
i
)
.

For each macro experiment in examples N.5-N.8, µi, i = 1, · · · ,k, are generated from normal conjugate
priors N(µ

(0)
i ,(σ

(0)
i )2), and simulation replications are generated independently from normal distribution

N
(
µi,σ

2
i
)
. The parameter settings are summarized in Table 1.

Table 1: Parameter settings of the numerical examples in Section 3.1.

Examples k µi σi T Examples k µ
(0)
i σ

(0)
i σi T

N.1 10 i−1 6 2000 N.5 5 0 0.1
√

10 3000
N.2 10 9−3

√
10− i 6 1000 N.6 20 10 0.1

√
10 5000

N.3 10 9−
( 10−i

3

)2 6 2000 N.7 100 10 0.1 10 10000
N.4 100 (i−1)/10 1 2000 N.8 10 i/10

√
i/10 5

√
2i 5000

The parameter settings in Examples N.1-N.4 are the same as in numerical experiments in Chen et al.
(2000). In Examples N.5-N.8, σ2

i is chosen to be large relative to σ
(0)
i , so that the differences in µi are

relatively small and the true variances of alternatives are large, which is referred to as low-confidence
scenarios in Peng et al. (2018). Figures 2 and 3 show the performances of different sampling procedures
in the eight numerical examples.

In four experiments shown in Figure 2, the performance of IZ is comparable to that of EA, and TTTS
10 and TTTS 100 have comparable performance. As simulation budget grows large, UCB is surpassed by
EA in Figure 2 (a) – (c), and EI is surpassed by EA in Figure 2 (a) – (b). OCBA, KG, BOLD, AOAP,
and TTTS are competitive in four experiments. In Figure 2 (a), OCBA and AOAP have indistinguishable
performance, and they have a slight edge over BOLD. AOAP performs the best among all sampling
procedures at the beginning and is surpassed by KG and TTTS as simulation budget increases. In Figure 2
(b), the performance rank of all sampling procedures is similar to that in Figure 2 (a). In Figure 2 (c), AOAP
performs the best among all sampling procedures at the beginning and has a performance comparable to
OCBA and BOLD as simulation budget grows; KG has a slight edge over TTTS and becomes the best
among all sampling procedures as simulation budget grows large. In Figure 2 (d), EI is surpassed by OCBA
as simulation budget grows; UCB surpasses BOLD as simulation budget increases, and it is inferior to
AOAP; AOAP performs the best among all sampling procedures at the beginning, but it is surpassed by
TTTS and KG as simulation budget increases; TTTS has the best performance as simulation budget grows.
Although KG has a better performance in the four experiments N.1-N.4 , it is much more time-consuming
than other sampling procedures, since it involves matrix inversion and the matrix size increases.

In Figure 3 (a), KG and AOAP have comparable performance and are superior to the other sampling
procedures; OCBA, EI, BOLD, and UCB outperform TTTS 100 and TTTS 10 at the beginning but are
surpassed by TTTS 100 and TTTS 10 as simulation budget grows; TTTS 100 is slightly better than TTTS
10; OCBA has a performance comparable to EI, which is better than BOLD and UCB; EA surpasses UCB
as simulation budget increases. In Figure 3 (b), TTTS 100 and TTTS 10 have comparable performance
significantly better than EA; EI is better than UCB at the beginning but is surpassed by the latter as simulation
budget grows; AOAP is slightly better than OCBA, KG, and BOLD, whose performance is indistinguishable.
In Figure 3 (c), TTTS 10 and TTTS 100 have indistinguishable performance only slightly better than EA;
OCBA has a performance comparable to BOLD, which is superior to EI and UCB; EI is better than UCB
at the beginning, but it is surpassed by the latter as simulation budget increases; KG performs worse than
EI as simulation budget grows; AOAP performs the best among all sampling procedures. In Figure 3 (d),
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(d) Example N.4

Figure 2: IPCS of the ten sampling procedures with parameter settings (a) Example N.1; (b) Example N.2;
(c) Example N.3; (d) Example N.4 on the example of Section 3.1.

EA surpasses UCB in the end; OCBA is better than IZ and has a slight edge over BOLD as simulation
budget grows; KG performs better than TTTS 10 and TTTS 100 at the beginning but its IPCS flattens out
as simulation budget increases; TTTS 10 has a slight edge over TTTS 100; AOAP and EI perform better
than other sampling procedures, and the advantage of AOAP over EI become apparent as simulation budget
grows.

From the numerical observations above, we can summarize some rules-of-thumb: AOAP performs
the best among all sampling procedures when the number of simulation budget is relatively small, and
KG, TTTS 10, and TTTS 100 are recommended when simulation budget is large; AOAP is the best
choice in low-confidence scenarios, i.e., differences in the performance of competing alternatives are small,
variances are large, the number of alternatives is large, and simulation budget is relatively small. BOLD
and TTTS, two other asymptotically optimal sampling procedures besides AOAP, might not perform well in
low-confidence scenarios. The choice of cutoff value for TTTS may have an influence on the performance.
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Figure 3: IPCS of the ten sampling procedures with parameter settings (a) Example N.5; (b) Example N.6;
(c) Example N.7; (d) Example N.8 on the example of Section 3.1.

3.2 Bernoulli Sampling Distribution

For Bernoulli sampling distribution, we implement six sampling procedures: EA; BOLD; AOAP in Li et al.
(2020), which uses normal distribution to approximate the posterior Beta distribution; TTTS 10 and TTTS
100; UCB. For AOAP, a distance parameter is chosen to be ε = 10−5. We conduct two numerical experiments
with Bernoulli sampling distributions. In example B.1, the number of initial simulation replications is
chosen to be n0 = 20, whereas in example B.2, the number of initial simulation replications is chosen
to be n0 = 10. We do not implement BOLD for comparison in example B.2 because inaccurate initial
parameter estimation hinder its implementation. In each macro experiment, µi, i = 1, · · · ,k are generated
from Beta conjugate priors Beta(α(0)

i ,β
(0)
i ), where α

(0)
i and β

(0)
i are drawn independently from uniform

distribution, and simulation replications are generated independently from Bernoulli distribution Ber (µi).
The parameter settings are summarized in Table 2.

Example B.1 is designed to show performances of different sampling procedures when the number of
alternatives is small, whereas Example B.2 has a much larger number of alternatives. Figure 4 shows the
performances of different sampling procedures in the two numerical examples.
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Table 2: Parameter settings of the numerical examples of Section 3.2.

Examples k α
(0)
i β

(0)
i T

B.1 5 U (1,20) U (1,20) 2000
B.2 100 U (5,10) U (1,5) 3000
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Figure 4: IPCS of the ten sampling procedures with parameter settings (a) Example B.1; (b) Example B.2
on the example of Section 3.2.

In Figure 4 (a), EA has the worst performance among all sampling procedures; BOLD and UCB have a
comparable performance at the beginning, and UCB surpasses the BOLD when simulation budget reaches
around 560; UCB catches up with AOAP as simulation budget increases; AOAP has a slight edge over
TTTS 10 and TTTS 100 at the beginning, but it is surpassed by TTTS 10 and TTTS 100 when simulation
budget reaches around 575 and 420, respectively. In Figure 4 (b), UCB has an edge over EA which
performs worst among all sampling procedures. At the beginning, AOAP has an edge over TTTS 10 and
TTTS 100, but it is surpassed by both TTTS 10 and TTTS 100 when simulation budget reaches around
1930. Compared with Example B.1, the advantage of AOAP appears more apparent when the number of
competing alternatives is large and simulation budget is small.

3.3 Exponential Sampling Distribution

For exponential sampling distribution, we implement seven sampling procedures: EA; OCBA for exponential
sampling distribution (OCBA-exp) in Gao and Gao (2016); BOLD; TTTS 10 and TTTS 100; AOAP in
Zhang et al. (2020), which uses normal distribution to approximate the posterior gamma distribution; UCB.

We conduct two numerical experiments with exponential sampling distribution. In both experiments,
the number of initial simulation replications for parameter estimation is chosen to be n0 = 10. In each macro
experiment, λi = 1/µi, i = 1, · · · ,k, are generated from Gamma conjugate priors Gamma(k(0)i ,θ

(0)
i ), and

simulation replications are generated independently from exponential distribution Exp(λi). The parameter
settings are summarized in Table 3.

The number of alternatives in Example E.1 is small, and the number of alternatives in Example E.2 is
large. Figure 5 shows the performances of different sampling procedures in the two numerical examples.

In Figure 5 (a), UCB has a significant edge over EA, but it lags behind BOLD at the beginning and
catches up as simulation budget grows; AOAP, TTTS 10, TTTS 100 have comparable performance and are
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Table 3: Parameter setting of the numerical examples of Section 3.2.

Examples k k(0)i θ
(0)
i T

E.1 10 U (2,10) U (1,2) 5000
E.2 100 1 2 3000
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Figure 5: IPCS of the ten sampling procedures with parameters settings (a) Example B.1; (b) Example B.2
on the example of Section 3.3.

better than other sampling procedures. In Figure 5 (b), EA is inferior to other sampling procedures at the
beginning, but it catches up with UCB whose IPCS flattens out as simulation budget grows; OCBA-exp
has a slight edge over BOLD at the beginning, and BOLD catches up with OCBA-exp at the end; AOAP,
TTTS 10, TTTS 100 have comparable performance and are better than other sampling procedures.

4 CONCLUSIONS

TS is originated from MAB, and its variant TTTS appears to be an appealing sampling procedure for
R&S based on comprehensive comparisons between TTTS and some popular methods in R&S from both
theoretical and numerical perspectives in this work. Together with algorithms that can generate samples
from a posterior distribution, TTTS applies to general sampling distribution and performs reasonably well.
In R&S, the developments of sampling procedures are predominately based on normal sampling distribution,
and it usually requires extra work to adapt the sampling procedures to a non-normal sampling distribution.
For normal sampling distribution, some existing sampling procedures in R&S are still quite competitive
relative to TTTS, and particularly in low-confidence scenarios, AOAP seems to have an advantage over
TTTS and others. In the literature of R&S and MAB, there are works on selecting top-m alternatives and
context-dependent selection of the best (Chen et al. 2008; Shen et al. 2021; Han et al. 2020), whereas
TS-like schemes have not been developed for these extensions. In implementation, the need to choose an
appropriate cutoff value that may influence the performance for TTTS is troublesome.

The recent progresses made by different communities such as simulation and machine learning coming
together to address same problems like R&S might inspire researchers to borrow ideas and tools from
both sides to come up with new or better solutions for big problems. AlphaGo is designed with a MCTS
backbone using a UCB-like node selection policy. Recently, Li et al. (2021) and Zhang et al. (2022)
demonstrate that OCBA and AOAP could lead to better performance in MCTS. Since the dynamic sampling
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decisions can be formulated as MDP, leveraging the state-of-art techniques in reinforcement learning would
be a promising future direction to elevate the standard of the research in R&S.
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