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ABSTRACT

In this paper, we consider policy evaluation in a finite-horizon setting with continuous state variables.
The Bellman equation represents the value function as a conditional expectation, which can be further
transformed into a ratio of two stochastic gradients. By using the finite difference method and the generalized
likelihood ratio method, we propose new estimators for policy evaluation and show how the value of any
given state can be estimated using sample paths starting from various other states.

1 INTRODUCTION

Many real-world business problems can be modeled using finite-horizon stochastic process. Reinforcement
learning (RL) techniques have been successful in solving these problems, such as optimal asset allocation
(Neuneier 1995), inventory management in supply chains (Oroojlooyjadid et al. 2022) and option pricing
and hedging (Longstaff and Schwartz 2001). There are many well-known reinforcement learning techniques,
including Q-learning (Tsitsiklis 1994), policy gradient method (Sutton et al. 1999), etc. For a general
introduction to RL techniques, one can refer to Sutton and Barto (2018). In this paper, we focus on the
problem of policy evaluation, where the task is to estimate a value function for a given action policy. The
action policy can then be iteratively improved by finding the optimal action based on the estimated value
function. This procedure is known as the policy improvement step.

Two widely-used approaches for policy evaluation are the Monte Carlo (MC) method and the temporal
difference (TD) method (Sutton 1988). The TD label encompasses a broader class of methods, such as
TD(λ ), introduced by Tsitsiklis and Van Roy (1997). The value of a given state can be represented by
a conditional expectation, and both MC and TD estimate it by simulating the trajectory of the process
starting from that same state. The main difference between them is that MC requires the simulation to
continue until termination, while TD simulates only a single transition and calculates an estimate based
on the Bellman equation. In this paper, we investigate ways to estimate the value of a state using sample
paths that start in other states. There has been some recent work along these lines, such as Daveloose et al.
(2019) and Zhou et al. (2021), and the latter one is a generalization of the former.
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Zhou et al. (2021) have shown that under appropriate assumptions, a conditional expectation can be
represented as a ratio of the gradients of two expectations. The expressions inside these expectations
involve nondifferentiable indicator functions. We can use this ratio representation as long as stochastic
estimators for these gradients are available. The area of stochastic gradient estimation (SGE) have been
studied extensively and many techniques have been developed: finite difference (FD) methods, infinitesimal
perturbation analysis (IPA) (Glasserman 1991; Ho and Cao 1983), the likelihood ratio (LR) method (Glynn
1987), and the generalized likelihood ratio (GLR) method (Peng et al. 2018). FD is a simple but effective
method, but a major drawback is that it generally produces a biased estimator, which could impair the
convergence rate of policy evaluation. Another important disadvantage of FD is that when we use a smaller
perturbation parameter to decrease the bias of the estimator, a larger number of sample paths are needed to
reduce the variance. IPA and LR yield unbiased estimators when applicable, but for our problem, both fail
due to the existence of the indicator functions in the ratio representation (Peng et al. 2018). It is possible
to obtain an unbiased estimator using GLR, but this requires an explicit form for the distribution of the
initial state. Though we have the flexibility to specify this density function, it is not clear how to do this
“well”. Moreover, the application of GLR generally requires differentiability of the value function, thus
has many limitations.

With a FD-based or GLR-based estimator of the value function, we can use stochastic gradient descent
to minimize the Bellman error, analogously to TD. The asymptotic convergence of such a procedure
can be obtained by extending the available theory for TD methods, which is mainly based on the ODE
method for stochastic approximation (Kushner and Yin 2003). This approach, however, does not provide
finite-time performance guarantees. Bhandari et al. (2018) investigated the finite-time performance of TD
in infinite-horizon, discrete-state problems with linear function approximation. However, for the algorithms
associated with our proposed new FD and GLR estimators, the finite-time analysis could become more
complicated, since there are many parameters that should be determined by the user. For example, the
number of sample paths used to obtain the FD estimator could have a great impact on the performance of
the algorithm, and a large number of sample paths would lead to high simulation costs, which is important
when we consider budget-dependent convergence rate results (L’Ecuyer and Yin 1998) for these algorithms.

The paper is organized as follows. In Section 2, we review the problem of policy evaluation in a finite
horizon setting along with two classical methods, MC and TD. In Section 3, we propose new estimators
for the value function using stochastic gradient estimation techniques. In Section 4, we describe the
detailed algorithms and give preliminary insights into the convergence analysis. Numerical experiments
are conducted in Section 5.

2 PROBLEM FORMULATION

We consider the policy evaluation problem for a Markov decision process (MDP) in a finite-horizon setting
where the state variables take continuous values. Let T be the termination time and X be the state space.
Suppose at time step t = 0, . . . ,T , the state variable is xt ∈X , and the next state xt+1 is generated by the
transition

xt+1 = ht(xt ,π(xt , t),Zt+1), (1)

where π is the given action policy that we aim to evaluate, i.e., π(xt , t) gives the action taken at t, and the
quantity Zt+1 represents the randomness of the transition, assumed to be independent of the state and the
action. Let Rt+1(xt ,xt+1) be a deterministic function representing the one-step reward obtained between
steps t and t +1. The value function associated with the MDP, denoted by V π is then given by

V π(x, t) = E

[
T−1

∑
i=t

γ
i−tRi+1(xi,xi+1)|xt = x, t

]
,
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where γ ∈ (0,1) is a discount factor. It is well known that V π satisfies the Bellman equations V π(x,T ) = 0,
and V π(x, t) = LV π(x, t +1) for t = 0, . . . ,T −1, where the operator L is defined by

LV (x, t +1) = E [Rt+1(Xt ,Xt+1)+ γV (Xt+1, t +1)|Xt = x, t] , t = 0, . . . ,T −1.

Given a fixed initial state x0 and the fixed policy π , the distribution Ft(x) of the state variable Xt is fixed.
Since the state variables are assumed to take continuous values, we suppose that the value function V π is
approximated by a parametrized model Vθ (x, t). In general, the parametrized model could take different
forms for different t. For each t = 0, . . . ,T , it is desirable to find θ ∗t such that

θ
∗
t = argmin

θt∈Θ

1
2
∥Vθt (x, t)−V π(x, t)∥2

Ft
(2)

where Θ is a closed and convex parameter space, and ∥·∥2
Ft

is defined by ∥V (x, t)∥2
Ft

:= EX∼Ft

[
|V (X , t)|2

]
.

Let Πt represent the projection operator that gives the best approximation of a given function with respect
to Ft . Then the solution to (2) can be written as ΠtV π(x, t). For simplicity, we assume that θ ∗t exists and
is unique for each t.

2.1 Monte Carlo (MC) and Temporal Difference (TD) Methods

In the following, we give a brief review of the Monte Carlo (MC) and temporal difference (TD) methods
for fitting the value of a fixed policy π .

Suppose that at iteration n+ 1, we simulate a sample path {x0,x1,R1,x2,R2, . . . ,xT ,RT}. Then, the
MC and the TD estimators for V π(x, t) are given by V̂ MC(x, t) = ∑

T−1
i=t γ i−tRi+1 and V̂ T D(x, t) = Rt+1 +

γVθ n
t+1
(xt+1, t + 1), respectively, where θ n is the parameter obtained in iteration n. In practice, for both

methods, estimators are calculated in a backward direction. The MC estimator at iteration n+1 does not
depend on θ n, while the TD estimator is affected by θ n. Therefore, in TD, instead of solving (2) as in the
MC method, we are essentially solving a different problem for θt ,

min
θt∈Θ

1
2

∥∥Vθt (x, t)−LVθt+1(x, t +1)
∥∥2

Ft
. (3)

Consequently, the error in the approximation of V π(x, t) by Vθ ∗t (x, t) depends on the approximation error
induced by θ ∗t+1. If Vθ ∗t+1

= Πt+1V π , then the approximation error of V π(x, t) by Vθ ∗t (x, t) is simply a
projection error, which can be seen from∥∥Vθ ∗t (x, t)−V π(x, t)

∥∥
Ft
=
∥∥∥ΠtLVθ ∗t+1

(x, t +1)−V π(x, t +1)
∥∥∥

Ft

≤
∥∥∥ΠtLVθ ∗t+1

(x, t +1)−ΠtLV π(x, t +1)
∥∥∥

Ft
+∥ΠtV π(x, t)−V π(x, t)∥Ft

≤ γ

∥∥∥Vθ ∗t+1
(x, t +1)−V π(x, t +1)

∥∥∥
Ft+1

+∥ΠtV π(x, t)−V π(x, t)∥Ft
,

where the first inequality is obtained from the Bellman equation, and the second equality follows because
the projection operator Πt is non-expansive and the Bellman operator L is a contraction.

The optimal parameters θ are searched using a stochastic gradient descent algorithm for the objectives
(2) and (3), where the gradient estimator can be written in a general form:

gt(θt ,θt+1) = (V̂ π(x, t)−Vθt (x, t))∇θtVθt (x, t), (4)

Therefore, the key difference between MC and TD lies in the form of V̂ π(x, t). In the next section, we
propose new formulations of V̂ π(x, t) derived by stochastic gradient estimation (SGE) techniques.
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3 NEW ESTIMATORS OF THE VALUE FUNCTION

In the following, we present a ratio representation of a conditional expectation, and then propose two new
estimators of the value function.

3.1 Ratio Representation of a Conditional Expectation

The Bellman equation shows that the problem of estimating V π(x, t) can be reduced to the problem
of estimating a particular conditional expectation. Furthermore, Zhou et al. (2021) have shown that a
conditional expectation can be represented by a ratio of the gradients of two expectations. For our purpose,
this technique can be applied in policy evaluation. To simplify the presentation, we consider the case where
the state variable x is a one-dimensional variable.

Define W (x,x′, t;V ) = Rt(x,x′)+ γV (x′, t). Then,

LV (x, t +1) =E [W (Xt ,Xt+1, t +1;V )|Xt = x, t]

= lim
ε→0

E [W (Xt ,Xt+1, t +1;V )|Xt ∈ (x− ε,x+ ε)]

=
limε→0(1/2ε)E [W (Xt ,Xt+1, t +1;V )1{Xt ∈ (x− ε,x+ ε)}]

limε→0(1/2ε)E [1{Xt ∈ (x− ε,x+ ε)}]
(5)

=

d
dξ
E [W (Xt ,Xt+1, t +1;V )1{Xt ≤ ξ )}]

d
dξ
E [1{Xt ≤ ξ}]

∣∣∣∣∣
ξ=x

, (6)

where 1{·} is the indicator function. If we can obtain estimators of the two stochastic gradients in (6),
then LV (x, t +1) can be estimated by taking the ratio. For higher-dimension problems, the representation
would involve higher-order partial derivatives. By the derived ratio representation, when estimating the
value function at a specific point (x, t), we do not have to simulate the next states starting at exactly this
fixed point as in the MC or the TD method. Instead, we could use sample paths from (x̃, t), where x̃ can be
different from x. In other words, given t, any sample paths starting from any state can be used to estimate
the value function for any x. Therefore, the ratio representation allows much more flexibility in simulating
sample paths and offers new ways of constructing different estimators of V .

3.2 Stochastic Gradient Estimation (SGE)

By the ratio representation (6), stochastic gradient estimation (SGE) techniques are needed to estimate
the conditional expectation. There are many widely used SGE techniques, which include finite difference
(FD) methods, infinitesimal perturbation analysis (IPA) and the likelihood ratio (LR) method. Among
those, FD is the one of the most straightforward methods. Suppose D = {(X j

t ,X
j

t+1,R
j
t+1), j = 1, . . . ,M}

are i.i.d random pairs, where X j
t ∼ Ft , the corresponding X j

t+1 is obtained by the transition function (1),
and R j

t+1 = Rt+1(X
j

t ,X
j

t+1). Then, from (5), a symmetric FD estimator is given by

V̂ FD(x, t;V,D ,ε) =
∑

M
j=1W (X j

t ,X
j

t+1, t +1;V )1
{

X j
t ∈ (x− ε,x+ ε)

}
∑

M
j=1 1

{
X j

t ∈ (x− ε,x+ ε)
} , (7)

where ε > 0 is a small fixed perturbation parameter. Although FD is easy to implement, it has several
drawbacks. First, the FD estimator is biased, which usually leads to a slower convergence rate compared
to unbiased estimators. Moreover, for a small ε , the event {Xt ∈ (x−ε,x+ε)} could be a rare event, thus
a large number of sample paths may be required to make the denominator in (7) nonzero. To overcome
these drawbacks, alternative SGE techniques that could yield unbiased estimators, such as IPA and LR
might be preferred, but since both the numerator and denominator in (6) involve an indicator function
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which introduces discontinuities, both IPA and LR fail. Peng et al. (2018) have proposed a generalized
likelihood ratio (GLR) method, which can overcome this difficulty and obtain unbiased estimators for (6).
The application of GLR can be justified under Assumption 1.
Assumption 1 The following statements hold for all t:

(i) Zt+1 is independent of Xt .
(ii) ft(x), the density of Xt , has unbounded support.

(iii) ln ft(x) is differentiable for all x ∈ R.
(iv) E

[
(∂x ln ft(Xt))

2
]
< ∞.

(v) E
[
(W (Xt ,Xt+1, t +1;V ))2

]
< ∞.

Under Assumption 1, the numerator in (6) can be represented as an ordinary expectation according to

d
dξ

E [W (Xt ,Xt+1, t +1;V )1{Xt ≤ ξ}]

=E
[

1{Xt ≤ ξ}
(

d
dXt

W (Xt ,Xt+1, t +1;V )+W (Xt ,Xt+1, t +1;V )
d

dXt
ln ft(Xt)

)]
. (8)

Here, we briefly discuss the derivation of (8); please see Peng et al. (2018) for complete technical details.
Since the indicator function 1{z≤ 0} involves a discontinuity, which prevents us from interchanging the
expectation and the differentiation operator, we first replace it by a sequence of approximated continuous
functions χε(·), i.e., limε→0 χε(z) = 1{z≤ 0}. Then we have

d
dξ

E [W (Xt ,Xt+1, t +1;V )χε(Xt −ξ )]

=E
[
W (Xt ,Xt+1, t +1;V )

d
dξ

χε(Xt −ξ )

]
=−

∫
R

W · d
dx

χε(x−ξ ) f (x)dx

=−W ·χε(x−ξ ) ft(x)|∞−∞ +
∫
R

χε(x−ξ )
d
dx

(W · ft(x))dx

=
∫
R

χε(x−ξ )

(
d
dx

W +W · d
dx

ln ft(x)
)

ft(x)dx, (9)

where the first equality holds under integrability assumptions in Assumption 1, the second equality is
obtained by a change of variable, and the third equality is obtained by the integration by parts formula.
Letting ε → 0, (9) converges to (8).

Using the GLR method, we can obtain an unbiased estimator for the numerator of (6). However,
the representation (8) requires explicit knowledge of the density function ft(·), which is not available
in practice. At the same time, the derivation of the ratio representation (6) does not require that Xt is
generated from Ft , i.e., the expectations in (6) can be taken with respect to a user-specified distribution Fs

t .
Following this, to apply GLR, we need Assumption 1 to hold where Ft and ft are replaced by Fs

t and f s
t ,

respectively. For the denominator of (6), we can apply the same GLR technique to obtain a corresponding
ordinary expectation, but the ratio of two sample means would still be a biased estimator for LV (x, t +1).
Therefore, another benefit of using a user-specified distribution Fs

t is that the denominator of (8) simply
becomes f s

t (x), which leads to an unbiased estimator for LV (x, t +1) when we use sample means of i.i.d.
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observations to estimate the numerator. Thus, the final form of the GLR estimator is given by

V̂ GLR(x, t;V,D̃) =
1

M · f s
t (x)

M

∑
j=1

[
1
{

X̃ j
t ≤ x

}( d

dX̃ j
t

W (X̃ j
t , X̃

j
t+1, t +1;V )+W · d

dX̃ j
t

ln f s
t (X̃

j
t )
)]

, (10)

where D̃ = {(X̃ j
t , X̃

j
t+1, R̃

j
t+1), j = 1, . . . ,M} are i.i.d random pairs, where X̃ j

t ∼ Fs
t , the corresponding X̃ j

t+1 is
obtained by (1), and R̃ j

t+1 = Rt+1(X̃
j

t , X̃
j

t+1). Although the GLR estimator is unbiased, it is more complicated
to implement and has some limitations compared to other estimators. First, it is not clear which choices of
Ft(s) are “good”. Moreover, since we are aiming to estimate the value function at Xt ∼ Ft , extra simulation
is needed to simulate these evaluation points. Moreover, if W is not differentiable w.r.t the state variable,
(10) would introduce additional conditional expectation terms conditioning on points at which W is not
differentiable. In such cases, the GLR method could be ineffective.

4 ALGORITHMS AND THEORETICAL ANALYSIS

In general, we update the parameters θ using

θ
n+1
t = θ

n
t +α

ngn
t t = T, . . . ,0, (11)

where αn is the step-size and gn
t = gt(θ

n
t ,θ

n
t+1) is the gradient estimator at iteration n. For different methods,

we only need to replace V̂ π(x, t) in (4) by the corresponding estimators. For example, for FD, the gradient
estimator is

gFD
t (θ n

t ,θ
n
t+1;ε) = (V̂ FD(x, t;Vθ n

t+1
,ε)−Vθ n

t (x, t))∇θ n
t Vθ n

t (x, t). (12)

The resulting policy evaluation algorithms with the FD and GLR estimators are given in Algorithms 1 and
2.

The convergence analysis of algorithms using FD and GLR estimators would be similar to that of
TD and MC, which has been studied extensively in the literature. One common approach is to use ODE
techniques to establish asymptotic convergence by showing that the ODE has a global asymptotically stable
equilibrium (Tsitsiklis and Van Roy 1997). Moreover, under appropriate assumptions, convergence rate
results can also be established (Bhandari et al. 2021). Here, we provide some insights into the proofs
of the proposed algorithms by using previous results shown for stochastic approximation (SA) problems
(L’Ecuyer and Yin 1998).

First, we define

ψ̄t(θt) =EXt∼Ft

[(
LVθ ∗t+1

(Xt+1, t +1)−Vθt (Xt , t)
)

∇Vθt (Xt , t)
]
,

ḡt(θt ,θt+1) =EXt∼Ft

[(
LVθt+1(Xt+1, t +1)−Vθt (Xt , t)

)
∇Vθt (Xt , t)

]
.

Let (Xt ,Xt+1) be a random pair, where Xt ∼ Ft and Xt+1 is its corresponding next state, then

ψt(θt) =(V̂ (Xt , t;Vθ ∗t+1
)−Vθt (Xt , t))∇θtVθt (Xt , t),

gt(θt ,θt+1) =(V̂ (Xt , t;Vθt+1)−Vθt (Xt , t))∇θtVθt (Xt , t)

are stochastic estimators of ψ̄t(θt) and ḡt(θt ,θt+1), respectively. It is easily seen that ψ̄t(θt) is the negative
of the gradient of the objective in,

min
θt

1
2

∥∥∥∥(LVθ ∗t+1
(Xt+1, t +1)−Vθt (Xt , t)

)2
∥∥∥∥

Ft

, (13)
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Algorithm 1: Policy Evaluation with FD.
Input: fixed policy π , value function approximation model Vθ , initial number of sample paths

M0, simulation budget M in each iteration, number of evaluation points for each t in each
iteration, N0, step sizes sequences {αn

t }, initial parameters θ 0, initial permutation
parameter ε0 > 0.

Simulate M0 sample paths D0←{X j
t , j = 1, . . . ,M0, t = 0, ...,T} under policy π .

for n = 0,1, . . . do
Simulate M sample paths S n = {X j

t , j = 1, . . . ,M, t = 0, ...,T} under policy π , and
Dn+1 = Dn⋃S n.

εn← ε0n−1/6.
for t = T,T −1, . . . ,0 do

C n+1← N0 numbers randomly selected from {1, . . . , |Dn+1|} with equal probability.
Evaluation: For each X i

t , i ∈ C n+1, calculate the FD estimator
V̂ FD(X i

t ,X
i
t+1;Vθ n

t+1
,Dn+1,εn).

Batch Gradient Estimator: For each X i
t , i ∈ C n+1, calculate the gradient estimator by

(12), denoted by gn,i
t , the batch estimator gn

t ← (1/|C n+1|)∑i∈C n+1 gn,i
t .

Update: θ
n+1
t ← θ n

t +αn
t gn

t .
end

end

which is very similar to (3) except that in (13) the optimal θ ∗t+1 is given. Using the update θ
n+1
t =

θ
n+1
t +αn

t ψt(θ
n
t ) with αn

t = O(n−1), an O
(
n−min{2β ,1+ν}) convergence rate of E

[
∥θ n

t −θ ∗t ∥
2
]

can be
established under assumptions on the decay rates of (14) and (15), along with other assumptions on ψ̄ (see
Theorem 3.1 in L’Ecuyer and Yin (1998)).

∥ψ̄(θ n
t )−E[ψn

t |θ n
t ]∥ ≤ Kβ n−β w.p.1 (14)

E
[
∥ψ̄(θ n

t )−E[ψn
t |θ n

t ]∥
2
]
≤ Kνn−ν . (15)

Similar results could be expected to hold for our update (11) under similar assumptions, i.e., we would
require the decaying behavior of the conditional bias and variance of the estimator gn

t to follow (14) and
(15). In practice, for FD, the conditional bias can be reduced by using a decreasing perturbation parameter
along with an increasing number of sample paths, while for GLR, the bias is 0, since the estimator is
unbiased.

5 NUMERICAL EXPERIMENTS

In this section, we compare four algorithms with different gradient estimators: the MC estimator, the
temporal difference estimator, the FD estimator and the generalized likelihood ratio estimator. Algorithms
are tested on two benchmark problems. In both experiments, we use a 2nd-degree polynomial model to
approximate the value function.

5.1 Optimal Asset Allocation and Consumption

We consider policy evaluation in the problem of finding optimal asset allocation and consumption to maximize
aggregated utility of consumption (Rao and Jelvis 2022). Suppose we have one risky asset and one riskless
asset. The value of the risky asset St follows a geometric Brownian process dSt = µStdt +σStdZt , where
µ is a drift constant and σ is a volatility constant, Zt is a standard Brownian motion. In addition, the
riskless asset S̃t follows dS̃t = rS̃tdt, where r is the riskfree rate. Let Xt be the wealth at time t, and denote
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Algorithm 2: Policy Evaluation with GLR.
Input: fixed policy π , value function approximation model Vθ , initial number of sample paths M0

and M̃0, simulation budget M and M̃ in each iteration, step sizes sequences {αn
t }, initial

parameters θ 0, user-specified simulation distributions Fs
t (·), t = 0, . . . ,T .

construct the initial set of evaluation points: simulate M0 sample paths
D0←{X j

t , j = 1, . . . ,M0, t = 0, ...,T} under policy π .
For each t = 0, . . . ,T , simulate M̃0 sample paths D̃0

t = {(X̃ j
t , X̃

j
t+1, R̃

j
t+1), j = 1, . . . ,M̃0} under

policy π , where X̃ j
t ∼ Fs

t .
for n = 0,1, . . . do

Simulate M0 sample paths S n←{X j
t , j = 1, . . . ,M0, t = 0, ...,T} under policy π following the

dynamics. Dn+1←Dn⋃S n.
For each t = 0, . . . ,T , simulate M̃ sample paths S̃ n

t = {(X̃ j
t , X̃

j
t+1, R̃

j
t+1), j = 1, . . . ,M̃} under

policy π , where X̃ j
t ∼ Fs

t , and D̃n+1
t ← D̃n

t
⋃

S̃ n
t .

for t = T,T −1, . . . ,0 do
C n+1← N0 numbers randomly selected from {1, . . . , |Dn+1|} with equal probability.
Evaluation: For each X i

t , i ∈ C n+1, calculate the GLR estimator
V̂ GLR(X i

t ,X
i
t+1;Vθ n

t+1
,D̃n+1

t ).
Batch Gradient Estimator: For each X i

t , i ∈ C n+1, calculate the gradient estimator,
denoted by gn,i

t , the batch estimator gn
t ← (1/|C n+1|)∑i∈C n+1 gn,i

t .
Update: θ

n+1
t ← θ n

t +αn
t gn

t .
end

end

by p(Xt , t) the percentage of wealth allocated to the risky asset and 1− p(Xt , t) the percentage of wealth
allocated to the riskless asset. Let c(Xt , t) be the wealth consumption per unit time. Then the wealth Xt
evolves according to

dXt = ((p(Xt , t)(µ− r)+ r)Xt − c(Xt , t))dt + p(Xt , t)σXtdZt .

The optimal value function is given by

V ∗(x, t) = max
p,c

E
[∫ T

t
e−ρ(s−t)U(c(Xs,s))ds+ e−ρ(s−t)B(T )U(XT )|Xt = x, t

]
where B(T ) = εη is a fixed function, ε,η ∈ (0,1), U(x) is the utility of consumption function, ρ ≥ 0 is the
utility discount rate. Suppose U(x) = x1−η

1−η
, and the optimal action policy and the associated optimal value

function have closed forms. Thus, we can apply policy evaluation algorithms for the optimal action policy
(p∗,c∗) and compare the estimated value function with the optimal value function. First, we approximate
the original continuous-time problem by discretization. The one-step transition thus can be written as

Xt+1 = Xt +((p∗t (Xt , t)(µ− r)+ r)Xt − c∗(Xt , t))∆t + p∗t (Xt , t)σXt · Z̃t+1, (16)

where ∆t is a small time interval, Z̃t+1 ∼N (0,
√

∆t). The Bellman operator can be approximated by

LV (x, t +1) = E
[
e−ρ·∆tU(c∗(Xt , t))∆t + e−ρ·∆tV (Xt+1, t +1)|Xt = x, t

]
. (17)

The MC, TD and FD estimators can be easily derived from previous discussions. For GLR, we have
to specify a distribution Fs

t . Intuitively, we would hope Fs
t be close to Ft (see Figure 1), but this usually
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Figure 1: Boxplot of Ft(·). Parameters used: T = 0.05, ∆t = 0.01, x0 = 10, µ = 1, σ = 2, r = 0.8, ρ = 1.2,
η = 0.4, ε = 0.01.

cannot be achieved in practice. Instead, we set Fs
t to be exp(λt), where λt = 1/(at +b), and a and b are

parameters fitted by a linear regression of the sample means {X̄t , t = 0, . . . ,T} that is calculated from some
pre-simulated sample paths starting from an initial wealth x0. We use an exponential distribution for Fs

t ,
since the support of the Xt is non-negative under the optimal action policy. However, from Assumption
1, f s

t should have unbounded support for GLR to be valid. Therefore, we need to perform a change of
variable, e.g., Yt = ln(Xt) in (17). Above all, in nth iteration, the GLR estimator (see Algorithm 2) is:

V̂ GLR(X i
t ,X

i
t+1;Vθ n

t+1
,D̃n+1

t )

=
e−ρ·∆t

|D̃n+1
t | · f s

t (X i
t ) ·X i

t

|D̃n+1
t |

∑
j=1

[
1
{

X̃ j
t ≤ X i

t

}(dVθ n
t+1
(X̃ j

t+1, t +1)

dỸ j
t

+Vθ n
t+1
(X̃ j

t+1, t +1) ·q(Ỹ j
t )

)]
+ e−ρ·∆tU(c∗(X i

t , t))∆t,

where f s
t (x) = λe−λx, X̃ j

t ∼ exp(λt), Ỹ j
t = ln(X̃ j

t ) with density fY (y) = λey−λey
, and q(y) := d ln( fy(y))

dy = 1−

λey. The gradient
dVθn

t+1
(X̃ j

t+1,t+1)

dỸ j
t

can be calculated by taking derivatives of the parameterized approximation
model and the transition function (16) and applying the chain rule.

Numerical results are shown in Figure 2, from which we can see the algorithm with FD has the best
performance as it obtains a closest approximation of the true value function, and is the most stable. The
GLR estimator has the worst performance, but becomes comparable to other methods after many epochs.
It is worth mentioning that for the GLR method, there are many hyperparameters that can be tuned, such
as Fs

t . The choice of Fs
t could have a great impact on the performances and how to design a “good” one

still remains a challenging problem.

5.2 (s,S) Inventory Policy Evaluation

We consider a classic periodic review inventory control problem with zero lead time, i.e., an order arrives
as soon as it is placed. Let Xt be the inventory level at the beginning of day t, t = 0, . . . ,T , at be the order
amount between t and t +1, ch be the unit holding cost, cs be the unit shortage cost, cs > ch, c be the unit
order cost and K > 0 be the fixed reorder cost. The cost Rt+1 incurred between t and t +1 is given by

ch max{Xt ,0}+ cs max{−Xt ,0}+ cat +K1{at > 0} .
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Figure 2: The left and right plots represent the logarithmic of sample averages and the standard errors of

∑
T
t=0
∥V−V ∗∥Ft
∥V ∗∥Ft

vs epochs over 50 macro-replications, respectively. Results are reported every 10 epochs.

For FD, M0 = 200, M = 1, N0 = 200. For GLR, M0 = M̃0 = 200, M = M̃ = 1, N0 = 200.

Assume that the demand Zt+1 between t and t + 1, t = 0, . . . ,T − 1 are i.i.d. exp(λ ) random variables.
Then the inventory Xt+1 is obtained by the following transition

Xt+1 = Xt +at −Zt+1.

The policy we would like to evaluate is the well-known (s,S) policy, S > s, that is

at(Xt) =

{
S−Xt Xt ≤ s
0 Xt > s

.

For this problem, the action policy at(x) is not differentiable at x = s, therefore, the GLR method would
yield an additional conditional expectation conditioning on Xt = s. Considering this issue, we only compare
MC, TD and FD for this experiment. Numerical results are shown in Figure 3, from which we can see that
FD achieves a higher accuracy compared to MC and TD after around 350 epochs. Besides, the stability of
the three methods are comparable. In practice, in one iteration, FD requires a higher computational cost
than MC and TD, since FD uses a set of sample paths instead of a single one. However, the benefit is
that this set of sample paths can be used to construct estimators of the value function for many points in
one iteration. This feature makes the policy evaluation algorithm with FD suitable for parallel computing,
which could greatly reduce the computational time.

6 CONCLUSION

We have proposed two new estimators for policy evaluation, the FD estimator and the GLR estimator,
based on the key observation that the conditional expectation in the Bellman error can be represented as
a ratio of two ordinary expectations. These two estimators allow us the flexibility to estimate the value
of any given state using sample paths starting from other states. However, there are still many practical
issues that need further investigation. For example, the number of sample paths used in each iteration
could greatly affect the performance of the algorithms. Moreover, for GLR, although theoretically it can
yield an unbiased estimator, how to choose an appropriate Fs

t remains another practical challenge. One
possible way is to generate sample paths following Ft as the iteration proceeds and dynamically adjusting
Fs

t based on collected replications. GLR is theoretically appealing, but has many challenges for practical
implementation and is more suitable when the action policy and the value function are differentiable.
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Figure 3: (s,S) policy evaluation. The left and right plots represent the logarithmic of sample averages

and the standard errors of ∑
T
t=0
∥V−V ∗∥Ft
∥V ∗∥Ft

vs epochs over 50 macro-replications, respectively. Parameters

used: T = 5, γ = 0.9, λ = 0.2, ch = 3, cs = 5, c = 3, K = 5. Results are reported every 10 epochs. For
FD, M0 = 200, M = 1, N0 = 200.
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