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ABSTRACT 

Current maintenance research often includes modeling equipment degradation to support determining when 

any degradation will exceed a specified threshold. Such models provide critical intelligence to determine 

an impending  failure and promote the timely scheduling of maintenance, yet, the models require equipment 

data. While healthy state data can be readily captured from a system, degraded or failure state data is more 

difficult to acquire because equipment are normally operating in a healthy state. The degradation process 

can be modeled in a digital twin to generate failing health data. This paper presents work that is a step in 

the process of realizing a digital twin for this purpose. A procedure for modeling a robot workcell in a 

healthy state is described. We discuss how degradations will be incorporated into the robot to generate 

degraded data that can be used to predict future states of the robot and support decision-making. 

1 INTRODUCTION 

1.1 Robot PHM data challenge 

Ideally, manufacturers who employ industrial robots would seek maintenance practices that are based on 

the prediction of the future health state of their robots. Currently, the use of predictive analytics and other 

health forecasting capabilities is relatively limited across the manufacturing ecosystem (Jin et. al. 2016; 

Helu and Weiss, 2016). Manufacturers rely on some combination of preventive and predictive maintenance 

while seeking to minimize their reactive maintenance. Enhancing monitoring, diagnostic, and prognostic 

(collectively known as prognostics and health management (PHM)) capabilities directly advances 

maintenance strategies in an industrial environment.  

To build prediction models, which would enhance overall PHM and a predictive maintenance strategy, 

previously collected data or knowledge of the robot’s physics must be available. This data should 

encompass healthy and unhealthy states, and knowledge should include the system degradation process 

(Izagirre et al. 2020). A data-driven model learns from collected data to classify degradations and failures. 

A challenge is that, often, there is insufficient data on all possible faults and failures, especially for a new 

system. In addition, many operators of high precision applications, such as military or aerospace, rarely 

want to operate their equipment until failure. However, a digital twin of a robot workcell would model the 

prevailing state of the system in addition to generating data representing projected future health states. The 

data would be used for monitoring and prognostics to optimize workcell productivity and reduce downtime. 

This paper addresses a procedure for building a digital twin for a robot workcell. 
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1.2 Motivation  

A digital twin refers to a virtual representation of a system that is frequently updated with real time data 

from the actual system. Kibira et al. (2021) discussed the significance of a digital twin in enhancing PHM 

for robot workcells. However, building a digital twin that reflects the structure and functionality of a 

physical asset, i.e., a high-fidelity multipurpose digital twin, can be a labor-intensive or even an impossible 

activity. A digital twin should be context based and driven by use-case objectives (Shao and Helu 2020). 

This implies that a digital twin should be tailored for a specific application. The objective of this paper is 

to demonstrate a procedure for efficiently building a digital twin by identifying and including those 

elements of the digital twin to improve PHM for a robot workcell.  

1.3 Framework for the digital twin and scope of current work 

Building a digital twin for a robot workcell representing a healthy state is the first step. The use case is 

described in section 3. Robot degradations and failures will be identified and classified along with the 

associated robot components such as motor, gears, or encoder. The types of degradations will be 

incorporated in the model. Additional detail modeling of robot joints will be needed. Data representing 

these degradations will be generated and analyzed. 

The scope of this effort is on modeling the kinematics and the dynamic forces in robots of  an existing 

workcell. The current model is based upon healthy state of the workcell and is validated against previously 

collected data. This paper presents the procedures to 1) identify data and parameters of the robot, 2) select 

the model type and modeling process, and 3) verify and validate the model. These activities are key 

elements to building a valid and functional robot workcell digital twin. The work of this paper represents a 

work-in-progress to ultimately realize a twin that supports robot PHM. 

1.4 Contribution and paper organization 

This paper presents a procedure for building a data-driven multibody digital twin of a robot workcell. This 

work contributes to identification of robot elements and procedure to realize a robot workcell digital twin. 

The development of the digital twin is guided by the ISO 23247 standard, digital twin framework for 

manufacturing (ISO 2021). This procedure enables the development of a PHM digital twin for industrial 

robots more effectively and efficiently. The rest of the paper is organized as follows: Section 2 provides 

background on the effort to develop a robot workcell digital twin model, Section 3 introduces a case study, 

Section 4 describes the digital twin modeling process, Section 5 describes the validation of the digital twin, 

and Section 6 presents discussion, conclusion, and future work. 

2 BACKGROUND 

This section gives background and a review of modeling a robot or robot workcell and the requirements for 

building a robot workcell digital twin.  

2.1 Related work on robot arm modeling and simulations 

The research work in this paper is based on a robot workcell that is installed at the National Institute of 

Standards and Technology (NIST) (Klinger and Weiss, 2018). The details of this workcell are described in 

Section 3. The workcell includes two, six-axis industrial robot arms. This section reviews some of the 

previous efforts to building a digital twin for robot workcells. 
A review shows that many digital twins for robots have been built to improve efficiency and safety of 

human-machine interaction in a collaborative work environment (Pairet et al. 2019; Wang et al. 2021;  

Malik et al. 2018). Tavares et al. (2017) built a digital twin for robotic workcells to improve manufacturing 

efficiency in processes such as welding and cutting. Other works such as Verner et al. (2019) have used a 

digital twin for training in control and operation of a new workcell.  

A literature review uncovers several digital twins that have been built for predictive maintenance. 

Margargle et al. (2017) built a digital twin to generate failure data for inputs into analytics and support 
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predictive maintenance of automotive an braking system. Digital twins built for predictive maintenance of 

computer numerical control (CNC) machine tools are described in Luo et al. (2020). Digital twins built for 

PHM of robot systems or workcells are scarce in literature. For example, a recent review of the digital twin 

for predictive maintenance does not mention any for robot systems (Errandonea et al. 2020). 

However, Aivaliotis et al. (2021) built an “advanced” model of a robot within the context of a digital 

twin for predictive maintenance. The twin was built to capture the degradation process of a robot and 

develop a prediction model to calculate its remaining useful life (RUL). The research does not include 

details of the types of faults or their locations. This work’s RUL is established by monitoring and 

determining when the quality of the manufactured product starts becoming unacceptable. No significant 

published efforts were found regarding robot digital twins using dynamic data such as loading, torque, 

current, and power to generate and fuse data to support PHM decisions.  

2.2 Requirements and procedure for building the digital twin 

The first category of requirements, the functional and structural requirements, are defined to determine 

what a digital twin should do and what stakeholders decide to include in the digital twin. The procedure 

specifies the framework and process of developing the digital twin.  

2.2.1 Functional and structural requirements  

Functional requirements refer to the specification of behavior or what the digital twin should do to augment 

robot workcell PHM awareness and intelligence. A major functional requirement is to generate data 

representing the state of health for a robot workcell and predict future health state of the robot. Structural 

requirements refer to the digital twin components and the connections among themselves to provide the 

needed functions. Table 1 summarizes these requirements. This discussion is for structural requirements of 

the tools and software to effectively represent the physical system.  

Building a digital twin requires selecting appropriate modeling methods and tools. A digital twin can 

be used for simulation purposes but not every simulation can be described as a digital twin.  The major 

difference between digital twin and simulation lies in the volume and ways in which they acquire and use 

data. A digital twin architecture is oriented to capture and communicate large volumes of data, perform 

analytics, and support decision-making in real or near-real time. However, for representing a system in the 

digital twin, simulation tools can be used or adapted for the purpose. Suitable simulation tools and methods 

are needed for the digital twin for our robot workcell. The tool should model both kinematic and dynamic 

data such as joint torques, joint temperature, joint control current, and tool center point (TCP) force.  

Table 1: Summary of digital twin requirements. 

Category Requirements 

Functional • Generate data representing the health state of the robot workcell 

• Predict future state of robot health 

• Determine when and what types of interventions are needed 

Structural  • Model the robot workcell in sufficient detail and capture data that is relevant to 

the goal of the digital twin 

• Store historical data of past states, repair requests, repair activities in the 

physical system, and other health management information in a database so 

that it is available for future prognostics needs 

• Model the progression of the robot workcell from a healthy to an unhealthy 

state and generate data representing these states 

• Update the digital twin with data collected from the robot workcell 
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2.2.2 Digital twin standard framework  

Harper et al. (2019) and Jacoby (2020) provided an overview of standards for building a digital twin for 

various applications. These standards mainly address data interoperability, the internet of things, data 

acquisition, data generation, data storage, and data consumption. The ISO 23247 series standard defines a 

framework to support the implementation of digital twins of manufacturing elements including personnel, 

equipment, materials, manufacturing processes, facilities, environment, products, and supporting 

documents. This reference architecture will be used as a guide for our twin development. 

3  CASE STUDY 

3.1 Overview of the robot workcell 

The workcell supports research efforts in manufacturing robot PHM by providing the infrastructure to 

generate use cases and develop measurement techniques to evaluate monitoring, diagnostic, and prognostic 

technologies. Weiss et al. (2017) describe the workcell and the use case. Figure 1 shows a photograph of 

the workcell with two robots, end effectors, parts, input location, output bin, and fixtures. One of the robots 

(a Universal Robot UR5) performs material handling operations while the second robot (a Universal Robot 

UR3) performs a precision path manufacturing operation. A supervisory programmable logic controller 

(PLC) coordinates the robot activities. Data are collected from the robots’ controllers and from the PLC. 

3.2 Workcell robots 

The UR5 and UR3 robots each have six degrees-of-freedom and are capable of performing a range of tasks 

including packing, welding, and assembly. The robots have similar structure to one another with the same 

number of links and joints (see Figure 2). The six joints are: base joint, shoulder joint, elbow joint, wrist1 

joint, wrist2 joint, and wrist3 joint. All six joints contribute to the transformational and rotation movements 

of the tool flange onto which the end effector is attached. These links are connected using revolute joints. 

At the joints are located the motor, gearbox, encoder, controller, electronics, brakes, and bearings. The 

movement of the robot links are affected by the motor rotation of the joints according to the commanded 

velocities and accelerations. 

 

Figure 1: Photograph of the workcell (the UR3 robot on the left and UR5 robot on the right). 
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Figure 2: Joints of a UR5 (Universal Robots 2021b). 

3.3 Development procedure for workcell digital twin 

The procedure starts with determining the requirements for building a digital twin. The required data need 

to be specified such that it is aligned with the PHM objective, i.e., to generate data that represent both 

healthy and unhealthy states. This data are input into analytics and the results are used  to predict future 

state of health of the workcell. This is followed by determining the modeling type, modeling environment, 

and modeling tools. The means of exchanging data between the virtual and the physical worlds are 

determined. Data are captured from the robot workcell and saved from where it is used to run the twin. This 

is followed by determining data analytics methods. Building the digital twin then follows. The digital twin 

is verified and validated by comparing data generated by the twin with data collected from the physical 

system, which is not part of the data set used in the construction  and running of the twin. A validated digital 

twin is executed to generate data and produce actionable recommendations. 

The initial digital twin models kinematic and dynamic data. This is the model that will be verified and 

validated and extended to encompass additional data. For example, data such as electrical energy 

consumption, temperature, and current will be incorporated in future research. In addition, the expansion 

should proceed by adding layers of functionality maintaining performance to meet the extra data that needs 

to be gathered and managed. 

4 BUILDING THE MODEL FOR THE ROBOT WORKCELL DIGITAL TWIN  

This section describes the procedure of building a digital twin of the robots in the workcell. The software 

and data required for the robot arms are presented. The mapping of robot arm components to the modeling 

software blocks are described. 

4.1 Modeling method, tools, and software 

The modeling method for this research is physical modeling, where the model consists of the real physical 

components of the system. Physical modeling does not require sophisticated programming, is reliable, and 

can easily to be transferred to industry. The arrangement of elements in a physical model resembles that of 

its real-life counterpart. The modeling tool used in this research is Simscape, which is an integrated package 

within MATLAB’s Simulink toolbox (MathWorks 2020). MATLAB code is used to define robot 

parameters, import and manipulate input data, and visualize and export output data.   

Simscape uses ‘blocks’ to model physical elements such as motors, links, and joints. A model consists 

of interconnected ‘blocks’ along with their geometric and kinematic relationships. Forces, torques, motions, 

and constraints are specified within the ‘blocks’ of the physical elements. The equations of motion are 

formulated and solved in the blocks. Data are collected through sensors modeled in the blocks. It is believed 

that the model reflects the physical robot workcell along with its kinematic and dynamic behaviors. This 
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belief is tested by performing simulation experiments and comparing digital twin generated data with 

physical system data. For example, torque that is computed by the model is compared with the actual torque 

for each motor. Concurrency in the torque data between the physical and the digital twin implies accuracy 

in not only the dynamic model but also the kinematics used in its computation. 

4.2 Modeling procedure 

Building the model requires an understanding of the three-dimensional geometry of the links, link masses, 

centers of mass, and inertias of the links. Nominal values of some of these parameters are provided by the 

manufacturer of the robots. The modeling steps are summarized as follows: 

a) Obtain, or develop, Computer Aided Design (CAD) models of the robot links  

b) Define or identify robot parameters and properties  

c) Map robot components to the software blocks and build the model starting from the base link to 

the end effector 

d) Determine data input method into the model 

e) Verify and validate the model 

4.2.1 Obtain CAD models  

The CAD models are obtained from the robot manufacturer (Universal Robots, 2021a; 2021b). The models 

are available in the Standard for the Exchange of Product model data (STEP) format and provided as a 

complete robot assembly. The assembly is imported into the CAD workspace where individual links are 

separated (see Figure 3). The individual links are imported into the twin modeling software environment to 

create a digital models of the robots. 

 

 
 

Figure 3: Model of the UR5 robot in the CAD workspace. 

4.2.2 Define robot  parameters and properties 

Controlling a robot arm requires computing torques at the joints to produce the required motion of the end 

effector. Robot motions need to be accurately modeled with respect to its kinematics and dynamics. These 

activities require knowledge of kinematic and dynamic parameters. The Denavit-Hartenberg (DH) 

parameters are provided by the manufacturer (Universal Robots, 2020). However, the inertia matrices are 

not provided. Although the robot links take geometric forms that are close to a uniform cylinders, they are 

not of uniform density since the masses are concentrated at the joints where the motors, gears, and brakes 

are located. Previous researchers such as Kufieta (2014) have tried to calculate inertias by taking into 

account the mass concentration close to the joints. Lynch et al. (2017) also lists values of kinematic and 

inertial properties, which together with those from the MATLAB robotics tool are used in the robot models 

of this paper. 
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4.2.3 Map robot components to software tool blocks 

There are three main sections of blocks in a multibody model for a robot arm: ground, joint, and link blocks. 

 

a) Ground block 

The ground section needs three basic blocks, i.e., Solver, World frame, and Mechanism configuration 

blocks to define the environment and its properties, such as gravity, and properties for a simulation (see 

Figure 4). Figure 4 shows an example of a rigid transform block that translates and rotates the follower port 

frame (F) with respect to the base port frame (B). This transformation creates and relates nonidentical 

frames on an object. For example, rotations take place only on the z-axis and, unless the axes of rotations 

are coincident on all ends of the object, such transformation would be needed for some of the frames. The 

Conn1 connector links the model to the optical tables onto which the workcell is mounted. The output port 

of this block is labeled Joint1 and is the revolute joint between the Ground and the next block.   

 

Figure 4: The Ground block details.  

b) Joint block 

The joint block consists of a revolute joint connecting the robot links so that they can rotate with respect to 

one another. One of these blocks is shown in Figure 5. There are six joint blocks in the model. The position 

data, or angle of rotation of the motor at the joint, is obtained from the real robots. This data is input at the 

joint block. The angular velocity and acceleration are set to be the first and second derivatives of the joint 

position. The torque at the joint required is computed by the model and displayed by the scope. 

 

Figure 5: Block representing a joint between two links. 
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c) Link block 

The link block represents one of the segments that constitute the robot arm. Figure 6 shows each link block. 

All blocks have a similar structure. The rigid transformation blocks are used to align the reference 

coordinate frames between different links. The link properties, including mass, center of mass, and mass 

inertias are determined for each link and defined in the solid block.  

  

Figure 6: Details of the Base link. 

d) End effectors 

The end effector is attached to the robot’s last link (tool flange). The end effector mounted to the UR5 is 

the two-finger RG2 gripper. The robot controller issues commands to the gripper to open and close during 

specific time intervals within the work cycle. The UR3 robot is fitted with a spring-loaded pen holder end 

effector and performs the operation of drawing on a part. The act of drawing transforms the part into a 

finished product. Both end effectors are shown in Figure 7. 

 

Figure 7: The RG2 Gripper (left) and pen holder end effector (right). 

4.2.4 Determine data input method 

Data are captured from a robot workcell where one robot is performing material handling operations while 

the other robot is performing the drawing operation. The data are mainly collected from the robot joints and 

the TCP. The torques applied to rotate robot joints enable movement of each link and the TCP along a 

programmed trajectory to execute the required tasks. This data has been collected and the goal is to provide 

robot level and process level measurements of the workcell operating in nominal parameters (NIST 2018). 

Samples are collected at a frequency of 125Hz. The data are collected such that each row of the data 

represents the conditions at each joint corresponding to the given time stamp. The time stamp is the first 

column of the data. This data generated from the physical world is saved to a database as a spreadsheet file 

from where it is input into the model.  

5 MODEL VERIFICATION AND VALIDATION 

Simulations are performed with the digital twin executing “operational cycles” of the workcell. The joint 

positions, velocities, and accelerations data are input from the physical robots. The model computes the 

actuation torque required to move joints to the desired positions during the cycle. The model also computes 

the TCP pose. Data representing the last seven runs was charted. Figures 8 and 9 represent a sample of 

charts showing TCP pose and moments at the joints.   
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5.1 Comparing data from physical robots and the model 

Figure 8 shows the comparison of actual (data directly captured from the real system) and the model (data 

generated via the digital twin) of positions and velocities of the TCP in the X and Y axes for the UR5. 

Figure 9 shows the controller (from the real system) and the model (from the digital twin) torques for the 

UR5 robot. The charts show similar trajectories of the moments generated. This indicates an accuracy by 

the model in representing the physical robot. The TCP data shows greater accuracy than the moment data. 

The greater accuracy of TCP data, which depends on data used for all links in the model, verifies and 

validates the kinematic representation of the robot workcell. 

An examination for joint 1 and joint 2 shows that the torques predicted by the model are slightly lower 

than those from the controller. Physically, Joint 2 carries the most load of all the joints in the UR robots. 

This could also explain the significance of the difference in the estimated torque. The accuracy of the 

dynamic model for this joint depends on how closely the estimated inertial parameters match those use in 

the controller. Figure 10 shows the TCP positions in the Y and Z axes for the UR3 robot, which also produce 

results that are closely matched for both physical robot and the model (only TCP charts for the Y and Z 

axes are shown). 

5.2 Discussion on the results from the charts 

The results from the plots are as much affected by accurate Simscape modeling as by the robot component 

data. If the data used for robot components is not accurate for the particular robot, the digital twin will not 

generate accurate data. The digital twin used nominal values of component and link data provided by the 

manufacturer, which may vary slightly from the particular values for the actual robots in the workcell. The 

inertial properties for the end-effector are also unavailable. These values used in the model are  estimated 

based on the mass, geometry, volume, and the assumption of uniform density. The effect of the end effector 

on the difference between the model torques and the actual torques are more pronounced in the joints closer 

to the flange than at the base.  

Each of the six robot joints and the TCP generates data. The data used at the joints are the robot 

positions, which are defined by the angles of rotation from a reference (zero-angle) position. From 

simulation, the values velocities and accelerations are equal for both the twin and the physical models. 

Therefore, they are not charted. The values charted for torque are the estimates from the controller. These 

quantities could differ from the actual values measured by physical sensors attached to the robot links. Our 

effort is a first step to build a digital twin. Future work will investigate whether more accurate values can 

be obtained through direct measurements. Evaluation of the results of the charts are also done by visual 

observations alone. Vigorous verification and validation approaches in future work will compute 

differences between digital twin and the actual values. 

 

Figure 8: Positions for Tool Center Point for UR5 robot. 
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Figure 9: Torques at the joints for the UR5 robot. 

 

Figure 10: Position data for Tool Center Point for UR3 robot. 

6 CONCLUSION AND FUTURE WORK 

This paper has shown a procedure for building a digital twin for a healthy state of a robot workcell involving 

two robots, whose activities are coordinated by a supervisory PLC. The accomplished tasks are a work-in-

scope 

progress to build a digital twin that can generate both healthy and unhealthy states. The digital twin would 

generate and fuse data and perform analytics predicting future state of the robot and thereby guide in 

determining the scheduling of maintenance activities. The methods thus developed would be transferable 

to industry. 

One major challenge was determining accurate inertial properties of the robot links; nominal data was 

minimally available. Future work will attempt to obtain more accurate estimation of these parameter values 
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without dismantling the physical robot. The use of captured performance data will be investigated. 

However, the visual examination of the results of the plots of digital twin generated data shows similar 

profiles and correspondence with data from the physical system, especially for the kinematic model. The 

development of robot digital twins is a work in progress as the current version models only kinematic and 

dynamic data. Additional data such as TCP force, electrical power and currents that were collected from 

the physical system will be included. 

Future work will also include degradation curves in model components. Mechanical degradations  are 

a major contributions to deteriorations in mechatronic systems. Other degradations can be caused by 

conditions such as electrical power surge, loose connections, ambient temperature, or high humidity. 

Research is continuing in how faults, such as gear backlash, can be injected into robot components in the 

model to generate data associated with those faults. Modeling robot components at lower levels of 

abstraction will be required to achieve this objective. In theory, faults can occur in any robot component. 

These include gears, motors, actuators, link, speed reducers, and bearings. At the robot level, a joint may 

be identified to have deteriorated and therefore be pinpointed as the source of performance degradation. 

But a model will be needed to identify the faulty component such as a gear or bearing. The granularity of 

data collected will play a major role. Research will also be conducted to identify and classify robot failure 

types and develop a fault tree to further guide the degradation modeling (Jiao et al. 2017). A knowledge 

base of faults derived from knowledge experts or historical data will be consulted. The completed digital 

twin will be validated and used for making decisions such as predictive maintenance scheduling. 

DISCLAIMER 

Certain commercial products and systems are identified in this paper to facilitate understanding. Such 

identification does not imply that these software systems are necessarily the best available for the purpose. 

No approval or endorsement of any commercial product by NIST is intended or implied. 
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