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ABSTRACT

As an integral component of Industry 4.0, digital twin simulations have the potential to transform the material
handling and supply chain industry. In this paper, we provide a digital twin framework for warehouse
systems and the methodologies used to implement them. In addition, we present examples of practical
digital twin applications in the warehouse environment. Finally we discuss some of the challenges that
need to be overcome to ease implementation and expand adoption of warehouse digital twins.

1 INTRODUCTION

The material handling and supply chain industries are facing significant challenges. In February 2022,
Forbes reported that during the pandemic, ecommerce grew 50% when comparing ecommerce sales in 2021
to ecommerce sales in 2019 (Goldberg 2022). As ecommerce continues to increase, additional pressure
is placed on warehouses to meet these demands. To address this, companies are beginning to embrace
Industry 4.0 which focuses on increasing automation through the application of the Internet of Things
(IoT), sensors, advanced communication systems, and digital twins to achieve smart factories. For supply
chain systems, this includes the development of smart warehouses with the goal of making better decisions
that result in more efficient systems.

Digital twins in the form of a simulation provide one of the technologies that will make a significant
impact toward advancing smart warehouses. In particular, digital twins can provide a dynamic virtual
representation of the products, equipment, processes, and information involved in warehouse operations
which can be used to make decisions that will help to maximize productivity, efficiency, and safety.

Although the benefits of digital twins are quite promising, technical challenges related to adoption and
implementation persist. These needs include robust methods for synchronization between the digital twin and
the physical system, methods for addressing system uncertainty, and computationally efficient methods for
real-time decision making (Kuo et al. 2021). To address some of these challenges, specifically for warehouse
systems, we provide a warehouse digital twin simulation framework and discuss the methodologies needed
for implementation. In addition, we present examples of practical digital twin applications in the warehouse
environment including dynamic simulation and visualization of kinematic movement of material handling
equipment, warehouse design and planning, and artificial intelligence for real-time decision making.

The remainder of this paper in organized as follows. In section 2 we provide an overview of related
work. A description of warehouse systems is discussed in section 3. A warehouse digital twin framework
is presented in section 4. In section 5 we describe some digital twin modeling approaches for analysis and
decision making. In section 6 we discuss the some of the remaining challenges associated with warehouse
digital twin implementation. Finally, in section 7 we present our conclusions.
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2 RELATED WORK

The concept of digital twin was introduced by Grieves (2014) and defined as a virtual representation
of a physical product which (with the advancements in technology) can provide a closed loop system
for product management from time of manufacturing through the end of its life cycle. The digital twin
encompasses three main components, a physical entity, its virtual representation, and bidirectional exchange
of information between the two. The major benefit of this approach is leveraging both the virtual and digital
components to passively impact the entire system by capturing, storing, evaluating and learning from both.
The digital twin concept has been driven by initiatives such as Industry 4.0, big data and Internet of Things
(Jones et al. 2020).

Digital twin simulation spans a wide range of application areas and industries. A digital twin architecture
for manufacturing systems has been developed by Lin et al. (2020). Latif et al. (2020) present the application
of digital twin to a manual manufacturing system, and utilize machine learning to improve decision making.
Pu et al. (2021) construct a digital twin of indoor spaces to be used to aid rescue workers in obstructed areas
of buildings. Park et al. (2022) present a digital twin application that utilizes reinforcement learning based
production control in a job shop. Dehghanimohammadabadi et al. (2021) present a simulation optimization
methodology for digital twins of production systems. Li et al. (2020) develop a digital twin framework for
next generation ports and warehouse systems. Braglia et al. (2019) utilize RFID along with discrete event
and agent-based simulation modeling tools to construct a warehouse digital twin. In addition, Leng et al.
(2021) investigate an digital twin driven optimization for packing and storage in an automated warehouse
system.

These are only a few examples of the growing number of digital twin applications. Leveraging these
applications, we develop a digital twin simulation framework for warehouse systems.

3 WAREHOUSE SYSTEMS

Modern warehouses are complex systems with sophisticated equipment, tracking, control, and scheduling
systems. In addition, warehouses are multi-functional with a range of supply chain related and support
activities including shipping and receiving, storage and retrieval, picking, kitting, packing, palletizing,
labeling, inventory management, vehicle maintenance, and vehicle charging, among others. Furthermore,
material handling in a warehouse may be accomplished through one or a combination of alternatives such
as manually operated forklifts, automated guided vehicles (AGV), conveyors, people, autonomous mobile
robots (AMR), drones, etc. Although there are a wide range of warehouse sizes, the largest warehouses
in use today occupy well over one million square feet and can have an extremely large number of stock
keeping units (SKU) and extremely high volumes. The challenge for warehouse facilities is safe, robust
and efficient operation.

Although a warehouse may have many functions as previously described, we will illustrate the application
of digital twins to warehouse systems by focusing on the primary functions of shipping/receiving and
storage/retrieval. However, digital twin modeling and analysis techniques described in the next sections
can be extended to all warehouse operations.

4 WAREHOUSE DIGITAL TWIN FRAMEWORK

A warehouse digital twin provides a virtual dynamic replica of the physical warehouse system as the system
operates over time. The goal of a digital twin simulation is to provide continual analysis and decision
making support to enable control and management of warehouse system resulting in operational efficiency.
A conceptual warehouse digital twin framework is shown in Figure 1. The framework includes the physical
warehouse system, the warehouse data and control systems, the digital twin simulation of the warehouse
system, and an experimentation/analysis component.

The physical warehouse system includes all of the components within the four walls of the warehouse
and the components that interact with the warehouse providing inputs and outputs (e.g., inbound/outbound
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Figure 1: Warehouse digital twin framework.

trucks). Within the warehouse are racks/storage locations, the layout of aisles, docks, etc., material handling
equipment, people, scanners, communication network, pallets, products, boxes, etc. Although some of the
components are passive, many of the components utilize sensors to actively generate (or can be set up
to generate) data. For example, forktrucks equipped with sensors can track their position, velocity, pose,
angular velocity, height, load, etc. Units loads can be tracked using scanner, bar codes, and RFID. People
can also be tracked in terms of their task, location, pick rates, movement, etc. In general, these sensors
can provide very detailed information about the current state of the warehouse.

Warehouse data and control systems store information about the warehouse system and the supply
chain. Although these systems can vary from company to company, some typical systems include an
enterprise management system (EMS) and/or an enterprise resource planning (ERP) system for tracking
asset and operational information; a warehouse management system (WMS) for tracking and managing
warehouse operations; and a real time locations system (RTLS) for asset location tracking and telematics;
among others. Data and information are exchanged between the physical warehouse system processing
customer orders, dispatching people/material handling equipment for fulfilling customer orders, tracking
inventory location, and other operational activities.

The digital twin of the warehouse system is a simulation model that replicates the behavior and
state of the physical warehouse system. As the state of the system is captured over time by the digital
twin, warehouse system performance can be analyzed. In particular, the digital twin can be used conduct
simulation experiments such as simulating the near term future of the system to forecast potential issues so
action can be taken to avoid them. In addition, by capturing the history of the system, the digital twin can
be used to analyze how and why various situations occur. The digital twin of the warehouse can be used
for support of both off-line and on-line decisions such as resource planning or dispatching. Furthermore,
artificial intelligence (AI) methods can be designed, trained, and tested utilizing the digital twin model,
and then used in the operation of the physical system.

As the digital twin is integrated with the physical system, real-time system information is transferred
between the physical system and the data and control systems. As the analysis takes place in the digital
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twin simulation, systems decisions and adjustments are transferred back to the physical system and the
warehouse data and control systems are updated.

4.1 Data Driven Digital Twin Model Creation

The warehouse digital twin simulation model needs to be created using a flexible modeling approach.
Object oriented discrete-event or agent-based simulation methods are often used for warehouse models.
By creating object class definitions where object instantiation and behavior are data driven, changes to
the system and experimentation can be easily accommodated. Bhisti and Kuhl (2021) demonstrate the
development and use of a data driven warehouse simulation approach in Simio. In this approach, data
tables are used to create all of the objects in the simulation including bulk and rack storage locations,
forktrucks, travel paths/aisles, dock locations, etc.

In addition for a data driven model, a robust, low-latency communication system is needed to exchange
information between the warehouse and digital twin. A publisher-subscriber framework is often used to
accomplish this.

5 DIGITAL TWIN MODELING FOR ANALYSIS AND DECISION MAKING

Digital twin simulations enable the ability to make smarter decisions Warehouse decisions can typically be
thought of in terms of their time horizon. Strategic decision are long-term decisions often involving capital
investment such as the size of the warehouse to build or how many forktrucks to purchase. Short term
decisions are often referred to as planning decision such as warehouse scheduling and inventory management
decisions. Real time or near real time decisions involve operational choices such as task assignments for
forktrucks when they become available. The fidelity of the digital twin can vary depending on the types
of analysis, controls, and decisions needed/wanted for the warehouse systems under consideration. In the
next sections, we present three examples of digital twin model methods that could be used for warehouse
analysis and decision making.

5.1 Dynamic and Kinematic Models in Digital Twins

In some warehouse modeling and analysis situations, there is a need to have access to and explicitly capture
vehicle movement and sensor information within the digital twin. In such cases, a high fidelity representation
of the traveling speed, turning radius and maneuverability, object detection and avoidance capability, etc.
of warehouse vehicles may be critical to addressing some operational and planning problems.

For example, one may be interested in evaluating the capabilities and performance of alternative types
of autonomous mobile robot under various warehouse conditions. For these types of decisions, programs
such as ROS (a common robot operating system language used for AMRs) can be used in conjunction with
Gazebo (a visualization/animation tool) to develop a dynamic simulation/visualization of the kinematic
movements of the AMR as well as the AMR sensor readings such as LiDAR or other sensors. Figure 2
is an image captured using ROS and Gazebo depicting the kinematic model of a forktruck in a warehouse
aisle where a single-channel LiDAR is being used to aid in navigation. Figure 3 shows the 3D point cloud
data produced by a 16-channel LiDAR mounted on the forktruck which can be used for navigation and
warehouse mapping. These types of models can provide great insight into the movement and control of
material handling equipment in a warehouse.

Including the kinematic models for warehouse vehicles is particularly important for detecting and
solving conflicts in navigation. The kinematic model can include detailed characteristics that impact the
travel path and maneuverability of the vehicle. For example, the differential drive models for forklifts can
take into consideration the track width of the forklift, turning radius, speed, acceleration, etc. These models
can also simulate the sensors (e.g., LiDAR, cameras, RFID, etc.) that may be installed on the vehicle and
their parameters such as scan angles, range, etc. of the sensor. To demonstrate the implementation of a
kinematic model on a forktruck, we construct a simple warehouse simulation model in MATLAB. Figure
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Figure 2: AMR in a warehouse with one dimensional LiDAR projection.

Figure 3: AMR in a warehouse with 16-channel LiDAR scan.

4 shows an example of a path plan generated for an autonomous forktruck to its destination compared with
the actual path taken by the forktruck considering the kinematics and sensing capability of the vehicle.
Available path planning algorithms typically take a more global (and thus coarser) approach than the motion
control and navigation capability of a forktruck. In this example, A* is used for the path planning. The
motion planning and navigation of the forktruck is done using a vector field histogram method (Borenstein,
Koren, et al. 1991) and is dependent on the data obtained from an onboard LiDAR sensor. The pure pursuit
controller (Coulter 1992) is used for controlling the wheels based on the planned motion. The resulting
forktruck movements (in terms of angular velocity) is based on the desired linear velocity, maximum
angular velocity and the look ahead distance. This calculation also takes into account the safety distance
to be maintained from obstacles around the forktruck. As a result of its navigation capability, the forktruck
deviates from the planned path. Although the extent of this deviation will be dependent on the particular
situation, simulating travel paths including the kinematic models within the digital twin may help to identify
potential conflicts or safety issues.
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Figure 4: Example of a path planned using A* (thin line) vs. the actual path by the forktruck (thick line)

In addition vehicle selection and path planning, we are currently investigating the use of kinematic
models in conjunction with dispatching rules and the impact on system performance. Figure 5 shows an
example model of a warehouse constructed in MatLab which enables this capability.

Figure 5: Warehouse model in MatLab which includes AMR kinematic functionality.

5.2 Warehouse Design and Planning

Warehouse planning and design decisions are critical to warehouse operational success. To adapt to
the changing demand for goods, warehouse must agile and able to change. Under current supply chain
conditions, these decisions are occurring more frequently than they may have occurred in the past. In this
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case, a company can utilize a warehouse digital twin simulation to analyze alternative warehouse designs
and compare them with the current system configuration and operational performance.

Bhisti and Kuhl (2021) present a data-driven discrete-event simulation modeling approach to serve as
an analysis tool for determining the appropriate mix of bulk and rack storage locations to utilize warehouse
space effectively. In particular, a simulation-based methodology is used to determine the optimal mix
of racks and bulk lanes for a warehouse layout considering inventory quantities and turnover rates. The
model is designed to evaluate system configurations including the number of racks and storage locations,
the number of bulk lanes and lane depth, and the velocity mapping of products based on demand. The
goal of the warehouse simulation methodology is to conduct experiments and evaluate the trade-offs of
key performance metrics for various system configurations. An example of a warehouse simulation model
using this approach is shown in Figure 6.

Figure 6: A view of the simulation model of a warehouse with 5 AMRs, pick up and drop off locations.

5.3 Artificial Intelligence and Real-Time Decisions

Warehouse operational decisions are often addressed with heuristic rules or policies that result in the same
decision even if conditions in the warehouse change. By utilizing a digital twin with tools such as artificial
intelligence, smarter decisions can be make based on the current state of the system.

The task assignment and path planning (TAPP) problem is an operational decision problem that must
be addressed hundreds or thousand of times per day. Each time a forktruck completes a task and becomes
available, the forktruck needs to be assigned to one of the pending tasks. Given a warehouse with fleet
of forktrucks, the goal is to assign the task that will result in the most efficient operation of the system.
As the state of the system is never quite the same, an accurate picture of the current state of the system is
important. This information can be provided by a warehouse digital twin.

Li et al. (2019) propose a deep reinforcement learning method, namely a deep Q network (DQN) that
solves the task assignment and path planning problems, simultaneously. A overview of the methodology
is shown in Figure 7. The methodology is intended to enable real-time dispatching for available AMR. In
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particular, when an AMR becomes available in the physical warehouse, a dispatch request is sent to the
digital twin of the warehouse system along with warehouse state information including the task assignments
and path plans for the other active AMRs in the system and the pending task list with associated pickup
and dropoff location data.

Figure 7: Overview of the TAPP solution method utilizing a digital twin and DQN.

To implement this approach to the TAPP problem, the digital twin is a type of agent-based simulation
model where the warehouse layout is represented by a grid which indicates rack storage locations, aisles,
AMR locations etc. An example of the grid layout is shown in Figure 8. A deep Q-network is trained on
simulation data to quickly find a semi-optimal solution to the TAPP problem. The digital twin then sends
the TAPP decision back to the physical warehouse to be executed by the AMR.

Figure 8: Digital twin grid layout for AI based TAPP solution approach.
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6 CHALLENGES FOR WAREHOUSE DIGITAL TWIN IMPLEMENTATION

Although significant progress is being made in the development of software to implement digital twins in
the warehouse environment, the are still a number of challenges. Some of the biggest challenges center
around interoperability and the exchange of data and information between the physical warehouse system
and the digital twin. Many warehouses today have a wide variety of technologies ranging from AMRs to
manually operators material handling equipment to conveyor system. As such, collecting the right type
of data from all of the various aspects of the system that are needed for quality decision making can be
difficult.

A second challenge is filtering the data so the digital twin can be used to simulate the warehouse system
for the problem at hand. Strategic decision, planning decision, and operational decisions require different
levels of system abstraction and thus different levels and types of data. A methodology is needed to align
the data requirements with the available data.

These are two of the major challenges that if overcome will enable the broader use of digital twins in
warehouses.

7 CONCLUSION

In this paper we have provided a digital twin framework to warehouse systems. In addition, we have
presented examples of practical digital twin applications in the warehouse environment. Finally we have
presented some challenges to the implementation and adoption of digital twins. Overall, we conclude that
digital twins will have a significant impact on the efficiency and productivity of warehouse systems and
supply chains.
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