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ABSTRACT 

Digital twins enjoy increasing interest in a diverse array of industrial sectors, such as manufacturing, 
healthcare, urban planning, etc. Their usefulness depends on the robustness of the corresponding digital 
twin models; however, validation of the model, as a mean to ensure models’ robustness, is a difficult 
problem. Moreover, traditional validation approaches need to undergo significant transformation to be 
made applicable to digital twins. To the best of our knowledge, there has not been a systematic treatment 
of validating digital twin models. This paper identifies several challenges facing the model validation within 
digital twins. Furthermore, we propose an initial framework to define basic rules of digital twin model 
validation and introduce a systematic approach to validation that seamlessly combines expert knowledge 
and data gathered from available Internet of Things (IoT) devices. 

1 INTRODUCTION 

Simulation has long been utilized in academia, industry, and government as a powerful tool to model real-
life systems, permitting analysts and other stakeholders to study system behaviors and provide insights into 
systems operations. In recent years, more and more systems, from a wide spectrum of fields, have been 
employing simulation for various applications, including, but not limited to, theory testing (Mizuno et al. 
2018), scientific modeling (Jones and Luyten 2018; Awais et al. 2020), system performance analysis (Sarda 
and Digalwar 2018; Entrialgo et al. 2021), and operator training (Hernández et al. 2021).  

As systems become more sophisticated and intricate, so do the demands for their models to reach a 
higher degree of realism to ensure that they accurately mirror the real-time, dynamic state of systems. A 
traditional simulation model is disadvantaged to meet such modeling challenges in several respects 
(Gómez-Romero and Molina-Solana 2021; Lazarova-Molnar and Li 2019). It is typically built with 
historical system data (or, in the absence of actual data, with synthetic data). A fixed set of pre-defined 
parameters governs the simulation throughout its runtime. Parts of the model may be abstracted to achieve 
a faster execution time, but at the expense of reduced model fidelity. Furthermore, simulation results are 
usually available only after the end of the run, and it is often a time-consuming process to analyze the data 
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and produce data products to inform the relevant system stakeholders of the model performance. If the 
model is poorly designed and developed, its output results would not accurately reflect the true state of the 
system. The traditional simulation model, burdened with these shortcomings, is ill-suited to support the 
modeling requirements of many of today’s systems (Jeong et al. 2020). 

A digital twin is a digital representation of a physical object, process, or service (Fuller et al. 2020). 
The digital representation consists of attributes and properties that uniquely characterize the physical entity. 
It replicates the physical entity to a higher degree of detail resolution than a traditional simulation model. 
A well-built digital twin model allows the user to continuously monitor the performance of the physical 
entity, detects faults/anomalies in real-time, analyzes the data and suggests a remedial solution, and presents 
the solution back to the physical entity. Connecting the physical and digital counterparts are two data-flow 
conduits, one going from the physical to the digital, and the other from the digital to the physical. The data-
flow conduits can be fully automated, or they can be intervened with human operators.  

Since the early 2000s, when the term was first introduced, digital twins have been applied to an 
increasingly diverse array of industries, such as advanced manufacturing, healthcare, automotive, and urban 
planning.  Its continuing evolution, from conceptualization to practical applications, is in large part due to 
the explosive growth of Internet-of-Things (IoT), in which small, inexpensive, and energy-efficient wireless 
sensors are mass-produced and deployed to a wide range of industrial and commercial products. These 
sensors continuously collect data on the physical entity's state of health and operation and transmit the data 
to the system's digital twin that uses it to perform tasks such as model updating, monitoring, diagnosis, and 
fault detection. If the digital twin uses the received data to discover any operational deficiency of the 
physical entity, it sends back a solution to be implemented by the physical entity to resolve the deficiency. 

The usefulness of a digital twin largely rests on its robustness, captured by the digital twin’s ability to 
closely mirror the current state of its physical counterpart. This is largely reflected by the quality of the 
underlying simulation model, typically assessed through a validation process. Model validation is the 
procedure of ensuring that the model the observed performance of the actual system closely matches the 
“synthetic” performance computed from the model output. In the context of digital twins, this means that 
the digital twin model needs to be validated to mimic the actual state of the physical counterpart to a high 
degree of accuracy, given the simulation goals of the digital twin.      

While an expansive body of literature on model validation exists, there is relatively little published 
work that specifically addresses the problem space of digital twin model validation. Fully realizing the 
potential that digital twins have to offer requires a high-resolution (i.e., sufficiently-detailed), high-fidelity 
(i.e., operationally faithful to the physical system) model, a timely transfer of collected data from the 
physical entity to its digital twin, a real-time analytical and resolution capability, and an effective 
mechanism to send the analytical output back to the physical entity (Fuller et al. 2020). All these 
requirements place a high premium on accurately validating the digital twin model. In this paper we propose 
a general framework of digital twin model validation. It shall serve as a guidepost to incentivize further 
discussions and interest in this critical problem. 
 The remainder of this paper is organized as follows. Section 2 provides relevant background and related 
work on model validation. In Section 3, we identify the challenges of a successful digital twin model 
validation and propose a general framework in addressing these challenges. Section 4 discusses how 
applying this validation framework would open new areas of research. Section 5 concludes the paper. 

2 BACKGROUND AND RELATED WORK 

2.1 Model Validation  

Developing a digital twin model typically involves several steps, including data collection, data validation, 
knowledge extraction, model development, and model validation (Friederich et al. 2021). One key step that 
is largely under-addressed in the literature is model validation.  
 Model validation refers to the confirmation that the model of the physical entity conforms to the 
expected system performance requirements. This is different from model verification, where the objective 
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is to ensure that the model has been built correctly according to the requirements or specifications. Model 
validation is typically performed as a two-step process: face validity and quantitative validation (Sargent 
1991; Martis 2006). A number of approaches have been utilized for establishing face validity of a simulation 
model, which is in general largely subjective. Some of the more popular are animation and Turing test 
(Sargent 1999; Liu and Yang 2005; Tsioptsias et al. 2016; Jantke et al. 1997), as the goal is to check the 
simulation model’s realism and appropriateness when compared to the actual simulation goal. The second 
step is more quantitative and objective in that it is comparing data from the real system with data generated 
from the simulation model (White and Sinclair 2004), with the aim to utilize statistical hypothesis testing 
methods and determine the similarity in the output of the simulation model and the real system with respect 
to the predefined performance measures. Such an approach falls into the category of input validation 
(Nelson 2010). In our paper, we assume the logic validation approach (Nelson 2010), where the same input 
data generated by the real system is fed into the digital twin model for computations. Logic validation also 
serves as the basis of trace-driven simulation (Lugaresi et al. 2019; Lugaresi and Matta 2018).  

Presently, there does not exist a methodology or systematic framework for digital-twin validation. The 
lack of a systematic approach to digital twin approach could lead to varying levels of model fidelity and 
robustness, which would impact the effectiveness of the digital twin model. If a human operator is part of 
the process, an ill-validated model would directly affect the operator’s ability to make informed decisions 
in response to an anomalous phenomenon in the physical entity. 

2.2 Digital Twins 

Since the term “digital twin” was first coined by Michael Grieves of the Florida Institute of Technology in 
2002, it has been given a number of definitions to fit its wide adoption (Nath 2021). In this paper, we treat 
a digital twin as a digital representation of a system, process, or service that exists in the physical world. It 
captures the characteristics and system-dynamic behaviors of the physical entity with high model 
resolution. Throughout its life cycle, data concerning the health and performance of the physical entity is 
continuously collected by sensors attached to said entity, and in real-time transmitted to its digital twin to 
reinforce the robustness of the model and monitor the performance of its physical counterpart. If the data 
indicates a performance degradation, anomaly, or fault in the physical entity, it can perform analysis to find 
the cause of the issue and suggest the best solution that can be fed back to its physical counterpart to 
implement. 

Digital twins evolved from simulation, at a time when it leveraged the rapid growth of Internet-of-
Things (IoT). It differs from simulation in some significant ways. Firstly, simulation uses historical data to 
drive its execution; digital twin, on the other hand, necessitates the input of real-time data from the physical 
entity to show its worth. Secondly, simulation is typically driven with a fixed set of parameters that governs 
its execution throughout a simulation run; digital twin, by virtue of its use of real-time data, could mature 
over time, and is not constricted by the set of parameters it initially started with. Thirdly, as it uses historical 
data to drive its progression, simulation tends to produce results that may not accurately inform the current 
state of the system under test, whereas the digital twin is much more responsive to the dynamics of system 
behavior. 

It is worth noting that digital twins and traditional simulation play an equally important role in the 
current and future Modeling & Simulation (M&S). Decisions on applying either traditional simulation 
methods or digital twins must depend on what the objective of the system under test is. For example, 
traditional simulation is often sufficient to evaluate the performance of a wireless communications network 
(e.g., throughput, latency, packet completion rate, etc.), as it does not necessarily require detailed modeling 
of all the communications devices of the network. Digital twins, on the other hand, may be needed to ensure 
the smooth operations of said network in real-time, since a high-resolution digital representation of the 
actual network at the core of the agent-based model is essential in taking into considerations all possible 
factors that could cause network operations to fail. Judiciously choosing the right approach during the 
planning stage ensures that excessive resources will not be spent on achieving the task objective.         
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2.3 Related Work on Digital Twin Model Validation 

The quality of the information a digital twin sends back to its physical counterpart hinges upon the 
robustness and accuracy of the digital twin model. Digital twin model validation remains a challenging and 
inadequately investigated problem. There is scant published literature that touches upon this subject. In 
(PivotPointTechnologyCorporation 2021), one approach that is suggested is a reasonable litmus test, akin 
to the Turing Test for AI. It assumes a System Tester (ST) that runs a robust system Verification & 
Validation (V&V) Test Suite on both the physical system twin (PT) and its digital twin (DT) but cannot 
reliably distinguish between with a probability greater than 80%, the DT is declared a bona fide digital twin 
of the PT. This approach may be difficult to set up, since it is not easy to acquire a System Tester with a 
V&V test suite. Wright and Davidson considered trust in the model, along with trust in the data and data-
updating procedure, to be one of the key areas to ensure confidence in reports made by the digital twin 
(Wright and Davidson 2020). (Argota Sánchez-Vaquerizo 2021) identified several challenges when 
attempting to validate a class of large-scale digital twins for urban traffic using empirical data, such as the 
unreliability of the source data, trade-off between efficiency and realism, and lack of quantitative 
assessment with empirical measurements.     

 
We identify the following as general validation strategies from the current literature: 
 
• Manual / visual inspection: It refers to the process of experts visually inspecting the digital twin 

and verifying its correctness according to established standards. The problems with visual 
inspection are that they can be tedious, error-prone and there is also the possibility of overlooking 
certain aspects. This type of validation is often carried out offline. 

• Property testing: It is a method of formally testing various important properties of digital twin. 
This is comparatively better than manual / visual inspection as testing can be automated with 
software, and even digital twins themselves that perform validation (Löcklin et al. 2020). The 
problems with property testing are that it can be tedious and time consuming if the number of 
properties being tested is very large, which is often the case of digital twins. This is also often 
carried out offline. 

• Model based testing: It is a method that interacts with the digital twin either online or offline and 
tests certain properties of it to confirm its correctness (Utting and Legeard 2010). A specific kind 
of testing within model-based testing is referred to as the Input-Output Conformance testing 
(IOCO) (Tretmans 1996). This method uses a specification containing the valid inputs and a list of 
valid outputs. If the model outputs anything outside of those specified within the specification, 
given a set of valid inputs, it flags this behavior as needing further investigation.  (Khan et al. 2018) 
used an offline model-based testing approach based on IOCO for digital twins within the context 
of legacy systems. 

• Machine learning based validation approaches: This approach is used in scenarios where the 
goal is to validate certain functionalities of the digital twin. Examples of such specialized scenarios 
include fault detection. (Farhat et al. 2021) used a feature selection and a supervised classification 
approach to perform fault severity detection. The digital twin in this instance was built to simulate 
ball bearing fault detection. Machine learning approach was specifically used for predicting the 
type of fault using the data generated by the digital twin. The validation aspect of this work consists 
of performing a correlation analysis on extracted features from actual signals and simulated signals. 
The discrepancy between measured and simulated signals serves as the basis for updating the 
parameters of the digital twin. 
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3 VALIDATION OF DIGITAL TWIN MODELS 

3.1 Open Problems  

(Wright and Davidson 2020) points out that, due to the dynamic nature of system behavior, a validated 
model can provide a snapshot of the physical entity’s behavior only at a specific moment, which may 
become obsolete at a later time. Validation of a digital twin model should be a continuous process that 
needs to be performed periodically (or on demand) throughout its lifecycle. Such time-variant, system-
dynamic behavior of the physical entity leads to a number of open problems that impede the robust 
validation of a digital twin model. We discuss each open problem in the following subsections.  

3.1.1 Modeling Realism 

Part of the digital twin’s appeal is its high level of modeling realism, underpinned by model resolution and 
fidelity. A digital twin model is different from a traditional simulation model in that, while certain aspects 
of the simulation model can be abstracted out to achieve some efficiencies (e.g., ease of model build-up, 
improved speed of simulation run, analytical tractability, etc.), a trade-off of achieving such efficiencies is 
the degraded realism of the model. A digital twin model, on the other hand, must replicate its physical 
counterpart with a high degree of accuracy to function as a mirror representation of its physical counterpart. 
Supporting the necessary resolution and fidelity of the digital twin model requires detailed characterizations 
of the physical entity. When these characterizations change over time, they must be re-acquired and re-
synthesized. Maintaining model realism that accurately reflects the physical entity’s current state in a timely 
manner directly impacts the model’s ability to remain fully cognizant of system operations. 

3.1.2 Data Uncertainty 

Since a digital twin model is data-driven, uncertainty in the input data naturally arises when it is being sent 
to the digital twin model. Data uncertainty can originate from a large number of sources, from the 
mechanisms (e.g., sensors) that take the measurements, to range tolerance in specification elements of the 
product requirements documentation. (Ríos et al. 2020) have pointed out that there often exists a lack of 
knowledge about the uncertainty of data captured in the physical entity. Uncertainty, in general scientific 
computing, can be classified into two types: Epistemic and aleatoric (Kreye et al. 2011; Roy and Oberkampf 
2011). Epistemic uncertainty arises from the lack of knowledge (insufficient assumptions, missing data, 
inaccurate models, etc.), and aleatoric uncertainty is inherent in the non-deterministic variability in the 
physical process. As components of the physical entity are not independent of each other, data uncertainty 
in one component is likely propagated and compounded. As result, captured measurements could deviate 
significantly from the true values of the system performance. Furthermore, much of this uncertainty is 
expressed only in qualitative terms. A proper treatment of data uncertainty, e.g., as a stochastic process, is 
needed to aid in the periodic model validation quantitatively. 

3.1.3 System Dynamics 

Even if a digital twin model is properly validated at a particular time epoch, due to the often-dynamic nature 
of the physical entity, by the time the digital twin sends its analytical output to the physical entity, the state 
of the physical entity has changed such that the latest validation becomes obsolete. This problem may be 
particularly acute when there is a long delay in either the data transfer from the physical entity to its digital 
twin (which could include a series of steps such as data collection, data transfer, and data reduction), or in 
the analysis and assessment of the physical entity’s state. The most common approach to addressing this 
problem is proactive data sampling, in which the IoT sensors on the physical entity periodically transmit 
data to its digital twin, which performs computations to monitor the system’s operational performance and, 
if necessary, detect and resolve any perceived anomalies. This approach could potentially quickly detect an 
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anomaly or drastic changes in the system. However, it may require the support of substantial computational 
resources to store offloaded data and perform needed analysis.  

3.1.4 Use Case Alignment  

During the life cycle of a physical entity, its operational objective may frequently change at different stages, 
even when all assets of the physical entity do not. A new operational objective defines a new use case for 
the physical entity and may require a re-balancing and re-appropriation of the assets to support it. The 
digital twin model that mirrors the physical entity now must be judiciously aligned with each new use case. 
At the present, the only way to re-align the use case is to stop the operations and manually configure the 
digital twin model. How to ensure a timely reconfiguration of the model to mirror the physical entity without 
pausing its operations remains an open problem.     

3.1.5 Reporting Invalid Models 

Another problem that remains largely unaddressed in the literature is the lack of an effective mechanism 
for the digital twin to report an invalid model. Two events may cause a model to be declared invalid. Firstly, 
when an anomaly occurs in the physical entity and impacts its operations, the performance degradation is 
detected by its digital twin, which, by virtue of its definition, means that the digital twin model now deviates 
from the current state of the physical entity, hence the model becoming invalid. Secondly, the physical 
entity proactively makes an operational change for a new objective (e.g., to re-appropriate the resources for 
a new task). 
 In both events, recipients of the invalid model report should include, at a minimum, the analytical 
component of the model (either offline or online), the physical entity (e.g., querying for additional input 
data), and the stakeholders (for situational awareness and/or possible human intervention). However, the 
goals of the reporting are different in these events. In the first event, the goal is for the model to devise a 
solution to mitigate the adverse effects and send it to the physical entity for implementation. In the second 
event, the goal for reporting to the model’s analytical component is to develop a new set of performance 
metrics for evaluating the new objective; to the physical entity, the reporting goal should effect potential 
changes in the types of data the sensors will collect and pass on to the model that can be used to derive the 
new metrics. 

3.2 Proposed Digital Twin Validation Framework/Strategy 

To respond to the challenges imposed by the new developments within the Industry 4.0 development (as 
pointed out in Section 3.1) and utilize the benefits that the new and emerging associated technologies bring 
along, we summarized our findings towards a framework for validation of digital twins. The main aspects 
that the framework is built upon are: availability of continuously streaming data from IoT devices, digital 
twin extracted through process mining approaches in combination with event detection and distribution 
fitting, and expert-in-the-loop for all expert knowledge necessity, e.g., relevant events and data streams 
specification. Process mining is a family of techniques that aim to discover process flows of a system, based 
on structured logs (Van der Aalst 2013). The digital twin validation framework focuses on the second step 
of the 2-step validation process, i.e., the step that is concerned with the data-driven and quantitative 
validation of the simulation model, i.e., the digital twin. The framework is inspired by the validation using 
historical data. 

We assume that there will be some degree of human expert knowledge as part of the framework, but 
its entry points will be fully specified. One of the main aspects where expert knowledge is necessary is the 
specification of simulation goals and relevant data streams and events, which is also very relevant for the 
validation. Simulation goals also yield the performance measures for the digital twin that will need to be 
provided as output. The digital twin will then also need to be run using the same input data as the real 
system, in order to pair-compare the outputs.  
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The validation component (illustrated in Figure 2) would utilize data gathered from the smart factory, 
after the data has been validated. We exemplify our validation model through a simple factory line in which 
we collect input data, i.e., data on starting times of product orders, as well as machine status data (e.g., 
begin and end of an operation and failing or getting repaired), and output data on production key 
performance indicators, e.g., products completed per hour, reliability of the system, etc. (Lazarova-Molnar 
and Mohamed 2019). When we consider smart factories, equipped with IoT devices and for which there 
are digital twins available, all data, both input and output, is easily available so validation using either input-
output transformations or historical input data is possible at any point in time. The exact method, however, 
depends on the available quantity of historical input data, i.e., whether we have sufficient data to feed into 
our simulation model, such that it can be used to run the necessary number of replications to yield validation 
results of the required level of statistical significance.  

Therefore, in the case when an initial model is already available, usually developed through factory 
planning and derived from various machine specifications, validation can be performed using input-output 
transformations, in which only the output data from the real system is compared with the output data from 
the simulation model, without utilizing real data for the input random variables. This framework takes 
advantage of the availability of streaming data and, in combination with clearly identified input by experts, 
performs validation either periodically or on-demand. The data-driven models also benefit from this 
validation process as the outputs of the validation process are directly fed into the model extraction 
processes. In a way, this type of validation is also necessary when one considers data-driven model 
extraction, as it can support the processes of parameter calibration and model extraction.  

This framework takes advantage of the availability of streaming data and, in combination with clearly 
identified input by experts, performs validation either periodically or on-demand. The data-driven models 
also benefit from this validation process as the outputs of the validation process are directly fed into the 
model extraction processes. In a way, this type of validation is also necessary when one considers data-
driven model extraction, as it can support the processes of parameter calibration and model extraction. 
 

To illustrate and contextualize our proposed framework, we use the illustration from our previous 
work on data-driven digital twins (Friederich et al. 2022), shown in Figure 1 with the validation part 
highlighted. Here, we expand and revise on the validation part of the digital twin. The validation also 
utilizes the collected data, but it also needs the parts of the model that have been extracted, and that 
includes the model’s structure/topology as well as its parameters in terms of probabilities, constants 
and probability distributions. 

 

   
Figure 1:  Framework for data-driven digital twins (Friederich et al. 2022). 
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4 IMPLICATIONS/DISCUSSION 

We now discuss the implications of our study on validations of digital twins and its associated challenges. 
In Section 4.1 we describe the anticipated challenges related to the digital twin model validation. In Section 
4.2 we discuss the opportunities that future related research may unlock. 

4.1 Challenges  

We describe in more detail, the challenges that may present with the validation of digital twin models. 

4.1.1 Uncertainty and Sensitivity Analysis 

Any data collected from a physical system inherently contains uncertainty that must be judiciously treated 
to achieve a degree of robustness in model validation. Uncertainty analysis permits the modeler to quantify 
such data uncertainty. Given that the apparatus of a digital twin model consists of a multitude of sensors 
attached to the physical entity to collect data in real-time, uncertainty analysis need be conducted with data 
from diverse data sources. Different data types may require different algorithms to quantify data 
uncertainty. If not carefully planned, these algorithms could incur substantial computational costs that 
contribute to a prolonged model validation process. 
 In model validation, uncertainty analysis often is a necessary step that precedes sensitivity analysis. As 
one needs to manage a large number of parameters when monitoring the digital twin model, it may become 
a necessity to identify a subset of them that are more impactful than the others. The sensitivity analysis may 
be utilized to do this. Applying sensitivity analysis and identifying a smaller, more manageable set of 
parameters would have the following advantages: 1) Reduce computational complexity when validating the 
model. 2) Reduce the time to validate the model. 3) Identify important connections between observations, 
model inputs, and predictions or forecasts, leading to the development of better models (Hill et al. 2016; 
Hill and Tiedeman 2006). Sensitivity analysis is almost always performed by running the model a large 
number of times, e.g., a sampling-based approach (Helton et al. 2006). This may not be feasible in the 
context of digital twin models, where real-time validation is often required. How to improve the runtime of 
sensitivity analysis remains an open problem. To the best of our knowledge, many digital twin models do 
not go through a rigorous process of uncertainty and sensitivity analyses.  

 
Figure 2:  Validation component as part of the framework for data-driven digital twins. 
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4.1.2 Model Validation of System-of-Systems 

A digital twin model that represents a System-of-Systems (SoS) substantially increases the difficulty of 
model validation. Each individual component in the SoS represents a system that supports the overall 
functionality. This presents a unique challenge to validating the digital twin model: Should validation be 
performed over the entire SoS, or for each constituent system? While one may argue that it is the overall 
performance of the SoS that matters, concentrating only on the digital twin model of the entire SoS risks 
missing the gradual deviation of some constituent system model’s performance from its physical 
counterpart. One possible consequence is failure to identify the root cause in SoS performance degradation.  

How to perform robust validation of the SoS remains a key challenge. To address this challenge, we 
may need to have a two-layer approach to perform validation, one at the SoS level, and the other at the 
constituent system level. This inevitably increases the complexity of the validation process and may affect 
the expediency of validation. How to balance the validation complexity, robustness, and timeliness remains 
a work in progress. 

4.1.3 Combining Expert Knowledge and Collected Data 

A simulation model should always utilize all information that we have about the real system. In that sense, 
some of the knowledge may stem from experts and might complement what we extract from data. Digital 
twins and corresponding validation approaches need to systematically provide mechanisms to combine 
expert knowledge with data.  
 There has been some notable efforts in tackling this issue (Niloofar and Lazarova-Molnar 2021), but 
the problem is far from a solution, and the solution may need to be context-dependent. Thus, we need 
approaches to formalize the expert knowledge and its combination with the data in a seamless manner, such 
that both can be integrated to yield a simulation model.   

4.2 New Opportunities Presented by the Ongoing Data Collection 

There are two aspects of availability of resources that bring about opportunities for validation of digital 
twins. The first aspect is the data, and the second is the developments in modelling approaches.  
 Opportunities may arise out of the availability of data. First, huge data sets provide opportunities to 
build models with good generalizability. This is of course strongly tied to the task at hand. The model(s) 
are built with a very specific objective in mind, for example fault detection. In this application, access to 
data such as sensor readings can be used to adapt the model to learn a wide range of variations in faults. 
The intuition is that the more data of a specific kind of fault that we have, the more the model can learn the 
structure of data which can be useful for discriminatory purposes and finally for decision making. 
 Second, large data sets enable the testing a suite of digital-twin properties using different varieties of 
data at different granularities. In addition to the large quantities of data that is available, different kinds of 
data are also available. By this we refer to the heterogeneous (multi-modal) nature of data. There are various 
possible ways of validating a digital twin model and testing various aspects of the model can be aided by 
the availability of varied kinds of data. For instance, in the case of fault detection, audio signals, thermal 
and imaging sensors are some of the data that can potentially be used for testing whether the model is robust 
enough to capture faults from sound, thermal and visual signals. This can also be extended to other 
applications where a suite of properties can be tested by means of the heterogeneous data that are collected. 
 Additionally, opportunities may also arise out of the developments in modelling approaches. The first 
is transfer learning. This technique is beneficial in dynamic environments such as the ones modelled by a 
digital twin. This is because transfer learning allows the use of already trained models from other domains 
to be re-used, which gets rid of the problem of learning from scratch each time new data is generated. 
(Maschler et al. 2021) explores the possibility of using transfer learning in the context of a cyber physical 
system through the various phases of manufacturing. Transfer learning can also be used to support the 
validation of a digital twin by utilizing the “knowledge” learned from other phases or types of validation. 
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Another opportunity in new modeling approach development is reinforcement learning. The dynamic 
nature of the validation process of a digital twin makes it possible to exploit methods suited to such 
environments. Reinforcement learning is one such approach that can be applied to the validation process. 
This method has been used in the context of digital twin development (Cronrath et al. 2019), process 
planning (Müller-Zhang et al. 2020). Digital twin validation can benefit from the use of appropriate 
reinforcement learning techniques. 

5 CONCLUSION 

Model validation is a critical step towards ensuring the digital twin model accurately mirrors the current 
state of the physical entity throughout its lifecycle. While researchers of various knowledge domains have 
implemented validation strategies in their respective digital-twin design prototypes, by and large it has not 
been rigorously treated in a way that would permeate its effectiveness throughout the digital twin lifecycle. 
Relatively little published work on this problem exists in the literature. 

In this paper, we identified five open problems concerning digital twin model validation: modeling 
realism, data uncertainty, system dynamics, use-case alignment, and reporting invalid modes. If left 
unaddressed, they could impede the further adoption of digital twins. We then proposed a digital-twin model 
validation framework as a roadmap towards addressing these problems. We also identified three domains 
where further study is warranted in the context of digital twins: Uncertainty and Sensitivity Analysis, model 
validation of System-of-Systems, and combining expert knowledge and collected data. Future research 
could open up opportunities where Big Data becomes an indispensable tool to support robust model 
validation, and techniques such as transfer learning and reinforcement learning can be employed to develop 
novel modeling approaches. 
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