
Proceedings of the 2022 Winter Simulation Conference
B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and
P. Lendermann, eds.

ANALYSIS OF MEASURE-VALUED DERIVATIVES IN A REINFORCEMENT LEARNING
ACTOR-CRITIC FRAMEWORK

Kim van den Houten

Delft University of Technology
Van Mourik Broekmanweg 6

Delft, 2628XE, THE NETHERLANDS

Emile van Krieken
Bernd Heidergott

Vrije Universiteit Amsterdam
De Boelelaan 1105

Amsterdam, 1081HV, THE NETHERLANDS

ABSTRACT

Policy gradient methods are successful for a wide range of reinforcement learning tasks. Traditionally, such
methods utilize the score function as stochastic gradient estimator. We investigate the effect of replacing the
score function with a measure-valued derivative within an on-policy actor-critic algorithm. The hypothesis
is that measure-valued derivatives reduce the need for score function variance reduction techniques that are
common in policy gradient algorithms. We adapt the actor-critic to measure-valued derivatives and develop
a novel algorithm. This method keeps the computational complexity of the measure-valued derivative
within bounds by using a parameterized state-value function approximation. We show empirically that
measure-valued derivatives have comparable performance to score functions on the environments Pendulum
and MountainCar. The empirical results of this study suggest that measure-valued derivatives can serve as
low-variance alternative to score functions in on-policy actor-critic and indeed reduce the need for variance
reduction techniques.

1 INTRODUCTION

Reinforcement learning (RL) methods are increasingly successful in areas such as robotics (Carvalho et al.
2021), self-driving cars (Kiran et al. 2022), and energy systems (Perera and Kamalaruban 2021). After
the break-trough of the REINFORCE algorithm (Williams 1992), and the policy gradient theorem (Sutton
et al. 1999), a variety of successful policy gradient methods have been developed, such as A2C (Mnih
et al. 2016), PPO (Schulman et al. 2017), and DDPG (Lillicrap et al. 2016). Policy gradient methods are
techniques from RL that optimize a policy with respect to the expected cumulative reward by applying
gradient ascent. Most policy gradient algorithms utilize the score function (SF) as gradient estimator for the
stochastic objective function. Unfortunately, the policy gradient algorithms developed in the past decades
suffer from the excessive variance of the SF gradient estimates (Sutton and Barto 2018). Using SF, several
variance reduction techniques are necessary for convergence to the optimal policy, such as implementation
of a baseline (Greensmith et al. 2002; Li 2018; Mohamed et al. 2020).

Stochastic optimization seeks gradient estimators with both low variance, and bias. This motivates
the study of the measure-valued derivative (MVD), known for having significantly lower variance than
SFs. The SF is not widely used in the RL community. We hypothesise that the low variance of the MVD
reduces the need for variance reduction techniques. There have been few controlled studies that compare
differences in performance between SF, and MVD for RL. However, the promising results from Bhatt et al.
(2019), and Carvalho et al. (2021) motivate further research in using MVD for RL purposes.

In this paper, we present a novel algorithm (AC-MVD), in which the MVD is implemented in an
on-policy actor-critic algorithm with parameterized state-value functions. We compare the results of this
algorithm with the SF variant (AC-SF). The compared algorithms are equivalent in structure, besides the

978-1-6654-7661-4/22/$31.00 ©2022 IEEE 2736

van den Houten, van Krieken, and Heidergott

choice of gradient estimator. The algorithms are tested on the OpenAI Gym environments Pendulum,
and MountainCar, developed by Brockman et al. (2016). We conclude that the AC-MVD can achieve
comparable performance to AC-SF, and that for the MVD the variance reducing baseline can be omitted.

2 BACKGROUND

2.1 Reinforcement Learning

In this section, we introduce the continuous control Markov decision process (MDP) setting. We distinguish
between the agent, and the environment, where the agent is the decision-maker, and interacts with the
environment. The agent-environment combination is a dynamical system that evolves in discrete time
steps (Sutton and Barto 2018). We denote the state space by S , and the action space by A . The agent
chooses their actions following a parameterized policy πθ (a|s) that maps states to actions. The trajectory
τ = (s0,a0,s1,a1...) defines the state-action history (Sutton and Barto 2018). Each state action combination
(at ,st) is rewarded one time step later with rt+1. The goal is to optimize the cumulative reward by seeking
the optimal policy πθ ∗ (Sutton and Barto 2018):

Eπθ∗

[
∞

∑
t=0

γ
trt+1

]
= max

θ

Eπθ

[
∞

∑
t=0

γ
trt+1

]
,

where γ is a discount term for dealing with infinite horizons.
In order to evaluate a policy, two statistics are defined: (i) The state-action value function Qπ(s,a) that

refers to the expected reward from being in a state s, and taking action a, and then following policy π;
and (ii) the value function V π(s) that is defined as the expected reward by following policy π from state s
(Sutton and Barto 2018). The two are related as follows:

Q(st ,at) = Qπ(st ,at)+ γ V π(st+1) = Eπ [rt+1|st ,at]+ γ V π(st+1).

Policy gradient methods learn the parameterized policy based on an estimate of the gradient of

J(θ) = Eπθ

[
∞

∑
t=0

γ
trt+1

]
.

This is done iteratively by applying gradient ascent. The objective is evaluated using stochastic methods:

θt+1 = θt + εt ∇̂θ J(θt), t ≥ 0, (1)

with εt → 0, where ∇̂θ J(θ) is an estimator for ∇J(θ). One algorithm that seeks the optimal policy according
to the scheme above is the on-policy actor-critic (Sutton et al. 1999). In this policy gradient method, the
iterative update step described in (1) uses the state-action value function, and the SF with respect to the
stochastic policy:

θt+1 = θt + εt Q(st ,at)∇θ log πθ (at |st). (2)

It is proposed to use function approximation for high dimensional, and continuous state, and action
spaces, see (Sutton et al. 1999). This leads to an update step for the policy (actor) parameters, and for
the parameters for the value function (critic) approximator. Following this approach, the state-action value
function in the update step in (2) is replaced by its recursive. Concluding, in each actor-critic iteration,
both the actor parameters θ , and the critic parameters η are updated, according to:

θt+1 = θt + εt
(
rt+1 +V π

η (st+1)
)

∇θ log πθ (at |st),

ηt+1 = ηt + εt∇η

(
rt+1 +V π

η (st+1)−V π
η (st)

)
.

We summarise the important steps of the actor-critic with SF (AC-SF) in Algorithm 1.

2737

van den Houten, van Krieken, and Heidergott

Algorithm 1 Actor-Critic Score function (AC-SF)

Input: policy πθ (a|s), state-value function Vη(s), learning rate ε , discount γ

Initialize parameters θ , and η , environment env
for i in epochs do

Initialize s0 as first state of episode
for t in episode length do

Sample action at from π , and execute in env, observe next state st+1, reward rt+1
Actor update θt+1 = θt + εt

(
rt+1 + γ V π

η (st+1)
)

∇θ log πθ (at |st)

Critic update ηt+1 = ηt + εt ∇η

(
rt+1 + γ V π

η (st+1)−V π
η (st)

)
end for
Evaluate policy

end for

2.2 Gradient Estimation

Policy gradient methods rely on the use of SF as gradient estimator, see e.g. REINFORCE (Williams 1992),
and see Sutton et al. (1999) for the policy gradient theorem. In Section 2.1, we show that this is also the
case for actor-critic. In practice, the standard actor-critic structure is complemented with variance reduction
techniques, because the variance of SF is high (Greensmith et al. 2002; Li 2018; Mohamed et al. 2020;
Cui et al. 2020). The variance of the SF is defined as:

Vfθ
[h(X) S(θ ,X)] = E fθ

[
(h(X)

d
dθ

log fθ (X))2
]
−E fθ

[
h(X)

d
dθ

log fθ (X)

]2

.

For comparisons of the variance of the SF compared to gradient estimation methods, see (Heidergott,
Vázquez-Abad, and Volk-Makarewicz 2008; Heidergott and Volk-Makarewicz 2016).

An alternative way of dealing with stochastic gradients stems from measure theory. Under general
conditions it is possible to write the gradient of probability density δ

δθ
fθ (x) as a re-scaled difference of

two densities (Pflug 1989). The mathematical notation of the gradient of probability density fθ (x) with
respect to its parameters θ is:

d
dθ

fθ (x) = cθ f+
θ
(x)− cθ f−

θ
(x). (3)

In (3), f+
θ
(x), and f−

θ
(x) are both densities. The triple (cθ , f+

θ
(x), f−

θ
(x)) is the MVD of fθ (x), and is not

unique. The decomposition into a positive, and negative component can be used to define the gradient
estimator of an expectation of a function h(x). Therefore, we can write:

d
dθ

E fθ
[h(X)] =

∫ d
dθ

fθ (x)h(x)dx

= cθ

(∫
h(x) f+

θ
(x)dx−

∫
h(x) f−

θ
(x)dx

)
= cθ

(
E f+

θ

[h(X)]−E f−
θ

[h(X)]
)
.

SF, and MVD are both unbiased gradient estimators, and for that reason, we can freely interchange the SF,
and the MVD representation of a gradient. The variance of the MVD is defined as:

Vfθ
[h(X)] =Vf+

θ

[h(X)]+Vf−
θ

[h(X)]−2Cov f+
θ

; f−
θ

[h(X ′),h(X)].

Usually this is implemented by positively correlating the positive, and the negative component of the MVD
(Fisher 2012). This ensures that Cov f+

θ
; f−

θ

[h(X ′),h(X)] takes a positive value, resulting in lower variance.

2738

van den Houten, van Krieken, and Heidergott

The unique Jordan decomposition (Fisher 2012) can reduce the variance of MVD even more, see (Heidergott
and Leahu 2010).

Importantly, MVD requires two cost function evaluations for every parameter, and is therefore expensive
to compute. This has caused problems in applying MVD for MDP, see e.g. (Abad and Krishnamurthy
2003). However, we can use the policy gradient theorem (Sutton et al. 1999). The policy gradient theorem
states that for the gradient ascent updates, we can differentiate directly with respect to the policy instead
of considering all underlying state transition probabilities of the MDP. Furthermore, an approximate value
function avoids the need for computing Monte-Carlo (MC) roll-outs of trajectories (Sutton and Barto
2018). Combining the two results with an effective MVD decomposition for the policy, we can keep the
computational complexity within bounds. The exact procedure is described in Section 4.

3 RELATED WORK

Bhatt et al. (2019) was the first to implement MVD within REINFORCE. In the REINFORCE-SF, every
update of policy parameters requires an entire MC roll-out of a trajectory. For incorporation of MVD in
this framework, not one, but two MC roll-out trajectories for each update of the policy parameters are
needed (Bhatt et al. 2019). Their work nicely illustrates how MVD can work within a policy gradient
method, but the REINFORCE-MVD is computationally expensive. Carvalho et al. (2021) provided an
extensive analysis on MVD for policy gradients. They developed a MVD-variant of the off-policy Soft
Actor-Critic (SAC) (Haarnoja et al. 2018), that in its original form uses the reparameterization trick for
gradient estimation. They also compared with SAC-SF, but this method failed to solve most of their tasks
because the SF needs a baseline for stabilization. Furthermore, they developed an on-policy algorithm
with a non-differentiable Q-function approximator, and compared it with state-of-the art SF algorithms,
being Proximal Policy Optimization (PPO) (Schulman et al. 2017), and Trust Region Policy Optimization
(TRPO) (Schulman et al. 2015). They concluded that MVD can serve as alternative for policy gradient
methods. Their conclusion motivates our hypothesis that the low variance of MVD can avoid the need for
variance reduction techniques for the SF. We investigate this by developing an on-policy actor-critic with
MVD, and compare it to its SF variant. We keep the algorithmic structure for both algorithms equivalent,
besides the choice of gradient estimator, and the baseline for the SF.

4 METHODOLOGY

4.1 Policy Gradient MVD

We introduce our policy πθ (a|s) parameterized by θ . However, for convenience we redefine the stochastic
policy as π(a|s;ω = g(s,θ)). Here, we follow notation from Carvalho et al. (2021). This notation allows
to derive the gradient w.r.t. θ by computation of the gradient w.r.t. ω , and utilization of the chain-rule. For
example, when choosing a Gaussian policy with fixed variance σ2, and state-dependent mean µ = g(s,θ),
we get π(a|s;ω = g(s,θ)) =N (µ = g(s,θ),σ2). Adapting this notation, we can derive the policy gradient
with respect to θ by implementing MVD according to:

∇θ π(a|s;ω = g(s,θ)) = ∇ωπ(a|s;ω = g(s,θ))∇θ g(s,θ)

= cθ

(
π
+(a+|s;ω = g(s,θ))−π

−(a−|s;ω = g(s,θ)
)
∇θ g(s,θ).

4.2 Actor-Critic MVD

We introduce a MVD variant for Algorithm 1, AC-MVD. The major challenge is finding a suitable procedure
for implementing MVD for MDP. We aim to keep its computational complexity within bounds, by smartly
defining the positive, and negative component of our policy. We define the positive trajectory starting at
t as the trajectory that moves following an action a+t drawn at t from the positive policy distribution π+,
and observing next state s+t+1, while the negative trajectory starts by drawing an action a−t at t from π−,
and observing next state s−t+1. For the remaining trajectory, we assume that actions are chosen using π .

2739

van den Houten, van Krieken, and Heidergott

This allows us to use the value function of the real policy for valuating the future expected rewards of the
two components of the decomposition. To understand this statement, it is important to observe that:

Q+(st ,a+t) = Eπ+

[
∞

∑
k=0

γ
krt+k+1

∣∣∣∣∣st ,a+t

]

= Eπ+

[
r+t+1 +Eπ

[
∞

∑
k=1

γ
krt+k+1

∣∣∣∣∣st = s+t+1

]∣∣∣∣∣st ,a+t

]
= Eπ+

[
r+t+1 + γ V π(s+t+1)

∣∣st ,a+t
]
.

The above equation holds because only for the transition at time step t, the policy follows the positive
distribution, while for the remaining transitions π is used. Therefore, we can freely use the value function
of the real policy for evaluating the future expected rewards of the two components of the decomposition.
The same reasoning can be applied to the negative policy. This result allows us to avoid computing two
MC roll-outs of trajectories per update step, such as was done by Bhatt et al. (2019). We adapt the MVD
decomposition to the actor update:

θt+1 = θt + εt cθ

(
Q+(st ,a+t)−Q−(st ,a−t)

)
∇θ g(st ,θ)

= θt + εtcθ

([
r+t+1 + γ V π(s+t+1)

]
−
[
(r−t+1 + γ V π(s−t+1)

])
∇θ g(st ,θ).

There is no difference in updating the critic parameters between AC-SF, and AC-MVD. The pseudocode
for AC-MVD is given in Algorithm 2.

Algorithm 2 Actor-Critic MVD

Input: policy πθ (a|s), policies for decomposition: π
+
θ
(a|s), and π

−
θ
(a|s), state-value function Vη(s),

learning rates ε , discount γ

Initialize parameters θ , and η , environment env
for i in epochs do

Initialize s0 (first State of episode)
for t in episode length do

Sample action at , observe next state st+1, reward rt+1
Sample common random number for coupling
Compute a+t , and a−t using common random number
Observe s+t+1, r+t+1, and s+t+1, r−t−1 from applying a+t , and a−t to st

Actor update
Compute Q̂+(st ,a+t) = r+t+1 + γ Vη(s+t+1)

Compute Q̂−(st ,a−t) = r−t+1 + γ Vη(s−t+1)

Update actor parameters θt+1 = θt + εt cθ

[
Q̂+(st ,a+t)− Q̂−(st ,a−t)

]
∇θ gθ (st)

Critic update
Update critic parameters ηt+1 = ηt + εt ∇η

[
rt+1 + γ V π

η (st+1)−V π
η (st)

]
end for
Evaluate policy

end for

2740

van den Houten, van Krieken, and Heidergott

5 EXPERIMENTS

5.1 Environments

OpenAI has an RL toolkit, OpenAI Gym, that provides environments on which RL algorithms can be trained
(Brockman et al. 2016). We tested on the environments Pendulum-v0, and MountainCarContinous-v0.
Both its action, and state spaces are continuous. In these environments it is possible to reset the system to
a specific state, which is required for our MVD implementations. In the Pendulum environment there is an
inverted pendulum, and the task is to move the pendulum upright. The goal is to remain at zero angle, with
the least rotational velocity, and the least effort. The MountainCar environment contains two mountains,
and a car that is positioned between the two. On the right mountain, a flag is positioned, and the goal is
to reach this flag. The car needs to drive back to the left mountain such that it builds up momentum, and
is able to reach the right top.

5.2 Settings

We use a Gaussian policy with state-dependent mean N (µ = g(s,θ),σ2), where σ2 is defined as hyper-
parameter. For deriving the MVD of π we used the MVD-triple (cθi , f+

θ
(x), f−

θ
(x)), where cθ = 1√

2πσ
,

π+ = µ +W (2,(2σ2)0.5), and π− = µ −W (2,(2σ2)0.5). Here, W follows a Weibull distribution. In our
experiments, we utilize linear combinations of radial basis functions (inspired by Konidaris and Osentoski
(2011)), which gives:

g(s,θ) =
m

∑
i=1

θiφi(s).

For parameterization of the value function we also used radial basis functions such that:

V π
η (s) =

m

∑
i=1

ηiφi(s).

For a detailed explanation on radial basis functions, see Appendix A. The hyperparameters for the actor-critic
algorithm are included in Table 1. The same were used for SF, and MVD.

Table 1: Hyperparameters.

Hyperparameter Setting
Actor optimizer SGD
Actor learning rate 1e-4
Actor optimizer SGD
Critic learning rate 5e-3
Max grad norm 0.5
Policy initial σ2 0.5
Policy final σ2 0.1
Discount 0.99
Epochs 500
Episode length 200

5.3 Evaluation

We evaluate the rolling episode reward after each epoch to measure learning performance of the algorithm.
To rule out the possibility that the results are obtained randomly, we repeat for each experiment three times
its 10 seeds. After collecting the 10 runs, the mean over these runs is visualized together with a 95%−CI

2741

van den Houten, van Krieken, and Heidergott

around the mean. The width of the CI implies the magnitude of the variance in the learning outcomes.
Furthermore, we measure variance of the gradient estimators for comparing SF, and MVD. This is done
by repeatedly computing the gradient estimate without updating the parameters. The system is frozen in
the sense that while doing this we did not move to a next state. This procedure enables evaluation of
the variance of the gradient estimators. Finally, for all experiments we measure average CPU-time. All
experiments are done on a Dell Latitude E7450 with Intel Core i7 5600U. The code is available on GitHub
(van den Houten 2022).

6 RESULTS

This section presents the experimental results for the different environments. Table 2 provides an overview,
and shows the evaluated episode reward that is achieved after 500 epochs, and the averaged CPU-time.

Table 2: Summarising Results: * Reward±95%−CI refers to the average cumulative reward of the last
100 runs after training of 500 epochs. This refers therefore to the moving average evaluated at t=400.
Confidence interval is for 10 runs. ** CPU-time refers to the average time of executing the algorithm for
500 epochs (evaluated over 10 independent runs).

Environment Gradient Reward±95%CI* CPU-time**
Pendulum SF −194±16 76
Pendulum MVD −167±11 200
MountainCar SF 88±1 25
MountainCar MVD 92±0 75

6.1 Pendulum

In Figure 1, the learning curves on the environment Pendulum for AC-SF, and AC-MVD are presented.
The achieved cumulative reward after 500 epochs with AC-MVD lies very close to the result with AC-SF.
It can be seen that for both methods, already after about 250 epochs an reward of −250 is achieved. In
the plots in Figure 1, we see that between epoch 250, and epoch 500 the reward fluctuates around −200.
In Table 2 the average reward of the last 100 epochs (averaged over 10 runs) is given, and yields −194 for
SF, and −167 for MVD. Comparing the plots in Figure 1, we observed a small difference in the magnitude
of the confidence intervals which are based on the independent runs, and are visualised in light green. We
observed a narrower confidence interval for the MVD. This suggests better convergence for the MVD. We

compared the variances of the estimators ̂d
dµ

J(µ(θ) to explain the variance in the confidence intervals in
Figure 2. One can observe that while the variance for the SF estimator lies around 105, the variance for
the MVD fluctuates around 1, and decreases to 10−1 after 500 epochs.

6.2 MountainCar

Observing the results for the MountainCar environment, only small differences can be noticed, being a
somewhat wider confidence interval around the mean over 10 runs for the SF that is visible in the reward
plots in Figure . However, the variances of the two estimators are much further apart. This can be seen in
Figure 4. The variance of the SF lies around 105, while the variance of the MVD lies around 10−2.

2742

https://github.com/kimvandenhouten/AC-MVD

van den Houten, van Krieken, and Heidergott

Figure 1: Epoch reward over 10 runs, tested on Pendulum environment

7 CONCLUSION AND DISCUSSION

In this work we investigate the effect of replacing the SF with MVD within an on-policy actor-critic
algorithm. We hypothesised that variance reduction techniques can be omitted when using MVD. This
study provides a novel algorithm for on-policy actor-critic MVD with value function approximation. We
compared AC-SF with baseline, and AC-MVD with radial basis function as function approximator. We
tested on the Gym OpenAI environments Pendulum and MountainCar. We observed that AC-SF with
baseline and AC-MVD perform almost equally well in terms of achieved reward for both environments.
The measured variance of the MVD is much lower than the variance of the SF, as expected. We observed
this low variance of the MVD in the narrower confidence intervals around the average reward for different
runs. Our results suggest that the variance reducing baseline can be omitted when using MVD and that
the MVD indeed can serve as an alternative gradient estimator within on-policy actor-critic.

The approximating value function provides an elegant and novel procedure for implementing MVDs for
continuous control MDPs. This value function captures the effect of the decomposition of the policy into a
positive and negative component. This technique avoids the need of computing two entire MC trajectories
for the update step, as is previously done by Bhatt et al. (2019). The additional CPU-time for AC-MVD
is in line with the extra steps in the algorithm compared to AC-SF. Our method requires that the system
can be reset to a certain state. For tasks as robotics this is an undesirable property, like is mentioned by

2743

van den Houten, van Krieken, and Heidergott

Figure 2: Variance of gradient estimator, tested on Pendulum environment

Carvalho et al. (2021). However, for many applications in simulation environments this is not necessarily
problematic.

A direction for further research could be an extensive study into what variance reduction techniques can
be omitted while using MVD. A related and interesting question is whether state-of-the-art score function
policy gradient methods can be extended with MVD to get further variance reduction. A second direction
for further research is to investigate whether a combination of SF and MVD within one algorithm can be of
value for the RL community. One possible approach would be to start with a cheap, but high-variance SF,
and then switch to MVD to stabilize training towards the end of the algorithm. These research directions
can help answering the question whether MVD policy gradients can compete with state-of-the-art SF
implementations.

2744

van den Houten, van Krieken, and Heidergott

Figure 3: Epoch reward over 10 runs, tested on MountainCar environment.

APPENDIX

A Radial Basis Functions

In this research we used Radial Basis Functions (RBF) (Konidaris and Osentoski, 2011), to transform the
original state in to a set of basis functions φ1, ...,φm and approximate the policy and value function. Suppose
that the original state space has d dimensions. Each dimension can be evenly divided into n pieces. This
leads to nd centers ci with dimension d that are used for the Gaussian basis functions. The basic functions
are defined as:

φi(s) =
1√

2πσ2
r

e−||ci−s||2F/2σ2
r , 1 ≤ i ≤ nd .

In order to transform an original state s to RBF basis functions, the Fobrenius norm of the vector A = s−ci
must be computed, which is given by:

||A||F =
√

∑
i, j
|ai j|2.

2745

van den Houten, van Krieken, and Heidergott

Figure 4: Variance of gradient estimator, tested on MountainCar environment.

For the AC-SF with radial basis functions we utilized an existing baseline implementation that is
available on GitHub (Pan 2020).

REFERENCES
Abad, F., and V. Krishnamurthy. 2003. “Policy Gradient Stochastic Approximation Algorithms for Adaptive Control of Constrained

Time Varying Markov Decision Processes”. In Proceedings of the 42nd IEEE International Conference on Decision and
Control. December 9th-12th, Maui, Hawaii, United States, 2823-2828.

Bhatt, S., A. Koppel, and V. Krishnamurthy. 2019. “Policy Gradient using Weak Derivatives for Reinforcement Learning”. In
Proceedings of the 58th IEEE Conference on Decision and Control. December 11th-13th, Nice, France, 5531-5537.

Brockman, G., V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. 2016. “OpenAI Gym”.
https://github.com/openai/gym.

Carvalho, J., D. Tateo, F. Muratore, and J. Peters. 2021. “An Empirical Analysis of Measure-Valued Derivatives for Policy
Gradients”. In Proceedings of International Joint Conference on Neural Networks. July 18th-22th, Shenzen, China, 1-10.

Cui, Z., M. C. Fu, J.-Q. Hu, Y. Liu, Y. Peng, and L. Zhu. 2020. “On the Variance of Single-run Unbiased Stochastic Derivative
Estimators”. INFORMS Journal on Computing 32(2):390–407.

Fisher, T. 2012. “Existence, Uniqueness, and Minimality of the Jordan Measure Decomposition”. arXiv e-prints. https:
//arxiv.org/abs/1206.5449.

Greensmith, E., P. L. Bartlett, and J. Baxter. 2002. “Variance Reduction Techniques for Gradient Estimates in Reinforcement
Learning”. Journal of Machine Learning Research 5:1471–1530.

2746

https://github.com/workofart/openai-gym-baselines/blob/master/Pendulum-v0/actor_critic_baseline.py
https://github.com/openai/gym
https://arxiv.org/abs/1206.5449
https://arxiv.org/abs/1206.5449

van den Houten, van Krieken, and Heidergott

Haarnoja, T., A. Zhou, P. Abbeel, and S. Levine. 2018. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement”.
In Proceedings of the 35th International Conference on Machine Learning. July 10th-15th, Stockholm, Sweden, 1861-1870.

Heidergott, B., and H. Leahu. 2010. “Weak Differentiability of Product Measures”. Mathematics of Operations Research 35(1):27–
51.

Heidergott, B., F. J. Vázquez-Abad, and W. Volk-Makarewicz. 2008. “Sensitivity Estimation for Gaussian Systems”. European
Journal of Operational Research 187(1):193–207.

Heidergott, B., and W. Volk-Makarewicz. 2016. “A Measure-Valued Differentiation Approach to Sensitivities of Quantiles”.
Mathematics of Operations Research 41(1):293–317.

Kiran, B., I. Sobh, V. Talpaert, P. Mannion, A. Sallab, S. Yogamani, and P. Perez. 2022. “Deep Reinforcement Learning for
Autonomous Driving: A Survey”. IEEE Transactions on Intelligent Transportation Systems 23(6):4909–4926.

Konidaris, G., and S. Osentoski. 2011. “Value Function Approximation in Reinforcement Learning Using the Fourier Basis.”.
In Proceedings of the 25th AAAI Conference on Artificial Intelligence, edited by D. Leake, R. Morris, M. Wellman, and
S. Ludvik, 380–385. Menlo Park, California, United States: the Association for the Advancement of Artificial Intelligence
Press.

Li, Y. 2018. “Deep Reinforcement Learning”. arXiv e-prints. http://arxiv.org/abs/1810.06339.
Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. 2016. “Continuous Control with

Deep Reinforcement learning”. In Proceedings of the 4th International Conference on Learning Representations. May 2nd

- 4th, San Juan, Puerto Rico.
Mnih, V., A. P. Badia, M. Mirza, A. Graves, T. Harley, T. P. Lillicrap, D. Silver, and K. Kavukcuoglu. 2016. “Asynchronous

Methods for Deep Reinforcement Learning”. In Proceedings of the 33rd International Conference on Machine Learning.
June 19th-24th New York City, New York, United States, 1928–1937.

Mohamed, S., M. Rosca, M. Figurnov, and A. Mnih. 2020. “Monte Carlo Gradient Estimation in Machine Learning”. Journal
of Machine Learning Research 21(1):5183–5244.

Pan, H. 2020. AC-SF. https://github.com/workofart/openai-gym-baselines/blob/master/Pendulum-v0/actor critic baseline.py.
Perera, A., and P. Kamalaruban. 2021. “Applications of Reinforcement Learning in Energy Systems”. Renewable and Sustainable

Energy Reviews 137:110618.
Pflug, G. 1989. “Sampling Derivatives of Probabilities”. Computing 42:315–328.
Schulman, J., S. Levine, P. Abbeel, M. Jordan, and P. Moritz. 2015. “Trust Region Policy Optimization”. In Proceedings of

the 32nd International Conference on Machine Learning. July 7th-9th, Lille, France, 1889-1897.
Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. 2017. “Proximal Policy Optimization Algorithms”. arXiv

e-prints. http://arxiv.org/abs/1707.06347.
Sutton, R., and A. Barto. 2018. Reinforcement Learning: An Introduction. 2nd ed. Cambridge, Massachusetts, United States:

The MIT Press.
Sutton, R. S., D. McAllester, S. Singh, and Y. Mansour. 1999. “Policy Gradient Methods for Reinforcement Learning with

Function Approximation”. In Proceedings of the 12th International Conference on Neural Information Processing Systems,
edited by S. Solla, T. Leen, and K. Müller, 1057––1063. Cambridge, Massachusetts, United States: MIT Press.

van den Houten, K. 2022. AC-MVD. https://github.com/kimvandenhouten/AC-MVD.
Williams, R. J. 1992. “Simple Statistical Gradient-following Algorithms for Connectionist Reinforcement Learning”. Machine

Learning 8:229–256.

AUTHOR BIOGRAPHIES
KIM VAN DEN HOUTEN is a PhD candidate in Algorithmics at the Technische Universiteit Delft, the Netherlands. She
received her master’s degree in Operations Research from the Vrije Universiteit, Amsterdam. Her research interests are on the
intersection of optimization and machine learning, and simulation. Her email adress is k.c.vandenhouten@tudelft.nl.

EMILE VAN KRIEKEN is a PhD candidate in Artificial Intelligence at the Vrije Universiteit Amsterdam, the Netherlands. He
holds a master’s degree in Artificial Intelligence from the University of Amsterdam. His research interests include neuro-symbolic
AI, probabilistic deep learning and optimization. His email adress is e.van.krieken@vu.nl.

BERND HEIDERGOTT is the professor of Stochastic Optimization at the Department of Operations Analytics at the Vrije
Universiteit Amsterdam, the Netherlands. He received his PhD degree from the University of Hamburg, Germany, in 1996, and
held postdoc positions at various universities before joining the Vrije Universiteit. Bernd is research fellow of the Tinbergen
Institute and board member of the Amsterdam Business Research Institute. His research interests are optimization and control
of discrete event systems, perturbation analysis, Markov chains, max-plus algebra, and social networks. His email adress is
b.f.heidergott@vu.nl

2747

http://arxiv.org/abs/1810.06339
https://github.com/workofart/openai-gym-baselines/blob/master/Pendulum-v0/actor_critic_baseline.py
http://arxiv.org/abs/1707.06347
https://github.com/kimvandenhouten/AC-MVD
mailto://k.c.vandenhouten@tudelft.nl
mailto://e.van.krieken@vu.nl
mailto://b.f.heidergott@vu.nl

	INTRODUCTION
	BACKGROUND
	Reinforcement Learning
	Gradient Estimation

	RELATED WORK
	METHODOLOGY
	Policy Gradient MVD
	Actor-Critic MVD

	EXPERIMENTS
	Environments
	Settings
	Evaluation

	RESULTS
	Pendulum
	MountainCar

	CONCLUSION AND DISCUSSION

