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ABSTRACT

Several studies have shown the success of Reinforcement Learning (RL) for solving sequential decision-
making problems in domains like robotics, autonomous vehicles, manufacturing, supply chain, and health
care. For such applications, uncertainty in real-life environments presents a significant challenge in training
an RL agent. RL requires a large number of trials (training examples) to learn a good policy. One of the
approaches to tackle these obstacles is augmenting RL with a Discrete Event Simulation (DES) model.
Learning from a simulated environment, makes the training process of the RL agent more efficient, faster,
and even safer by alleviating the need for expensive real-world trials. Therefore, integrating RL algorithms
with simulation environments has inspired many researchers in recent years. In this paper, we analyze the
existing literature on RL models using DES to put forward the benefits, application areas, challenges, and
scope for future work in developing such models for industrial use cases.

1 INTRODUCTION

Artificial Intelligence (AI), due to its proven benefits, is being utilized in various industries such as
engineering, transportation, healthcare, energy, finance, and e-commerce (Powell 2019). AI’s ability of
‘self-learning algorithms’ has become an attractive solution approach for industries to solve a vast range
of sequential decision-making problems. Due to the diversity of applications, several communities have
emerged to address the problem of making decisions over time to optimize some metrics (Powell 2019). One
such influential approach in AI is Machine Learning (ML), which can be further branched into Supervised
Learning, Unsupervised Learning, Semi-Supervised Learning, and Reinforcement Learning (RL).

Recently, optimization theorists are focusing on RL due to its remarkable success in the operations
management domain (Gosavi 2009). This is evident by the growing body of literature that is applying
RL techniques to existing Operations Research (OR) problems. Among the numerous approaches to solve
sequential decision-making problems, two that stand out are optimal control (which laid the foundation for
stochastic optimal control), and Markov Decision Processes (MDP), which provides the analytical foundation
for reinforcement learning (Powell 2019). There is a growing sense of belief that RL is a better alternative
than classical Dynamic Programming (DP) to optimize MDPs and Semi-MDPs (S-MDP) (Sutton and Barto
2018). This can be attributed to RL’s prominent feature of optimizing stochastic systems by tackling the
curse of dimensionality and the curse of modeling (Idrees et al. 2006). By pre-computing optimal policy,
RL overcomes the issue of long online computation when compared with traditional mathematical control
methods.
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In RL, an agent learns to map an optimal policy for a model by multiple trial-and-error searches
guided by a scalar reward. The agent’s actions affect the immediate rewards and the future rewards as
well. These two features – guided trial-and-error search and delayed feedback, distinguish RL from all
other topics of ML, to push the current boundaries of knowledge (Sutton and Barto 2018). However, these
features introduce a unique challenge of a trade-off between exploration and exploitation. Thus, to map a
near-optimal policy, an RL agent must undergo exploration of state spaces and later exploit the available
knowledge. For complex optimization, offline training of the RL agent may require hundreds of thousands
of steps to achieve even a near-optimal policy (Nian et al. 2020). The other challenge is to explore in a
model-free MDP, where the transition probabilities are estimated based on the sample interaction with the
environment.

A large number of unknown possible states in the model makes it more difficult to solve the MDP using
the direct approaches than using a simulation-based RL approach (Shitole et al. 2019). Use of simulation to
create multiple scenarios and optimize the process gave importance to the field of simulation-optimization.
Similarly, computer simulations prove to be an impressive alternative to overcome the challenges for RL
modeling to optimizing a variety of real-life problems. Simulation proves to be a great resource to:

• build a virtual environment when training data set is impossible or infeasible to obtain from the
real world.

• facilitate an agent to interact with the environment in a digital world and gain its intelligence while
saving time and money.

• allow an RL agent to map various stochastic states, otherwise unable to predict - as is the case with
most industrial problems.

Therefore, augmenting RL algorithms with simulated environments is becoming a growing field of
research. The noticeable success in implementing an integrated framework calls for a need to analyze it’s
vast potential. This paper aims to contribute to this line of research by:

• collecting, reviewing and analysing the published studies using an integrated RL agent with simulated
environments, with focus on discrete event simulation (DES) models.

• categorizing the related studies based on multiple factors such yearly trends, journals, and applied
DES models.

• discussing the benefits, application areas, challenges and provide insights for the future works.

The rest of this paper is organized as follows: Section 2 and 3 provide an overview of RL and its
application for sequential decision-making, respectively; Section 4 discusses the the need of an integrated
RL and DES framework; Section 5 reviews a summary of existing papers; Sections 6 addresses discussions,
future works, and a conclusion.

2 AN OVERVIEW OF REINFORCEMENT LEARNING

An emerging period for RL was in the 1990’s with its foundation on Markov Decision Process (introduced
in the 1950’s). Later, RL grew to prominence in 2016 when it was credited with solving the game of Go
using AlphaGo (Powell 2019). As seen in the Figure 1, an RL model consists of an agent, environment,
its states, sets of possible actions, a scalar reward, and transition probabilities (Powell 2019).

MDPs can be further classified as Fully observable MDPs, Partially observable MDPs, Semi-MDPs
(Nian et al. 2020). These categories gives a broad classification for RL models – Model-based RL and
Model-Free RL. In Model-based RL we are aware of the transition probabilities and sample them from
the probability distribution. Whereas in Model-free RL, we estimate the transition probabilities by simply
observing the state transitions (Powell 2019). In an RL model, an agent is a decision-maker and an
environment is everything that influences the agent’s decision. An RL agent tries to learn a near-optimal
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policy by interacting with the environment with improved trial-and-error episodes. This process repeats
itself trying to maximize the overall reward value (Sutton and Barto 2018).

Figure 1: The agent-environment interaction.

3 REINFORCEMENT LEARNING FOR SEQUENTIAL DECISION MAKING

Tremendous research has been published on optimal control focusing on deterministic and stochastic
control with a strong mathematical background. These traditional optimal control methods have demonstrated
success in solving multistage optimal control problems. However, they account for limited online computation
capabilities for industrial optimization problems with Multiple-Input and Multiple-Output (MIMO) (Nian
et al. 2020). Along with that, Dynamic Programming proves ineffective for large scale MDPs due to the
curse of dimensionality and curse of modeling. It is on such a large scale and complex dynamic optimization,
in particular, usage of RL becomes more obvious (Nian et al. 2020). RL models are formulated to account
stochasticity within the system. And it is due to the recent success in solving some complex problems that
RL has attracted significant attention from the optimization community (Nian et al. 2020).

Lately, RL has been applied in a variety of complex optimization problems in domains like supply
chain, autonomous vehicles, drones, manufacturing, finance, and health science. A stochastic scheduling
using dynamic RL policy outperforms various cyclic policies and meets the production constraints in a
manufacturing industry. While on the other end, human-generated static policies proved less optimal when
compared with RL developed dynamic response policies to minimize infectious disease outbreaks (Farhan
et al. 2020). Deep Reinforcement Learning (DRL) has been applied successfully to scheduling problems,
such as resource management or global production scheduling (Gros et al. 2020).

Current RL libraries, such as OpenAI Gym, have many interesting problems, but they are not directly
relevant to industrial use (Hubbs, C D and Perez, H D and Sarwar, O and Sahinidis, N V and Grossmann, I E
and Wassick, J M 2020). Recently, there are notable efforts to showcase its industry potential like being used
to solve classical optimization problems like VRP, TSP, Knapsack, and much more Hubbs, C D and Perez,
H D and Sarwar, O and Sahinidis, N V and Grossmann, I E and Wassick, J M (2020). Another example
is OR-Gym, an open-source Python based library of reinforcement learning environments consisting of
classic operations research and optimization problems. Hubbs, C D and Perez, H D and Sarwar, O and
Sahinidis, N V and Grossmann, I E and Wassick, J M (2020) showed that RL approach outperforms the
benchmark in many of the more complex environments where uncertainty plays a significant role. The
paper also suggests that such platforms would ensure accessibility of RL to solve industrial optimization
problems where models do not exist or are too expensive to compute online.

4 NEED OF SIMULATION FOR REINFORCEMENT LEARNING

The characteristic of RL is learning through continuous interaction with the environment. For a gigantic
model, training an agent offline may need a lot of steps to achieve a near optimal policy. Thus making
it infeasible for live operations. To overcome this issue, the agent may be first trained in a simulated
environment to obtain general knowledge of the process.
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Applications like supply chain, manufacturing resource allocation, and industrial robotics are good
examples of large problems with limited visibility of all possible states. This makes it extremely difficult, if
not impossible, to write a program that could effectively manage every possible combination of circumstances
occurring in real-life scenarios. For practical optimization purposes, the list of uncertainty is countless and
hence the transition probabilities. Such complex models with large states can be augmented with RL in a
simulated environment provided we know the distribution. Another hindrance is finding a readily available
training data set. Sometimes a publicly available dataset cannot exactly recreate the training scenarios of
the desired model. In many optimization problems, obtaining a real-world data can be expensive due to
the cost of operation.

In response to these challenges, researchers have harnessed the power of simulation tools to generate
limitless training data set. These tools have become essential in the development of algorithms, particularly
in the fields of Robotics and Deep Reinforcement Learning. Simulation enables rapid prototyping by easily
customizing new tasks or scenarios. It also provides a low-risk benefit in training costly application like
robotics or a million dollar industrial setup.

The above-mentioned systems have a high demand for flexibility- whether to minimize cost, maximize
production, or synchronize actuators, and to account for the complexity and uncertainty, factory control
systems can leverage AI models such as RL algorithms. In these cases, simulation is highly relevant for
the RL model as it can generate a large number of scenarios closer to the complexity of real-scale systems
that would be difficult to be ensured otherwise (Zielinski et al. 2021).

There are primarily three types of system simulation methods: Discrete-Event Simulation (DES), Agent
Based Modeling (ABM), and System Dynamics (SD). DES is a powerful tool to perform ’What If analysis’
of a system, an essential characteristic to optimize sequential decision-making processes (Arulkumaran
et al. 2017). Limited research is available regarding the combination of RL with DES. However, there exists
a growing body of literature that is applying RL techniques to existing OR problems. The paper takes an
effort to cover some of such cases involving simulation and RL. Section 5, elaborates on techniques used,
simulation setup, Agents used, Architecture, and findings from the reviewed paper. Below we summarize
the existing literature of RL models using DES for various applications.

5 RL WITH DES AS OPTIMIZATION TECHNIQUE

5.1 Literature Selection Process and Overview

This section illustrates the literature using RL with DES for optimization purposes.
The search for papers included keywords like Reinforcement Learning, RL, Simulation, Discrete Event

Simulation, and DES. These words were used in different permutations to obtain varied results. The papers
were selected based on the inclusion criteria decided that is to have usage of RL with DES for specific
applications. Figure 2 shows stages of the review process and number of studies included in each.

The papers searched were obtained from the database of Winter Simulation Conference (WSC), Elsevier,
SIMULTECH, IEEE, and arXiv. Figure 4 shows the trend by top 5 publishers for the studies that were
selected by the inclusion criteria, with Winter Simulation Conference accounting for almost half of the
papers and having a significantly higher increase of papers in this topic in the past years compared to other
top publishers.

As seen in Figure 3, comparatively limited research has been published on the application of RL with
DES for optimization. While there were instances of publication in early 2000s, the trend seems to be
growing since 2017.

5.2 Selected Work on RL with DES Deep Dive

Given the diversity of simulation environment tools available, Figure 5 shows the distribution of the software
or programming language used by the selected works analyzed. This results shows many of these research is
conducted in Python, both for simulation modeling, and the RL algorithm design. Python is an open source
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Figure 2: The literature profile methodology.

Figure 3: Trend of selected publications over time.

programming language with multiple Machine Learning and Simulation modeling libraries. Therefore, it
become a favorable platform to design, develop, and implement simulation-based RL models. Users can
develop the simulation model in Python packages such as SimPy, ORGym, etc., and integrate them with
their own design RL agents or pre-stabled RL model.

In addition to the open-source programming language, some papers used commercial simulation
packages such as FlexSim, Simio, and AnyLogic. These packages are perfect tools to mirror the real-life
systems in details and create a virtual representation for them in a simulated environments. However,
developing RL agent for these model requires extensive user-defined setting, or API connection.

From the application stand-point view, majority of the research are conducted in the domain of
manufacturing, followed by the supply-chain industry. This popularity arises since both industries are
highly dependent on the policy in-effect. Thus, it makes sense that optimization researchers tend to apply
RL in these domains. The oldest paper in the following survey dates to 2002. Creighton and Nahavandi
(2002) have studied the behavior of an RL agent interacting with the DES model for training and developing
a robust policy. The DES model consists of a stochastic serial line production facility with breakdowns
that could be repaired online or offline. The interaction between a MATLAB RL agent and simulation
software was facilitated by ‘Quest’, a visual basic server. The whole architecture was collectively termed
as ’Reinforcement Agent Simulation Environment’ (RASE). RASE was successful in training an agent
to achieve an average lower cost of action and effectively identify an optimal operating policies of real
production facilities. The RASE architecture allowed interfacing between the RL agents and commercial
simulation products - a popular approach of integrating RL with DES. The paper provides valuable insight
on building such architecture which can be similarly used for other problem cases.
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Figure 4: Trend of selected articles by publisher.

Figure 5: Breakdown of selected articles by simulation environment.

An important characteristic of a simulated environment is that it randomly samples new states from the
simulation model. This enables the RL+DES model to map stochasticity of the real-life environment. A
similar approach was tested using DES and RL framework by Dadone et al. (1998) to simulate operations of
a manufacturing plant. The proposed model entirely depended on the simulation developed and assumes no
analytical background of the plant. Furthermore, two different approaches of offline and online adaptation
were compared as well. Standard simulation optimization techniques like finite differences and response
surface methodologies were used as off-line approaches. Whereas, the on-line reinforcement learning used
the approximation paradigms of Fuzzy Logic Systems (FLS) and Artificial Neural Networks (ANN) to
provide adaptation. Both approaches, FLS and ANN, showed good approximation and adaptation properties.
The neural adaptation also showed better extrapolation capabilities. The author states that proposed method
is still in its early phase and needs further study and experimentation to prove its general validity and
applicability. The paper introduces a noticeable experimentation where simulation can be used to RL to
work in a nearly unknown environment.

On narrowing down to a specific application in manufacturing domain, the next popular problem for
RL+OR community seems to be job shop scheduling. The Job shop problem operates in a highly uncertain
environment and adapting improved policies with time is crucial. Idrees et al. (2006) worked on scheduling

2729



Belsare, Diaz Badilla, and Dehghanimohammadabadi

arriving jobs to a single machine with an objective to minimize the mean tardiness. A DES model using
JAVA programming was used to generate multiple scenarios of arriving jobs. The RL agent was trained to
choose actions from a combination of the dispatching rules and number of workers. This paper displays
a unique framework of optimizing traditional mathematical methods by effectively employing them based
on the current state of model. The results obtained showed significant savings in the overall system’s
cost and was able to find optimal policy of hiring and dispatching rules once trained using the integrated
environment.

Taking a step further by including integrated process planning, Lang et al. (2020) experimented with
Deep Q-Network (DQN) and DES for solving a flexible job shop problem. The authors integrated two DQN
agents with a DES model wherein one agent is responsible for the selection of operation sequences, while the
other allocates jobs to machines. Instead of using off-the shelf simulation software, the simulation training
environment was implemented in Python library Salabim. The authors perform a thorough investigation on
DQN’s performance with a focus on its ability to transfer learning, a highly researched RL characteristic.
A couple of notable outcomes from the paper are DQN’s ability to always find a better solution than the
GRASP algorithm for every problem, once trained. The other being, efficient transfer of knowledge as the
prediction and evaluation of newly introduced production schedules requires less than 0.2 seconds.

Several other papers have displayed positive results using DES model to train DQN RL agents. Zhang
et al. (2018) showed that the algorithm interacts with the simulation and learns the batching knowledge
gradually. The experimental results validate that this approach performs better than conventional decision
rules for real-time batching job shops. These papers have successfully highlighted the combined use of
DES and RL to solve a job-shop scheduling problems while integrating dispatching techniques.

Expanding the scope from Job-shop allocation, several efforts have been published to model DES
environment to train and test RL’s performance for global production scheduling. Waschneck et al. (2018)
advocate RL’s importance in implementing Industry 4.0 across the various industries. The author states
that breaking down and balancing global goals to local Key Performance Indicators (KPIs) is challenging
in complex job shop environments. To solve this, the authors present a different approach for using a DES
model with the Google DeepMind’s DQN agent. The factory simulation was implemented in MathWorks
MATLAB to work with recent machine learning algorithms. Later, the MATLAB API for Python was
used to implement an OpenAI Gym Interface. The proposed system automatically develops a scheduling
solution, which is on a par with the expert benchmark, without human intervention or any prior expert
knowledge. Similar research has been carried out by Gros et al. (2020) to assert that DQN learning performs
extremely well, and the resulting strategies provide near-optimal decisions in real-time, while alternative
approaches are either slow or give strategies of poor quality. Both the papers conclude with the proposed
future work on optimizing a balanced or weighted cost function.

One of the benefits of using simulation for queuing models is the identification of bottlenecks and the
comparison of what-if scenarios. This feature offers an RL agent to explore random extracts the new samples
states from the dataset (Farhan et al. 2020). To test this, Farhan et al. (2020) simulated an imaginary coffee
shop to map the consequence of actions taken by the RL agent on the operational cost. The paper lays out
the feasibility of using an off-the shelf simulation software with its inbuilt function of integrating an RL
model. The simulation was carried out on AnyLogic 8 Professional 8.5 software with a two-agent system
– Customer and Server following DES and ABS modeling, respectively. The observations provided by the
model cater to the necessary information needed about the environment and impact the actions to be taken
(Farhan et al. 2020). The RL model’s ability to make better and faster decisions than rule-based heuristics
can be attributed to Population Based Training (PBT) pioneered by Google’s DeepMind that was applied
to train the model. The objective of PBT is to automatically discover the best set of hyperparameters that
encourage the learning agent to find the best performing policy as quickly as possible (Farhan et al. 2020).
On successful training, this method was seamlessly replicated to represent similar industrial-scale models
of queuing theory. The author affirms that the simplicity of using the Pathmind cloud-based platform is
due the fact that it does not require prior knowledge of RL algorithms.

2730



Belsare, Diaz Badilla, and Dehghanimohammadabadi

In the manufacturing job scheduling field, it is of great relevant to have real-time multi-objective
rescheduling methods with the ability of handling random disturbances such as dynamic demands, machine
breakdowns and uncertain processing times in real time while simultaneously considering different objectives
such as makespan and total tardiness (Luo et al. 2021). Most of scheduling problems of this nature, can
be regarded as dynamic multi-objective flexible job shop scheduling problem (DMOFJSP). DMOFJSP can
be modeled as a Markov decision process (MDP) where the decision maker should successively determine
the right actions, i.e., the feasible dispatching rules based on the production status of different rescheduling
points so as to optimize the predefined long-term objectives. The work by (Luo et al. 2021) proposes the
combination of of Deep Reinforcement Learning (DRL) and Hierarchical Reinforcement Learning (HRL)
to solve the DMOFJSP, with a two-hierarchy deep Q network that uses DQN based agents (THDQN).
Similarly to the already mentioned works on this field, the results of their experiments have confirmed
both the effectiveness and generality of the proposed THDQN compared to different composite dispatching
rules and other RL methods. (Luo et al. 2021)

In semiconductor manufacturing, photolithography is a key process which transfers geometric patterns
to the semiconductor. This part can be expensive to increase resources and therefore, a good production
scheduling for it increases the throughput and efficiency of the entire fab (Kim et al. 2021). On their
work, (Kim et al. 2021) propose to use DQN with Action Filter (AF) to solve large-scale photolithography
scheduling problem modeled by simulation with DES. Experiments demonstrated improved performance
compared to typical rule-based strategies, weighted shortest processing time (WSPT) and apparent tardiness
cost with setups (ATCS) rules perform 28% and 32% worse for weighted tardiness, respectively (Kim et al.
2021).

Shipbuilding industry has recently leveraged RL for scheduling jobs. This industry deals with intrinsic
variation to plans and a high complexity given the multiple factors that play a role such as resources, space,
workforce, among others (Woo et al. 2021). (Woo et al. 2021) developed a DDQN for an efficient schedule
system, trained over a DES model of their production system implemented with SimPy. The objective is
to minimize total lead time and it was found that the RL-based scheduling algorithm showed satisfactory
performance in terms of shortening lead time (Woo et al. 2021).

In the mining industry, Rl developments has also been shown satisfactory results on truck-dispatching
rules. The pursue for this kind of methods comes from the necessity on generating real-time truck dispatching
responses that adapts given different mining complex configurations in order to deliver supply material
extracted by the shovels to the processors (de Carvalho and Dimitrakopoulos 2021). The method aims to
improve adherence to the operational plan and fleet utilization in a mining complex context by using a
multi-agent modeled, using DDQN algorithm for each agent and trained on an environment defined as a
DES simulator that emulates the interaction arising from mining operations. The approach was tested at a
copper–gold mining complex and the results showed improvements in terms of production targets, metal
production, and fleet management (de Carvalho and Dimitrakopoulos 2021).

RL has shown promise in multiple experiments on production scheduling, however they are difficult
to reproduce and hence to validate because of the implementation overhead associated with writing a
simulation and the lack of controlled stochasticity (Rinciog and Meyer 2021). With this in mind, (Rinciog
and Meyer 2021) have developed FabricationRL, RL compatible, customizable and extensible benchmarking
simulation framework available in python. It comes to bridge the validation gap that RL in concept-phase
for settings such as scheduling in manufacturing are still needing to robustly embed them (Rinciog and
Meyer 2021). FabricationRL is a production scheduling simulation framework implementing the OpenAI
Gym interface, the framework covers and has examples of different types of scheduling problems and can
be controlled using pre-computed plans as well Reinforcement Learning agents.

The next popular topic of interest for the RL and the optimization community seems to be policy
development for autonomous vehicles. The same problem becomes a combinatorial optimization problem
when one works with a fleet of vehicles or robots. Li et al. (2019) addressed the dispatching and routing
problems for autonomous mobile robots using a DQN model. A DQN model was trained to dispatch a fleet
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of robots used for material handling tasks. The model was then tested on a DES environment. With the
help of DES, author models real life constraints like narrow warehouse aisles, multiple pick up and drop off
locations, the possibility of collision, and restricted traffic routing. The paper sheds some light on usage of
simulation environment for training and testing an RL agent. When benchmarked with the shortest travel
distance rule, the DQN model reduces the occurrences of traffic congestion but increases the travel distance.
In contrast, the net effect reduces the makespan to complete a fixed number of delivery tasks and reduces
the mean flow time. On similar lines, Feldkamp et al. (2020) used RL in combination with DES to control
Automated Guided Vehicle (AGV) in a modular production systems. The author makes use of an off-the
shelf DES software ‘Siemens Plant Simulation’ to create the training and testing DES environment. The
DQL-algorithm was implemented in Python’s Tensorflow/Keras library and it was integrated with Plant
Simulation via a TCP/IP-based interface. The author puts forward a detailed explanation of the training
environment and its ability to create multiple stochastic scenarios. After considerable training, the agent
was successful in obtaining a policy which was able to beat a heuristic decision rules. The author then
goes ahead to discuss challenges and possible future scope of combining DES with DQN, which would
be discussed in the later part of the paper. Taking a step further, Shitole et al. (2019) used a combination
of model-free DQN, DES, and weighted neural network to optimize allocation of costly Earth Moving
Machinery in construction and mining industries. The author compares simulation based RL approach
for solving the MDP over non-simulation based methods such as mathematical programming or analytical
fleet balancing. Different RL methods like Q-learning, actor-critic, and trust region policy optimization
obtained significantly better policies than human-designed heuristics. Apart from successful optimization
the author worked on a crucial topic of transfer-learning. The author asserts that transfer-learning is an
essential research area for the deployment the proposed methodology, since it involves transferring the
policies learnt over the simulator to the real world environment. Further discussion on this topic can be
found in the later section of this paper.

Another area of application with growing importance is in the supply chain and logistics domain. Rabe
and Dross (2015) points out that the usage of RL techniques in the inventory management and logistics
domain date back to 2002. Following on the same, the authors presented the architecture and working
principles of a Decision Support System (DSS) for logistics networks. The proposed system uses a DES
model developed on SimChain to predict the consequences of possible changes in the logistics network.
The author asserts that RL techniques seem to be a suitable approach to construct the internal principles of
the proposed DSS for logistics networks. The discussion is moved on to the important topic of the ability
of the developed model to provide useful action recommendations for states in the real logistics system.

To add, mastering end-to-end supply chain is inevitable for achieving a competitive edge. In order to
enable the collaborating partners to track and optimize their performance, seamless evaluation is required
(Afridi et al. 2020). To achieve that, the authors used RL to solve a Vendor Managed Inventory problem –
a mainstream supply chain collaboration model. The aim was to find an optimal policy that would ensure
desired inventory levels with suitable product life cycles. Using a simulation model, different demand
scenarios were generated based on real data and later compared based on KPIs. The author laid out previous
foundation noting success of DRL in various supply chain applications while asserting that no literature was
found on simulating and finding optimal replenishment policy including split responsibility to the concept
of VMI (Afridi et al. 2020). The model consists of an DQN RL agent implemented in Java (RL4J) library
with AnyLogic simulation as a training environment and an external integrated development environment
(IDE) called IntelliJ IDEA. The agent was imported back into AnyLogic model as a testbed, where the
extended model was used to teach the learning agent on taking appropriate actions to achieve a desired state
(Afridi et al. 2020). Upon training and simulating the environment for various demand scenarios it was
observed that the percentage no-violation inventory status improved from 43% to 95% and 99% for both
scenarios respectively. The agent was also able to maintain higher KPI service levels. The author urges
to work on investigating additional demand scenarios and conduct a full design of experiment considering
the volatility in demand and demand levels.
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6 DISCUSSION AND FUTURE WORK

Integrating simulation models with RL is promising, and recently has received attention by the community.
However, implementing and using these models are at the early-stages and there are lots of constraints and
challenges. A significant barrier in expanding research on RL with DES model is that the practitioners in
each area have backgrounds in using different tools/software. Upon exploring various options for integrating
RL with DES, it was concluded that there is a requirement to learn skill sets from both areas (Greasley
2020). Another solution to this could be developing an interface between the RL agent and DES software
– an approach that was evident in many studied papers.

Greasley (2020) provides an extensive survey on papers that used an external interface to combine
simulation packages and RL agents. The author stresses exploring architectures to enable smooth execution
of such integrated model. To add, Microsoft’s Project Bonsai gives an option to custom teach AI agents
and solve real-world problems with little or no background in coding. Upon a cursory glance, off-the-shelf
simulation packages like Simio are working on integrating simulation with RL to introduce improved
simulation optimization techniques. Along similar lines, Pathmind, a SaaS platform enables simulation
and RL integration to solve industrial problems. It makes use of simulation to create a digital twin to train
and test RL agents and obtain optimal policies.

In terms of coding-based solutions, more packages have appeared on recent years bringing new and
powerful RL models. As an example, the RL Glue project allowed RL practitioners to connect agents,
environments, and experiment programs, even if they are written in different languages, enabling leveraging
multiple platforms and homologation of models easily. Following that, some papers made use of Python-
based simulation environment because that enabled a smooth integration of the DES model with the RL
agent. SimPy and Salabim and newly developed RL simulation libraries were observed in the papers
reviewed.

The other scope of future work is to test the scalability of the DES + RL model. Most of the authors
conclude their research with the stress on the said topic. These limitations exist because RL algorithms
share the same complex issues as other algorithms: computational complexity, sample complexity, and
memory complexity (Creighton and Nahavandi 2002). The solution to computational complexity could
be using a Deep Reinforcement Learning (DRL) algorithms. DRL relies on the property of automatically
finding compact low-dimensional representations (features) of high-dimensional data (Arulkumaran et al.
2017). Although deep neural networks can make reasonable predictions in simulated environments over
hundreds of time-steps, they typically require many samples to tune the large number of parameters they
contain (Feldkamp et al. 2020). This opens a vast area of research - the sensitivity of the DQN model to
changes in any of its parameters, a research interest noted in most of the reviewed papers. It is followed
by the challenge significantly present in the machine learning field - developing a standardized way to
evaluate and benchmark RL techniques against traditional known methods.

The solution to sample complexity is to simulate digital twins as training and testing environments. One
of the main reasons for simulating a probabilistic digital twin is to enable the added capability of proper
treatment of uncertainties associated, without the need to interfere with the physical system itself (Agrell,
Christian and Dahl, Kristina Rognlien and Hafver, Andreas 2021). The probabilistic digital twin also
caters to the inherent challenge of an RL algorithm – exploration v/s exploitation. Having said this, utmost
care should be taken while simulating a training environment. The discrepancy between the real-world
constraints and the simulated environment might cause RL agents to behave in unpredictable ways. The
success of using a simulation environment to train and test the RL models has intrigued the optimization
community to work on the challenging task of ’transferring learning’ from a simulated to a real environment.
Arulkumaran et al. (2017) reviewed a significant amount of work to facilitate the transfer of learning. To
make DRL more efficient, one can make use of previously acquired knowledge in the form of transfer
learning, multitask learning, and curriculum learning (Arulkumaran et al. 2017). Combining simulation
and RL opens another field of learning - known as behavioral cloning in traditional RL literature.
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To sum up, RL has demonstrated its potential in surpassing or achieving comparable results in many
complex tasks when benchmarked against traditional techniques. A steady progress in the optimization
community to solve various industrial problems using RL is evident by reviewing the published papers. A
compelling case to combine simulation and RL to overcome the uncertainties in the industrial application was
made by the reviewed studies. Even though limited research has been published on simulated reinforcement
learning, the trend seems to be increasing. Perhaps, we are not too far from making simulation an integral
part of training and testing a Reinforcement Learning agent. Most of the reviewed studies call for exhaustive
work in the coming years. Along with highlighting the success and opportunities, the parallel goal of this
paper is to encourage researchers to work on the challenges addressed. This needs to be accomplished by
a combined effort from the simulation, reinforcement learning, and operations research community.
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